Как иммунитет борется с вирусами — клеточный, гуморальный фактор. Вирусы, бактерии, цианобактерии

Другой механизм защиты против вирусов - молекулярный. Ответственны за противовирусную защиту молекулы интерферонов. Они способны “интерферировать”, то есть противодействовать процессам биосинтеза вирусных частиц в клетке хозяина. Интерферон синтезируется клеткой-продуцентом в ответ на заражение вирусом и соединяется с соответствующими рецепторами на поверхности зараженных клеток. Взаимодействие цитокина (в данном случае интерферона) со своим специфическим рецептором влечет за собой передачу внутриклеточного сигнала к ядру клетки. В клетке включаются гены, ответственные за синтез белков и ферментов, препятствующих самовоспроизведению вируса. Таким образом, интерферон блокирует биосинтез вирусных частиц в зараженной клетке. Это позволяет использовать препараты интерферона в качестве лечебных при вирусных инфекциях.

Клеточные и молекулярные механизмы при защите от вирусов, как и при защите от бактерий, работают согласованно, приходя на помощь друг другу. Молекулы интерферонов, кроме антивирусного действия, оказывают влияние на функции защитных клеток. Гамма-интерферон, как уже было сказано выше, является активатором макрофагов.

Активированные гамма-интерфероном макрофаги могут пополнить армию клеток-киллеров, но только при участии специфических противовирусных антител, которые образуют своеобразные мостики между макрофагами и зараженными клетками-мишенями. Специфический ответ на вирусные антигены неизбежно вовлекает популяцию Т-хелперов, которые в ответ на активацию начинают усиленно синтезировать и секретировать интерлейкин-2. А этот цитокин известен своей способностью резко активизировать клетки-киллеры.

Иммунодефицитные состояния

Наиболее распространенной формой патологии иммунной системы является иммунологическая недостаточность, или, согласно международной терминологии, иммунодефицитные состояния (ИДС). В основе ИДС лежат нарушения генетического кода (или других структур). На уровне организма это означает неспособность иммунной системы осуществлять то или иное звено иммунного ответа. Такие нарушения могут быть либо первичными (врожденными), либо вторичными (приобретенными). Причины возникновения их в обоих случаях одни и те же - влияние вредных факторов окружающей среды. Дефекты иммунного ответа могут обнаруживаться как на уровне стволовых клеток, Т- и В-лимфоцитов, макрофагов, системы комплемента, так и на уровне ферментов, участвующих в созревании иммуноцитов или в лизисе чужеродных клеток. СПИД - общеизвестный пример приобретенной формы ИДС. В этом случае избирательно поражаются Т-хелперы и частично макрофаги после проникновения в них вирусов (ВИЧ).

Другая форма патологии иммунитета, которая может возникать после воздействия неблагоприятных факторов среды - это аутоиммунные заболевания. Основную роль здесь играют Т-супрессоры. Супрессорные Т-клетки принимают участие в поддержании неотвечаемости (иммунологической толерантности) к антигенам собственных тканей. В норме они блокируют действие аутоагрессивных Т- и В-клеток. Но в тех случаях, когда этот заслон нарушается, развиваются аутоиммунные (саморазрушительные) конфликты. Широко известно заболевание такого рода - тиреоидит (аутоиммунное заболевание щитовидной железы).

Третья форма иммунной патологии, возникающая в подобных случаях, - нарушение противоопухолевого иммунитета.

Выводы

Организм человека обладает иммунитетом - рядом защитных реакций, направленных против инфекционных агентов. Первые (немедленные) защитные реакции - это реакции неспецифические, то есть они универсально направлены против любых чужеродных клеток, вирусов, крупных молекул. Вторые защитные реакции - уже высокоспецифические, на запуск этой системы необходимо некоторое время.

Системы неспецифического (врожденного, естественного) и специфического (приобретенного) иммунитета должны рассматриваться как две стадии единого процесса защиты организма. Система врожденного иммунитета действует на основе воспаления и фагоцитоза. Система приобретенного иммунитета основана на специфических функциях лимфоцитов.

Макрофаги и лимфоциты - основные клетки иммунной системы.

Тимус - это центральный орган иммунитета, где закладываются основы клеточного типа реагирования. Отбор клеток по способности распознавать свои собственные антигены является определяющим условием дальнейшего внутритимусного развития Т-лимфоцитов.

Функции антигена (“чужой” молекулы)- найти соответствующий ему лимфоцит, вызвать его деление и дифференцировку в клетку, секретирующую антитела.

На внедрение и размножение микробов организм отвечает мобилизацией защитных клеток и продукцией защитных молекул - иммунным ответом. Чтобы иммунный ответ состоялся, оказался достаточно эффективным, выполнил свои защитные функции и был своевременно выключен за ненадобностью, необходимы четкие межклеточные взаимодействия, которые обеспечиваются цитокинами. Цитокины являются своеобразным межклеточным языком.

Одной из первых линий защиты организма от бактериальной и вирусной инфекции служат воспалительные процессы. Пока не сформировался полноценный иммунный ответ, они быстро индуцируются для ограничения распространения инфекции в первые часы и дни после заражения. Ключевую роль

в индукции воспалительных реакций играют такие цитокины (молекулярные сигналы), как фактор некроза опухолей (ФНО) и интерлейкин-1 (ИЛ-1).

Фактор некроза опухолей и гамма-интерферон относятся к важнейшим регуляторам иммунной системы организма. Проявляют они также и прямую антивирусную активность.

Другие неспецифические (врожденные) защитные реакции осуществляет система комплемента. Это многокомпонентная система белков (более 20), которые циркулируют в кровяном русле. Основные функции комплемента - распознавание, разрушение и удаление из организма генетически чужеродного материала. Кроме того, комплемент играет важную роль и в регуляции воспалительных и иммунологических реакций организма.

Специфический иммунитет принято делить на гуморальный (ответственны В-лимфоциты) и клеточный (ответственны Т-лимфоциты). Ни В-клетки, ни Т-киллеры не в состоянии развить максимально эффективную реакцию самостоятельно. Именно через процесс взаимодействия различных типов иммуннокомпетентных клеток формируется наиболее выраженный иммунный ответ.

Характерные черты специфического иммунитета - умение отличать “свое” от “не своего”, иммунологическая память, специфичность запоминания, толерантность при внутриутробном введении антигена.

Среди защитных клеток и молекул немало дублеров, способных выполнять одни и те же функции. Клетки, связанные друг с другом посредством цитокинов, образуют своеобразную сеть. Она служит для многоканальной передачи сигналов от клетки к клетке, обеспечивает восприятие этих сигналов и соответствующий ответ. Информация от клетки к клетке передается в виде молекул цитокина.

Система комплемента резко усиливает действие антител. Комплемент сообщает комплексу антител - антитело токсичность, средство к фагоцитирующим клеткам и способность вызывать воспаление.

Система программируемой клеточной смерти - существенный фактор иммунитета, поскольку гибель зараженной клетки может предотвратить распространение инфекции по организму.

Заключение

Мы рассмотрели сложную и индивидуально целесообразно устроенную систему защитных реакций организма. Одной из важнейших проблем современной биологии является вопрос о том, как и из чего она могла возникнуть в процессе эволюции. Подходы к этой проблеме лишь только намечаются.

Ясно, что защиту организма от внешней и внутренней биологической агрессии иммунная система обеспечивает путем двух основных механизмов - распознавания и разрушения чужеродных молекул и клеток. Это достигается благодаря слаженной работе иммуноцитов различного функционального предназначения. Основным молекулярным инструментом для реализации иммунного ответа служат антитела и поверхностные рецепторы. Причем те и другие могут выполнять как функцию распознавания, так и функцию разрушения чужеродных тел. Межклеточная связь между иммуноцитами выполняют интерлейкины, интерфероны и другие медиаторы. Нарушение этих механизмов приводит к различным формам иммунопатологии, опасной для здоровья и жизни.

Список литературы

1. Абелев Г.И. Основы иммунитета. - “Соросовский Образовательный журнал”, 1996г., №5, С. 4-10.

2. Абелев Г.И. Воспаления. - “Соросовский Образовательный журнал”, 1996г., №10,

3. Агол В.И. Генетически запрограммированная смерть клеток. - “Соросовский Образовательный журнал”, 1996г, №10, С. 28-32.

4. Блинкин С.А. В мире незримого. - М., “Знание”, 1976г., С.112.

В постоянном противостоянии вирус и иммунитет поочередно одерживают победы и терпят поражения. Мощная система защиты организма иногда сдает сбои, но в целом благополучно тренируется, вырабатывая иммунитет против вирусов, вызывающих инфекционные заболевания человека.

Вирус

Более сложно устроенные вирусные агенты, кроме ДНК или РНК, содержат липопротеиновую оболочку, под которой находится матриксный М-белок. Устройство этих микроорганизмов позволяет им широко мутировать, образуя новые штаммы.

Просто устроен вирус гриппа А, включающий РНК, внутренний S-антиген, наружный V-антиген, содержащий гемагглютинин, нейраминидазу. Многообразие штаммов гриппа А объясняется изменениями в молекулах наружного антигена.

Механизмы проникновения в клетку микроорганизмов, имеющих оболочку, и безоболочечных вирионов несколько различаются.

  1. Распространенный способ — проникновение в жертву способом эндоцитоза. Подобным способом действует оболочечный вирус гриппа.
  2. Аденовирусы, чтобы проникнуть в мишень, действуют непосредственно на гуморальную передачу, обрывая цепочку, по которой передается информация об опасности.

Иммунная защита

Проникают в организм вирусы через слизистые эпителиальные оболочки. Здесь они сталкиваются с первой линией защиты, в качестве которой выступают факторы неспецифического иммунитета.

Препятствуют распространению болезнетворных микроорганизмов:

  • макрофаги;
  • неспецифические ингибиторы репликации вирионов;
  • естественные киллеры клетки NK;
  • интерфероны;
  • циркулирующие иммуноглобулины.

Так, чтобы сдержать вирус гриппа, в слизистом секрете эпителия циркулируют соединения, способные связывать гликопротеиды, блокируя инфекционную активность вириона. Концентрация неспецифических ингибиторов отличается сезонным характером и снижается в зимнее время.

Внедрение инфекции вызывает изменения в подслизистом слое, где происходит выделение гистамина, простагландинов, кининов, развивается воспаление, появляется отек, изменяется кислотность слизистой в сторону закисления.

Макрофаги

Особые функции выполняют макрофаги. Они захватывают и перерабатывают микроорганизм, проталкивая отдельные пептидные чужеродные частички к поверхности.

  1. На поверхностной мембране пептидные частички вызывают изменения, которые стимулируют производство Т-лимфоцитов в тимусе и скопление Т-хелперов в очаге инфекции.
  2. Макрофаги стимулируют производство В-лимфоцитов, которые синтезируют IgA, повышая концентрацию этих иммуноглобулинов в очаге поражения.
  3. Усиливается продукция С3 комплемента макрофагами.

Действие интерферонов

Эффективную защиту иммунитета от вирусов создают 3 вида интерферонов:

  • лейкоцитарный;
  • фибробластный;
  • иммунный.

Интерфероны представляют собой белковые соединения, универсальные против любых простейших микроорганизмов. Выработка интерферона начинается с момента внедрения инфекционного агента. Это вещество выделяется зараженными клетками, и служит сигналом о заражении всем клеткам организма.

Интерферон, как средство поддержания постоянства внутренней среды, особенно интенсивно производится в ответ на вторжение именно вирусов. Эти белковые соединения относятся к неспецифическому врожденному иммунитету, и защищают человека от самого рождения.

"Вирус - это, по существу, часть клетки. Мы считаем вирусами те компоненты клетки, которые достаточно независимы для того, чтобы передаваться другим клеткам, и сравниваем их с другими клеточными компонентами, более прочно связанными со всей системой."
Г. Руска.

В 1852 г. русский ботаник Д.И. Ивановский впервые получил инфекционный экстракт из растений табака, пораженных мозаичной болезнью. Когда такой экстракт пропустили через фильтр, способный задерживать бактерии, отфильтрованная жидкость все еще сохраняла инфекционные свойства.

Способы передачи вирусных заболеваний.
Капельная инфекция - самый обычный способ распространения респираторных заболеваний. При кашле и чихании в воздух выбрасываются миллионы крошечных капелек жидкости (слизи и слюны). Эти капли вместе с находящимися в них живыми вирусами могут вдохнуть другие люди, особенно в местах скопления большого количества народа, к тому же еще и плохо вентилируемых. Стандартные гигиенические приемы для защиты от капельной инфекции правильное пользование носовыми платками и проветривание комнат.
Некоторые микроорганизмы, такие, как вирус оспы, очень устойчивы к высыханию и сохраняются в пыли, содержащей высохшие остатки капель. Даже при разговоре изо рта вылетают микроскопические брызги слюны, поэтому подобного рода инфекции очень трудно предотвратить, особенно если микроорганизм очень вирулентен (заразен).
Контагиозная передача (при непосредственном физическом контакте). В результате непосредственного физического контакта с больными людьми или животными передаются сравнительно немногие болезни. Сюда прежде всего относятся венерические (т. е. передающиеся половым путем) болезни, такие, как СПИД. К контагиозным вирусным болезням относятся обычные бородавки (папилломавирус) и простой герпес - "лихорадка" на губах.
Переносчик - это любой живой организм, который разносит инфекцию. Он получает инфекционное начало от организма, называемого резервуаром или носителем. Вирус бешенства сохраняется и передается одним и тем же животным, например собакой или летучей мышью. В этих случаях переносчик выступает в качестве второго хозяина, в теле которого может размножаться патогенный микроорганизм. Насекомые могут переносить возбудителей болезней на наружных покровах тела.

Интерферон.
"Ампулы интерферона - сейчас такая же принадлежность любой семейной аптечки, как, например, активированный уголь или анальгин. И мы твердо уверены, что это надежный друг, который защитит от вездесущих вирусов, к тому же он абсолютно безвреден, и врачи дают ему только хвалебные рецензии."
М.Я. Жолондз.
В 1957 г. вирусологи - сотрудники Лондонского национального института англичанин Айзекс и швейцарец Линдеман случайно во время опытов открыли интерферон. Исследователи столкнулись с непонятным явлением: мыши, которых заражали определенными вирусами, не заболевали. Поиски причин этого явления показали, что мыши, не поддавшиеся заражению вирусами, в момент заражения уже болели другой вирусной инфекцией. Оказалось, что в организме мышей один из вирусов препятствует размножению другого. Это явление антагонизма вирусов назвали английским словом "интерференция", что означает "помеха", "препятствие". Оно отмечается при введении в организм двух вирусов одновременно или с интервалом не более 24 часов. Исследователи предположили, что в этой борьбе вирусов участвует белок. Соответствующий низкомолекулярный белок был обнаружен и назван интерфероном.
Интерферон найден у всех позвоночных животных, причем у различных видов животных интерферон различен; он максимально активен лишь в клетках того вида животных, от которых получен.
При заражении клетки вирусом события развиваются следующим образом. Вирус начинает размножаться, и одновременно клетка-хозяин начинает продуцировать интерферон. Интерферон выходит из клетки, вступает в контакт с соседними клетками и делает их невосприимчивыми к вирусу. Он действует, запуская цепь событий, приводящих к подавлению синтеза вирусных белков и (в некоторых случаях) сборки и выхода вирусных частиц. Таким образом, интерферон не обладает прямым противовирусным действием, но вызывает такие изменения в клетке, которые препятствуют размножению вируса. Интерферон вырабатывается также в ответ на внедрение в клетку любых генетически чуждых агентов (антигенов), чужеродных белков и нуклеиновых кислот. Создается впечатление, что клетка образует интерферон как бы в ответ на нанесенную ей "обиду".
Биологическая активность интерферона чрезвычайно высока: у мышиного интерферона она составляет 2 на 10 в 9-ой степени ед./мг, а одна единица снижает образование вирусов примерно на 50%. Это означает, что достаточно одной молекулы интерферона, что-бы сделать клетку резистентной к вирусной инфекции.
Интерферон неспецифичен, он универсален, действует не избирательно против какого-то вируса, а защищает организм от любых вирусов. Как известно, организм для защиты от антигенов вырабатывает высокоэффективные антитела. Антитела вырабатываются только определенными клетками иммунной системы и действуют против вирусов строго избирательно. Антитела, защищающие организм от одного вируса, в ответ на внедрение которого они образовались, оказываются бессильны против другого вируса.
Кроме того, антитела "начинают поступать в кровь лишь через несколько дней после заражения. Неисчислимые полчища новых вирусов образуются гораздо быстрее, и защитные тела могут просто-напросто не успеть" (А. А. Смородинцев, "Пограничная застава" организма). Интерферон же защищает организм уже в первые часы после заражения, "пока не подтянутся основные защитные силы - антитела, направленные уже непосредственно против вторгшихся вирусов".
Клетка, пораженная вирусом, выделяет интерферон в качестве противовирусного вещества к соседним клеткам, мобилизуя их на борьбу с размножающимся вирусом. Интерферон непосредственного воздействия на вирус не оказывает, и это не позволяет вирусу приспособиться к интерферону, выработать против него резистентность (сопротивляемость).
Установлено, что интерферон не проникает в клетку, а связывается с особыми рецепторами на мембране. Интерферон воздействует на мембраны выделившей его клетки и соседних клеток. Соединяясь с рецепторами мембраны, интерферон вызывает внутриклеточную продукцию веществ, подавляющих размножение вирусов, воздействует на аппарат клетки так, что она становится непригодной для размножения вирусов.
Пораженная вирусом клетка погибает из-за проникновения в нее вируса, но при этом усиливает защиту соседних клеток от вирусов. Выделяемый погибающей клеткой интерферон преследует вирусы, защищая соседние клетки. После контакта с интерфероном каждая клетка погибает вместе с проникшим в нее вирусом, но вирус при этом не оставляет потомства. Интерферон, выделенный пораженной клеткой, током крови разносится по всему организму и активизирует защитные реакции.
Антитела крови уничтожают вирусы вне клетки, обезвреживают вирусы путем соединения с ними. Интерферон же действует только внутриклеточно, вызывая разрушение генетического механизма воспроизводства вируса, не соединяясь с ним. Интерферон защищает организм практически от всех вирусов.
Однако интерферон существенно не увеличивает защищенность людей, например, от гриппа. Исчерпывающего объяснения этого явления пока нет. Скорее всего, причина кроется в преувеличении возможностей интерферона и недооценке возможностей вирусов. Все дело в том, что период образования многих тысяч молекул интерферона намного дольше, чем время производства вирусного потомства. А раз так, клетка не успевает опередить агрессора и построить оборонительные сооружения. В любом руководстве по микробиологии можно найти красочное описание размножения вирусов, при котором из ядра погибающей клетки, в которую внедрился вирус, через 20 минут высыпаются 100 свежих вирусов, потомков первого. В течение часа с момента внедрения в клетку первого вируса все эти 100 вирусов могут дать каждый по 100 вирусов, их станет 10000, да еще эти вирусы успеют дать по 100 потомков каждый. Таким образом, через час с небольшим в организме из одного-единственного вируса может оказаться миллион потомков!
А интерферона еще нет, он появляется только "в первые часы заражения". Еще через 40 минут количество вирусов в организме может перевалить за миллиард! Интерферон все это время еще "зреет".
Процесс образования интерферона очень сложен и еще до конца не познан. Так, до сих пор неизвестно, присутствует ли в клетке низкомолекулярный белок до проникновения в нее вируса. С уверенностью можно сказать лишь, что количество интерферона начинает нарастать сразу после нарушения вирусом границ клетки.
Исследованиями установлено, что у детей до трех лет и у пожилых людей (старше 60-65 лет) интерферон образуется медленнее и в меньших количествах. Но и в этих возрастных группах люди по-разному реагируют на контакты с вирусами.
Менее интенсивно интерферон продуцируется клетками слизистой оболочки верхних дыхательных путей и в холодное время года. Эти данные могут частично объяснить рост заболеваемости людей вирусными инфекциями в это время года и более тяжелое течение их у маленьких детей и пожилых людей.
Защитный эффект интерферона снижается, если человек ослаблен переутомлением, нервными переживаниями, хроническими заболеваниями.
Не обходится без курьезов. В печати можно встретить раздраженные отклики людей по поводу неэффективности интерферона в случаях, не связанных с вирусной инфекцией (переохлаждение и т. п.). Интерферон, рекламируемый как самое современное и самое действенное средство в борьбе с гриппом, естественно, в таких случаях не помогает.
Интерферон образуется не только в клетках организма, но и вне его, в клетках, культивируемых изолированно от организма. Это позволило организовать производство интерферона сначала для лечебных, а затем и для профилактических целей.
В специальной литературе ценность интерферона как лечебного препарата усматривается в его полной безвредности для организма даже в очень больших дозах. Однако в больших дозах интерферон не безвреден. Полную безвредность интерферона для организма опровергает А. Балаж: "...Следует упомянуть о широко известных интерферонах. Вскоре после открытия интерферона ученые поняли, что наряду с противовирусной активностью он обладает еще способностью подавлять пролиферацию (разрастание) клеток... Если приложить много усилий, можно использовать его противоопухолевую активность. Но, к сожалению, он подавляет пролиферацию клеток всех типов, без разбора".
Интерферон практически не прекращает развития вирусной инфекции, он лишь ослабляет ее развитие.
Интерферон быстро выводится из организма. При парентеральном (через кожу) введении интерферон очень быстро инактивируется (теряет активность, период полураспада около 20 минут). Поэтому для профилактики, а тем более для лечения вирусных инфекций требуется большое количество этого препарата и частое его введение.
Вне организма человека экзогенный интерферон получают из лейкоцитов донорской крови, так как эффективен только интерферон, извлеченный из человеческих клеток. В специальной литературе приводились сведения, что для получения одной дозы интерферона приходится расходовать до 1 л донорской крови. Разработаны способы очистки интерферона от балластных (ненужных) белков и получения концентрированного высокоактивного интерферона, который несколько более успешно применяется как лечебное и профилактическое средство.
Ставится задача увеличения продолжительности действия интерферона. Эффект его кратковремен, препарат приходится вводить многократно на протяжении курса лечения, и это не позволяет использовать его в достаточно широкой практике. Стимуляция выработки интерферона в организме безвредными живыми вакцинами полиомиелита, гриппа, свинки продолжается всего 5-7 дней.
Применяются также препараты-индукторы (интерфероногены), которые стимулируют выработку клетками организма человека эндогенного интерферона. Индукторы эндогенного интерферона - новый класс наиболее перспективных препаратов, самым эффективным среди которых является циклоферон, отличающийся низкой токсичностью, отсутствием аллергенного, мутагенного и эмбриотоксического действия на организм.

Нечто интересное.
К серьезным вирусным заболеваниям животных можно отнести ящур крупного рогатого скота, рожистое воспаление у свиней, чуму птиц и миксоматоз кроликов. Все эти болезни вызываются вирусами. Вирусное заражение растений обычно приводит либо к появлению желтых крапинок на листьях (так называемой мозаики листьев), либо к морщинистости или карликовости листьев. Вирусы вызывают и задержку роста растений, что впоследствии приводит к снижению урожая. Ряд серьезных заболеваний вызывают вирусы желтой мозаики турнепса, табачной мозаики, карликовой кустистости томатов и бронзовости томатов. Появление полосок на цветках некоторых сортов тюльпанов также обусловлено вирусом, а ведь цветоводы продают эти тюльпаны, выдавая их за особый сорт. Вирусы растений, по-видимому, всегда относятся к РНК-содержащим вирусам.

И еще:
Ученые выяснили, что прием препарата интерферона может значительно отодвинуть начало развития рассеянного склероза, а в некоторых случаях - затормозить развитие болезни, сообщает CNN. Исследования проводились на группе из 383 пациентов в 50 клиниках. Прием препарата значительно отдалил начало заболевания у половины пациентов, начавших принимать его при первых симптомах заболевания. У некоторых прием препарата приостановил развитие болезни.
Данные исследований опубликованы в журнале "New England Journal of Medicine".

- Как же организм животного или человека защищается от вируса, с которым никогда раньше не встречался?

Первый этап, как правило, заканчивается гибелью зараженных клеток. В результате образуется несколько тысяч новых вирусов, затем миллион, миллиард, а потом организм должен погибнуть.

- Но в реальных условиях этого не происходит. Заболевший обычно выздоравливает.

Действительно, даже при тяжелейших вирусных инфекциях, как оспа или клещевой энцефалит, погибают не все заразившиеся люди, а такие болезни, как свинка, корь, грипп, для большинства оканчиваются благополучно.

Обороняясь от возбудителей заразных болезней, организм вырабатывает, как известно, высокоэффективные защитные вещества - антитела. Против каждого возбудителя, будь то бактерия или вирус, образуются свои антитела. Они соединяются только со "своим" возбудителем и нейтрализуют его активность, совершенно не действуя на все остальные.

Каждому этапу развития любой науки, в том числе и медицины, соответствует определенный уровень знаний. Поэтому многие первоначальные положения, своего рода аксиомы вирусологии основывались на знаниях, полученных ранее микробиологами, изучавшими противомикробный иммунитет. Вот почему вирусологи довольно долго считали, что выздоровление обеспечивается только специфическим иммунитетом, его антителами, которые образуются в ответ на проникший в организм и размножающийся там вирус. Однако существовало определенное противоречие, на которое долго старались не обращать внимания, хотя оно буквально бросалось в глаза.

Совершенно непонятным оказывался такой хорошо известный факт: антитела образуются и поступают в кровь через несколько дней после заражения. Именно такой срок требуется организму, чтобы ответить на агрессию и выработать необходимые количества защитных антител, способных связать вирус. Но, ведь зная необычайно высокий темп репродукции вируса в зараженных клетках, легко можно подсчитать, что в первые два-три дня болезни должны образовываться неисчислимые полчища новых вирусов. Следовательно, антитела просто-напросто опоздают и не смогут нейтрализовать инфекцию!

Кроме того, ученые показали, что антитела действуют, только когда вирус находится вне клетки: в крови, в лимфе, - и не способны проникать внутрь клеток, зараженных вирусом, хотя и препятствуют внедрению вирусов в чувствительную ткань.

Очевидно, есть какие-то еще неизвестные способы защиты, которые именно в первые часы после заражения должны, во-первых, ограничить размножение вируса внутри клетки, а затем и воспрепятствовать заражению новых клеток, как бы связать вирус по рукам и ногам до подхода основной армии защиты - антител.

Можно думать, что уже на самых ранних этапах эволюции живых существ на поверхности нашей планеты началась неравная борьба между клеточными организмами и мельчайшими их врагами - вирусами. Учитывая необычайно быстрый темп размножения вируса, такая борьба должна была бы окончиться их несомненной победой над более сложно организованными многоклеточными организмами. Чтобы как-то защитить себя от бурно размножающихся противников, позвоночные животные многие и многие тысячи лет назад выработали универсальный механизм защиты от вирусной агрессии. Эта дополнительная (но против вирусной инфекции, может быть, и основная) защита проявляется и действует на уровне клеток. Она резко подавляет темп размножения вирусов, замедляет скорость развития инфекционного процесса.

В середине 30-х годов два американских исследователя, Г. Финдлей и Ф. Маккаллум, проводили опыты на обезьянах, изучая разновидности вирусов желтой лихорадки, вызывавших или не дававших развития энцефалитов у этих животных. Вирусы нередко были причиной гибели людей, живших в Африке, и особенно приезжавших на Африканский континент европейцев: путешественников, моряков и поселенцев. Обезьяны, так же как и люди, погибали от этих вирусов, причем нередко развивались тяжелейшие параличи.

Однажды, не располагая достаточным числом обезьян, ученые заразили смертельным вирусом животных, которым несколько дней назад была введена ослабленная разновидность вируса желтой лихорадки. Произошло непонятное и поистине чудесное явление: обезьяны Не только не погибли, но даже не заболели. Опыты следовали за опытами, и результаты, повторяя друг друга, позволяли сделать вывод, что найдена совершенно новая возможность спасти животных от смертельных вирусов. Для этого нужно ввести им незадолго до заражения другой, малоопасный вирус, который даже может быть вирусом совершенно иного вида.

Таким образом, было сделано важнейшее открытие, а в медицине появился новый термин "интерференция" вирусов, происшедший от английского слова "помеха", "препятствие".

С самого начала этих работ ученым было ясно, что природа интерференции связана вовсе не с иммунитетом, а с каким-то "неспецифическим" механизмом. Однако в течение долгих 20 лет ученые объясняли защитный эффект простой конкуренцией между двумя соперниками. Думали, что первый по порядку "несмертельный" вирус отнимает у второго "злокачественного" вируса питательные ресурсы зараженного организма, а это подтверждалось плохим размножением смертельного вируса, введенного во вторую очередь.

В 1957 году английский ученый А. Айзекс и его молодая практикантка доктор Д. Линденман показали, что причина интерференции совсем другая. Исследователи изучали поглощение вируса клетками из окружающей питательной среды и ожидали увидеть снижение интерферирующей силы среды. Однако произошло обратное. Но ученые, к счастью, не прошли мимо этого непонятного поначалу факта, а стали искать вызвавшую его причину. Они установили, что если внести в культуру ткани инактивированный теплом вирус гриппа, то зараженные клетки начинают вырабатывать какое-то белковое вещество и выделять его в окружающую среду. В незараженных клетках такого белка обнаружить не удалось.

Айзеке назвал открытый им белок интерфероном и этим обессмертил свое имя.

Интерферон обладал чудесными свойствами идеального противовирусного лекарства, и его открытие явилось крупным событием в биологии и медицине. Правда, вначале оно было встречено с недоверием, но уже через два-три года вызвало широкий поток исследований во всех странах мира. Ученые пытались выяснить природу интерферона, понять механизм его действия на вирусы и постараться использовать для борьбы с вирусными болезнями у людей и животных.

Молекулы интерферона наделены весьма важными и интересными свойствами: они полностью лишены какого-либо побочного действия на организм. Защита от вирусов наблюдается в клетках только того вида животных, которые выработали интерферон. В отличие от антител он подавляет размножение практически всех известных вирусов. Активность самых лучших антибиотиков (стрептомицина, пенициллина, эритромицина и других) распространяется на многие возбудители болезней бактериальной природы, но, к сожалению, не на вирусы.

Как теперь установлено, в первые дни после заражения от смертельного воздействия любого вируса организм защищает именно интерферон. Это очень важно в тех случаях, когда организм встречается с каким-либо вирусом впервые в жизни и не имеет к нему антител. Интерферон играет роль как бы пограничной заставы, которая принимает на себя удар противника, пока не подтянутся основные защитные войска.

Особенно это ценно при таких инфекциях, как грипп и простудные заболевания, которые длятся лишь три-пять дней. Тогда именно интерферон способствует выздоровлению, поскольку антитела образуются поздно, воздействовать на вирус не успевают и играют свою защитную роль только при повторной встрече организма с тем же вирусом.

Вскоре после того, как вирус прикрепится к поверхности клеток, они "распознают" в его лице не только полезный питательный белок, но и своего смертельного врага. Вот это-то раннее "распознавание" и позволяет организму достаточно быстро подготовить эффективную оборону, чтобы подавить вирусную инфекцию или хотя бы ограничить ее уже в первые часы после начала болезни.

Исследование тончайших процессов, происходящих на молекулярном уровне внутри живых клеток, потребовало довольно длительного времени. И если интерферон был открыт в Англии, то объяснить, как он образуется, удалось в Америке.

Вирусолог С. Барон из Института аллергии и инфекционных болезней, расположенного в городе Бетесда, близ Вашингтона, много лет посвятил изучению всего двух вопросов: почему в зараженных вирусами клетках образуется интерферон и как это происходит? Вдумайтесь! Всего два вопроса, но каких важных! Если на них ответить, откроется путь к пониманию главной задачи: способу борьбы с любыми вирусными инфекциями.

Ученому удалось установить, что, как только вирус проникает в цитоплазму клетки и начинает там "раздеваться", сбрасывая белковый чехол и выделяя нуклеиновую кислоту, клетка воспринимает эти действия за сигнал тревоги, оповещающий о вторжении смертельного врага, против которого немедленно надо готовить активнейшее оружие.

С. Барон доказал также, что начало синтеза интерферона совпадает с периодом, когда в зараженной клетке вирусная РНК становится матрицей, с которой печатаются новые РНК. Формирующиеся в ходе этого процесса двунитевые РНК и служат стимулом для образования интерферона. А происходит это потому, что в здоровых клетках никогда не бывает двунитевых РНК, а только однонитевые. Двунитевая форма РНК чужеродна для клетки, а это как раз и необходимо, чтобы подать сигнал опасности. Таков был ответ на вопрос "почему".

Ответ на второй вопрос - "как" - потребовал гораздо больше времени. Оказалось, что, когда клетка получает сигнал опасности, немедленно включается специальный ген-оператор. Начинается синтез информационной РНК, а затем на ее матрице в полисомах клетки происходит сборка относительно простых и легких по весу белковых молекул, которые мы называем интерфероном. 1974 году ученые установили, что ДНК, отвечающие а образование интерферона, расположены у человека только в хромосомах № 2 и 5.

Период образования многих и многих тысяч молекул интерферона в зараженной клетке обычно занимает от двух до шести часов. Значит, он намного короче, чем период репродукции вирусного потомства. А раз так, клетка успевает опередить агрессора и построить оружие раньше, чем масса родившихся вирусов выйдет и набросится а новые беззащитные еще клетки.

Небольшая молекула интерферона может легко проходить через клеточные оболочки. Пока в зараженной летке идет размножение вируса, интерферон уже успевает образоваться, выйти из этой зараженной клетки в кровь, в лимфу, в окружающее пространство и проникнуть в другие клетки.

Хотя к синтезу интерферона способны многие группы клеток соединительной и эпителиальной ткани, особенно активно выполняют эту работу клетки белой крови (лимфоциты).

Основатель химиотерапии микробных инфекций немецкий бактериолог П. Эрлих мечтал когда-то о синтезе химических соединений, способных излечивать любые заразные болезни без вреда для больных. Интерферон, бесспорно, первое такое идеальное лекарство.

По выраженности лечебного действия с интерфероном не могут конкурировать даже лучшие антибиотики. Исследователи рассчитали, что для лечения тяжелого гриппа вполне достаточно ввести больному в несколько приемов всего один миллиграмм чистого интерферона. Для лечения же бактериальных инфекционных заболеваний применяют, как правило, ежедневно по нескольку граммов того или иного антибиотика.

Вирусы, бактерии, цианобактерии

Вирусы в современной биологии рассматривают как одно из пяти царств живой природы. Открыты они были в 1892 г. русским ученым Д.И. Ивановским. Термин предложил М. Бейеринк в 1899 г. Вирусы являются неклеточной формой жизни, занимающей промежуточное положение между живой и неживой материей. Они состоят из ДНК (или РНК) и белка и не способны к самостоятельному синтезу белка. Свойства живых организмов они проявляют, только находясь в клетках про- или эукариот и используя их обмен веществ для собственной репродукции.

Размеры вирусов - от 15 до 2 000 нм. В сердцевине находится генетический материал (ДНК или РНК). По строению и размерам вирусы делят на простые (аденовирусы) и сложные (оспа, герпес, грипп). Встречаются собственно вирусы и бактериофаги - вирусы бактерий (описаны в 1917 г. Ф. Д"Эреллем). По влиянию на клетки хозяина встречаются литические и латентные вирусы. Снаружи вирус покрыт белковой оболочкой - капсидом, выполняющим защитную, ферментативную и антигенную функции. Вирусы более сложного строения могут дополнительно включать углеводные и липидные фрагменты.

Геном вируса попадает в бактерию в результате специфической (или неспецифической) абсорбции бактериофага на клетке хозяина. Вирусная нуклеиновая кислота «впрыскивается» в клетку, а белок остается на клеточной оболочке.

ДНК-содержащие вирусы (оспа, герпес) используют обмен веществ клетки-хозяина для синтеза своих иРНК и белков. РНК-содержащие вирусы (СПИД, грипп) инициируют либо синтез РНК вируса и его белка, либо благодаря ферментам - обратной транскриптазе или ревертазе, синтезируют сначала ДНК, а затем уже РНК и белок вируса. Таким образом, геном вируса, встраиваясь в наследственный аппарат клеткихозяина, изменяет его и направляет синтез вирусных компонентов. Вновь синтезированные вирусные частицы выходят из клетки-хозяина и внедряются в другие (соседние) клетки.

Защищаясь от вирусов, клетки вырабатывают защитный белок - интерферон, который подавляет синтез новых вирусных частиц. Интерферон используют для лечения и профилактики некоторых вирусных заболеваний. Организм человека сопротивляется действию вирусов, вырабатывая антитела. Однако к некоторым вирусам, таким как онкогенные или вирус СПИДа, специфических антител нет. Этим обстоятельством осложняется создание вакцин.

Бактерии - самые древние прокариотические клеточные организмы, наиболее широко распространенные в природе. Они играют важнейшую роль редуцентов органического вещества, фиксаторов азота, являются возбудителями заболеваний животных и человека. В медицине бактерии используют для получения антибиотиков (стрептомицин, тетрациклин, грамицидин), в пищевой промышленности - для получения молочнокислых продуктов, спиртов. Бактерии также являются объектами генной инженерии.

Клетка бактерий покрыта муреиновой оболочкой. Некоторые виды бактерий образуют слизистую капсулу, препятствующую высыханию клетки. Клеточная стенка может образовывать выросты - пили, способствующие объединению бактерий в группы, а также их конъюгации. Мембрана бактерий складчатая. На складках локализуются ферменты или фотосинтезирующие пигменты (у фотоавтотрофных бактерий). Роль мембранных органелл выполняют мезосомы - крупные впячивания мембран. В цитоплазме находятся рибосомы и включения (крахмал, гликоген, жиры). Ряд бактерий имеют жгутики. Наследственный материал бактерий содержится в нуклеоиде в виде кольцевой молекулы ДНК.

По форме бактериальной клетки выделяют:

Кокки (сферические): диплококки, стрептококки, стафилококки;

Бациллы (палочковидные): одиночные, объединенные в цепи, бациллы с эндоспорами;

Спириллы;

Вибрионы;

Спирохеты.

По способу использования кислорода бактерии бывают аэробными и анаэробными.

Размножаются бактерии делением клетки без образования веретена. Половой процесс у некоторых из них связан с обменом генетическим материалом при конъюгации. Распространяются бактерии спорами.

Болезнетворные бактерии: холерный вибрион, дифтерийная палочка, дизентерийная палочка и др.

Цианобактерии (именуемые не совсем правильно синезелеными водорослями) возникли свыше 3 млрд лет тому назад. Они представляют собой клетки с многослойными стенками, состоящими из нерастворимых полисахаридов. Встречаются их одноклеточные и колониальные формы. По строению цианобактерии сходны с бактериями. Они - фотоавтотрофы. Хлорофилл находится на свободнолежащих в цитоплазме мембранах. Цианобактерии размножаются путем деления или распада колоний; имеют способность к спорообразованию; широко распространены в биосфере; способны очищать воду, разлагая продукты гниения; вступают в симбиоз с грибами, образуя некоторые виды лишайников; являются первопоселенцами на вулканических островах и скалах.



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: