Графитовая батарея. Алюминиевые аккумуляторы

Сегодня смартфоны, независимо от производителя и моделей, имеют одну и ту же повторяющуюся проблему – автономность, время работы устройства от одной подзарядки. Если сегодня одним из самых популярных и самых автономных смартфонов является Galaxy Note, то время его работы было бы несколько лет назад просто смешным. Раньше телефон можно было зарядить и целую неделю не думать о том, что нужно поискать розетку и зарядное устройство. Теперь инженеры и исследователи находятся в поисках более современного аккумулятора или новых технологий.

Группа исследователей из Университета Вандербильта (штат Теннесси) смогла создать прототип революционной батареи. Представьте себе возможность заряжать смартфон всего за несколько секунд и при этом он потом сможет проработать несколько недель.

Но нам придется отказаться от нынешнего типа батарей, которые могут оказаться в ближайшее будущее атавизмом, ведь в будущем батареи будут представлять собой супер-конденсаторы. Работать они будут на кремниевом чипе с графеном, который за счет своей пористой структуры будет собирать на себе заряд. Если попытаться найти аналог, то представьте себе пористый сыр, а сам материал имеет огромное преимущество для хранения электроэнергии.

Прототип батареи был создан путем объединения оксида графена с гидразином в воде с использованием ультразвука. Полученное вещество потом нагревается до 140 градусов по Цельсию и затем в течение 5 часов выдерживают под давлением 300кг/см2. В конце концов, получается чрезвычайно пористый графен. Всего 1 грамм такого вещества имеет площадь поверхности больше, чем баскетбольная площадка. К примеру, если заряжать всего 3 секунды грамм такого материала, то заряда хватит на горение светодиода в течение 5 минут.

С такими возможностями в будущем вопрос подзарядки уже будет полностью исключён. Также есть и другая вторичная положительная черта – смартфоны могут быть еще тоньше и легче. Батарея будущего с использованием новой технологии сможет отработать до 5000 циклов, что хватит примерно на 100 лет, а также она будет гибкой и сам материал еще биоразлагаемый.

Очевидно, что с такими свойствами графен станет очень популярным материалом для производства смартфонов, но его наверняка станут использовать и в других сферах – автомобили, компьютеры и т.д.

Почти тридцатилетний поиск путей совершенствования алюминий-ионного аккумулятора приближается к своему финалу. Первый аккумулятор с алюминиевым анодом, способный быстро заряжается, при этом недорогой и долговечный, разработали ученые из Стэнфордского университета.

Исследователи уверенно заявляют, что их детище вполне может стать безопасной альтернативой литий-ионным аккумуляторам, всюду применяющимся сегодня, а также щелочным батарейкам, которые экологически вредны.

Не лишним будет вспомнить, что литий-ионные аккумуляторы порой возгораются. Профессор химии Хонгжи Дай уверен, что его новая батарея не загорится, даже если просверлить её насквозь. Коллеги профессора Дайя охарактеризовали новые аккумуляторы как «сверхбыстро перезаряжаемые алюминий-ионные аккумуляторы».

В силу низкой стоимости, пожаробезопасности, и способности создавать значительную электроемкость, алюминий уже давно привлек внимание исследователей, однако многие годы ушли на создание коммерчески жизнеспособной алюминий-ионной батареи, которая могла бы производить достаточное напряжение даже после многих циклов заряда-разряда.

Ученым нужно было преодолеть многие препятствия, в числе которых: распад материала катода, низкое напряжение разряда ячейки (около 0,55 вольт), потеря емкости и недостаточный жизненный цикл (менее 100 циклов), быстрая потеря мощности (от 26 до 85 процентов спустя 100 циклов).

Теперь же ученые представили аккумуляторную батарею на основе алюминия с высокой стабильностью, в который они использовали металлический анод из алюминия в паре с катодом из трехмерной графитовой пены. До этого было перепробовано много разных материалов для катода, и решение в пользу графита было найдено совершенно случайно. Ученые из группы Хонгжи Дайя определили несколько типов графитового материала, которые показывают весьма высокую производительность.

В своих экспериментальных образцах, команда Стэнфордского университета поместила алюминиевый анод, графитовый катод, и безопасный жидкий ионный электролит, состоящий в основном из растворов солей, в гибкий полимерный пакет.

Профессор Дай и его группа записали видео, где показали, что даже если просверлить оболочку, их аккумуляторы все равно будут продолжать работать некоторое время и не загорятся.

Важным достоинством новых аккумуляторов является их ультрабыстрая зарядка. Обычно литий-ионные аккумуляторы смартфонов подзаряжаются в течение нескольких часов, в то время, как прототип новой технологии демонстрирует беспрецедентную скорость зарядки до одной минуты.

Долговечность новых батарей особенно поражает. Ресурс батареи составляет более 7500 циклов заряда-разряда, причем без потери мощности. Авторы сообщают, что это первая модель алюминий-ионных батарей, с ультрабыстрой зарядкой, и стабильностью в тысячи циклов. А типичный литий-ионный аккумулятор выдерживает лишь 1000 циклов.

Примечательной особенностью алюминиевой батареи является ее гибкость. Аккумулятор можно сгибать, что говорит о потенциальной возможности его применения в гибких гаджетах. Кроме всего прочего, алюминий значительно дешевле лития.

Перспективным видится использование таких батарей для хранения возобновляемой энергии с целью ее резервирования для последующего обеспечения электрических сетей, поскольку по последним данным ученых, алюминиевую батарею можно заряжать десятки тысяч раз.

Вопреки массово используемым элементам АА и ААА напряжением 1,5 вольт, алюминий-ионный аккумулятор генерирует напряжение порядка 2 вольт. Это наивысший из показателей, которых кто-либо добился с алюминием, причем в перспективе этот показатель будет улучшен, заявляют разработчики новых аккумуляторов.

Достигнута плотность хранения энергии 40 Вт-час на килограмм, а у этот показатель достигает 206 Вт-час на килограмм. Однако улучшение катодного материала, уверен профессор Хонгжи Дай, в конце концов приведет как к увеличению напряжения, так и к повышению плотности хранения энергии в аккумуляторах алюминий-ионной технологии. В любом случае, ряд преимуществ перед литий-ионной технологией уже достигнут. Здесь и дешевизна, сочетающаяся с безопасностью, и высокоскоростная зарядка, и гибкость, и длительный срок службы.

Конечно, батарейку легко купить в любом магазине хозтоваров, электроники или в гипермаркете. Однако ради интересных опытов и получения знаний "школы жизни" все же стоит знать, как сделать батарейку своими руками. Тем более процесс такой работы весьма занимательный и несложный.

Батарейка из лимона: два варианта

Для первого варианта вам будет нужен:

  • собственно лимон;
  • оцинкованный гвоздь;
  • 2 небольших отрезка медной проволоки;
  • медная монетка;
  • небольшая лампочка.

Процесс работы таков:

  1. Сделайте на фрукте два надреза на некотором расстоянии друг от друга.
  2. В один надрез поместите гвоздь, а в другой - монетку.
  3. И к гвоздю, и к монете подсоедините по кусочку проволоки. Вторые концы этого импровизированного проводка должны соприкасаться с контактами лампочки.
  4. И все - да будет свет!

Самодельную батарейку из кислого фрукта можно сделать и с помощью:

  • одного того же лимона;
  • канцелярской скрепки;
  • лампочки;
  • 2-х отрезков изолированной медной проволоки диаметром 0,2-0,5 мм и длиной 10 см.

Алгоритм следующий:

  1. Зачистите 2-3 см изоляции на концах каждой из проволок.
  2. Прикрепите оголенную часть одного проводка к скрепке.
  3. Сделайте в лимоне два надреза в 2-3 см друг от друга - по ширине скрепки и для второго проводка. Вставьте эти элементы во фрукт.
  4. Свободные кончики проволоки приложите к контактной части лампочки. Если она не загорелась, значит, выбранный лимон не достаточно мощен - последовательно соедините несколько фруктов между собой и повторите опыт.

Батарейка из картофеля

Запаситесь:

  • двумя картофелинами;
  • тремя проводами с зажимами;
  • двумя хромированными гвоздями;
  • двумя медными гвоздями.

Итак, как сделать батарейку из клубней:

  1. Дайте условное обозначение каждой из картофелин - "А" и "Б".
  2. В края каждого из клубней воткните по хромированному гвоздику.
  3. В противоположный край - медный гвоздь. В теле картошек гвозди не должны пересекаться.
  4. Возьмите какое-либо устройство, питающееся от батарейки, выньте ее и оставьте отсек открытым.
  5. Первый провод должен соединить медный штырек клубня "А" с положительным полюсом в отсеке батарейки.
  6. Второй провод соединяет хромированный штырек картофелины "В" с отрицательным полюсом.
  7. Последний провод соединяет хромированный гвоздь клубня "А" с медным гвоздем клубня "Б".
  8. Как только вы замкнете таким образом все провода, картошка начнет питать устройство энергией.

Картофель в этом опыте можно заменить на банан, авокадо или любой из цитрусовых.

Батарейка из фольги, картона и монеток

Перед тем как сделать батарейку, приготовьте:

  • медные монетки;
  • уксус;
  • соль;
  • картон;
  • фольгу;
  • скотч;
  • два кусочка изолированной медной проволоки.

Все готово? За дело:

  1. Сначала нужно капитально очистить монетки - для этого налейте уксус в стеклянную емкость, добавьте туда же соли и засыпьте деньги.
  2. Как только поверхности монеток преобразились и заблестели, выньте их из тары, возьмите одну и 8-10 раз обведите ее контур на картоне.
  3. Вырежьте картонные кругляшки по контуру. Затем поместите их в тару с уксусом на некоторое время.
  4. Сложите фольгу несколько раз так, чтобы в итоге получилось 8-10 слоев. Обведите на ней монетку и также вырежьте круглые детали по контуру.
  5. На этом этапе начните собирать батарейку. Делается это так: медная монета, картон, фольга. В таком порядке сложите в столбик все имеющиеся у вас компоненты. Завершающим слоем должна быть только монетка.
  6. Снимите с кончиков проводков изоляцию.
  7. Отрежьте небольшую полоску скотча, приклейте на нее один кончик проводка, сверху поставьте импровизированную батарейку, на нее - кончик второго проводка. Надежно закрепите конструкцию клейкой лентой.
  8. Вторые кончики проволоки подсоедините к "+" и "-" устройства, которое необходимо напитать энергией.

Вечная батарейка

Приготовьте:

  • стеклянную банку;
  • серебряный элемент - например ложку;
  • пищевую пленку;
  • медный провод;
  • 1 чайную ложку поваренной соды;
  • 4 пузырька глицерина;
  • 1 чайную ложку 6 % яблочного уксуса.
  1. Плотно обмотайте ложку пищевой пленкой, оставив ее верхний и нижний конец слегка оголенным.
  2. Теперь настало время обмотать ложку поверх пленки медной проволокой. Не забудьте оставить длинные концы в начале и в конце для контактов. Делайте пространство между витками.
  3. И снова слой пленки, а за ним - проволоки таким же методом. Слоев "пленка-проволока" на этой импровизированной катушке должно быть не менее семи. Не затягивайте слои чересчур - пленка должна наматываться свободно.
  4. В стеклянной банке подготовьте раствор из глицерина, соли и уксуса.
  5. После того как соль растворится, в раствор можно погружать катушку. Как только жидкость помутнеет, "вечная" батарейка будет готова к эксплуатации. Срок ее службы напрямую зависит от содержания серебра в элементе-основе катушки.

Графитовый стержень: применение

Графитовая составляющая из старых батареек - это не только основа для нового источника энергии, но и элемент, который можно использовать для электросварки. Делается это по нехитрой схеме:

  1. Заточите графитовый стержень из старой батарейки под углом в 30-40 градусов.
  2. Зажимом типа "крокодил" с токонепроводящей ручкой подсоедините его к "+" и "-" источника переменного или постоянного тока.
  3. К зачищенной детали подключить "0" и "-".
  4. Электрод по мере выгорания необходимо периодически затачивать.

Как сделать батарейку дома? Потребуются подручные материалы, немного энтузиазма и усидчивости. В обмен вы получите альтернативные источники энергии.

В 2015 году средствами массовой информации предрекался большой спрос на графит в связи с необходимостью удовлетворения спроса на литий-ионные аккумуляторы, вызванного повышением популярности электротранспорта. Возникли спекуляции, предсказывающие дефицит графита, ведь для большой аккумуляторной системы электромобиля этого вещества требуется порядка 25 килограммов. Хотя на сегодняшний день стоимость и доступность графита не вызывают беспокойства, существует небольшая тенденция к удорожанию этого материала.

Изготовление графитового анода чистотой 99,99 процентов является весьма дорогостоящим процессом, который к тому же оставляет после себя значительное количество отходов. Конечная стоимость такого анода не столько зависит от материала, сколько от процесса очистки. Утилизация и повторное использование старых графитовых анодов требуют еще больше средств ввиду более сложного процесса регенерации.

Углерод и графит – родственные вещества. Графит является аллотропной формой углерода, - структурной модификацией, которая происходит путем скрепления молекул друг с другом особым образом. Графит является наиболее стабильной формой углерода. Алмаз, метастабильный аллотроп углерода, известный своими превосходными физическими свойствами, является менее стабильным, чем графит, несмотря на то, что графит более мягкий и податливый.

Термин графит берет корни от греческого “graphein”. Это термостойкий, электро- и теплопроводный, химически пассивный (коррозионно стойкий) и легкий (легче алюминия) материал. Кроме анодов для литий-ионных аккумуляторов, высококачественный графит также используется в топливных элементах, солнечных батареях, полупроводниках, светодиодах и ядерных реакторах.

Углеродное волокно представляет собой длинную тонкую прядь толщиной около 5-10 мкм, что составляет примерно одну десятую толщины человеческого волоса. Атомы углерода, соединенные вместе в микроскопические кристаллы, формируют сильную межатомную связь. Из таких волокон можно формировать невероятно прочные структуры, и уже сегодня из них создаются рамы для велосипедов и корпусные детали для автомобилей и самолетов, способные заменить классические алюминиевые. Только 5 процентов графита уходит на нужды отрасли электрических батарей.

Графит для промышленности доступен в двух формах - природный графит из шахт и синтетический из нефтяного кокса. Как правило, обе эти формы используются для производства анодов для литий-ионных аккумуляторов, но у синтетической есть небольшое преимущество - она занимает 55 процентов этого рынка.

Производители предпочитают синтетический графит из-за его превосходной консистенции и высокой степени чистоты в сравнении с природным. Но уже существуют современные методы очистки, которые позволяют добиться чистоты природного графита на уровне 99,9 процента, тогда как синтетический графит изначально имеет 99,0 процентов.

Очищенный природный графит имеет лучшую кристаллическую структуру и обеспечивает более высокую электро- и теплопроводность в сравнении с синтетическим. Также переход на природный графит позволяет уменьшить конечную стоимость аккумулятора, сохранив ту же производительность. Синтетический графит для литий-ионной электрохимической системы продается по цене около $ 10.000 за тонну, тогда как природный в виде порошка имеет цену $ 7 000 (цены указаны за 2015 год). Помимо меньшей цены, природный графит более экологичен и служит основой для создания материала будущего - графена.

Графен

Графен представляет собой аллотроп углерода в виде двумерной гексагональной решетки. Представленный в виде листа чистого углерода, графен имеет толщину всего в один атом. Это гибкий, прозрачный, непроницаемый для влаги, тверже, чем алмаз и более проводящий, чем золото, материал. Научное сообщество возлагает огромные надежды на графен и ожидает, что с его помощью можно будет улучшить много устройств, в том числе, и электрические батареи.

Считается, что анод из графена может запасать больше энергии в сравнении с графитовым, а также способен уменьшить время зарядки в десять раз. Также значительно улучшатся нагрузочные характеристики и долговечность батареи, использующей графеновый анод.

При использовании традиционных графитовых анодов ионы лития накапливаются вокруг внешней поверхности электрода. Графеновый анод же позволяет этим ионам проникать внутрь себя, используя крошечные отверстия в графеновых пластинах - размером порядка 10-20 нм. Это свойство обеспечивает оптимальную зону хранения и доступности ионов, позволяя таким образом добиться более чем десятикратного увеличения количества возможной энергии в сравнении с классическим графитовым анодом.

Но электрическая батарея и с графеновым анодом может быть усовершенствована, например, добавлением оксида ванадия к катоду. Экспериментальные батареи показывают удивительные результаты, такие как зарядка в течение 20 секунд и сохранение 90 процентов емкости после 1000 циклов заряда/разряда. Использование графена также возможно и в других областях, например, в суперконденсаторах он используется для увеличения удельной энергоемкости. На рисунке 1 показана уникальная решеточная структура графена, которую мы можем наблюдать с помощью сканирующей зондовой микроскопии.

Рисунок 1: Изображение структуры графена с помощью сканирующей зондовой микроскопии. Графен представляет из себя лист из чистого углерода толщиной всего в один атом. Это гибкий, прозрачный, непроницаемый для влаги, крепче, чем алмаз, и более проводящий, чем золото материал. Каждый атом углерода располагает тремя электронами, которые формируют химическую связь с ближайшими соседями.

Ученые теоретически знали о удивительных свойствах графена на протяжении десятилетий, но только недавно технологии настолько продвинулись, что стало возможным получить это вещество. Пока что не существует массовых устройств, использующих преимущества графена в своей работе, но есть все предпосылки, что эра графена уже не за горами. (Смострите BU-104c:

Многие считают, что будущее автомобилестроения именно за электрокарами. За границей существуют законопроекты, по которым часть ежегодно продаваемых автомобилей должны либо быть гибридами, либо работать на электричестве, поэтому деньги вкладываются не только в рекламу таких авто, но и в постройку заправок.

Однако многие люди все-таки ждут, когда электрокары станут настоящими соперниками традиционным автомобилям. А может, это будет, когда время зарядки уменьшится, а время автономной работы увеличится? Возможно, в этом человечеству помогут графеновые аккумуляторы.

Что такое графен?

Революционный материал нового поколения, самый легкий и прочный, самый электропроводящий - все это о графене, который является не чем иным, как двумерной углеродной решеткой толщиной в один атом. Создатели графена, Константин Новоселов и получили Нобелевскую премию. Обычно между открытием и началом практического использования этого открытия на практике проходит продолжительное время, иногда даже десятки лет, однако графен такая участь не постигла. Возможно, это связано с тем, что Новоселов и Гейм не утаили технологию его производства.

Они не только рассказали о ней всему миру, но и показали: есть видео на YouTube, где Константин Новоселов подробно рассказывает об этой технологии. Поэтому, возможно, скоро мы сможем даже делать графеновые аккумуляторы своими руками.

Разработки

Попытки применения графена были практически во всех областях науки. Его пробовали в солнечных батареях, наушниках, корпусах и даже пытались лечить рак. Однако на данный момент одна из самых перспективных и нужных человечеству вещей - это графеновый аккумулятор. Напомним, что при таком неоспоримом преимуществе, как дешевое и экологичное топливо, электромобили имеют серьезный недостаток - относительно небольшую максимальную скорость и запас хода не более трехсот километров.

Решение проблемы века

Графеновый аккумулятор работает по тому же принципу, что и свинцовые с щелочным или кислотным электролитом. Этим принципом является электрохимическая реакция. По устройству графеновый аккумулятор схож с литиево-ионным с твердым электролитом, в котором катодом является угольный кокс, близкий по составу к чистому углероду.

Однако уже сейчас среди инженеров, разрабатывающих графеновые аккумуляторы, есть два принципиально разных направления. В США ученые предложили делать катод из пластин графена и кремния, перемежающихся между собой, а анод - из классического кобальта лития. Российские инженеры нашли другое решение. Токсичная и дорогая литиевая соль может быть заменена более экологичным и дешевым оксидом магния. Емкость аккумулятора увеличивается в любом случае за счет повышения скорости прохождения ионов от одного электрода к другому. Это достигается вследствие того, что графен обладает высоким показателем электрической проницаемости и способностью к накоплению электрического заряда.

Мнения ученых относительно инноваций разделяются: российские инженеры утверждают, что графеновые аккумуляторы имеют емкость в два раза больше, чем литий-ионные, а вот их зарубежные коллеги утверждают, что в десять.

Графеновые аккумуляторы запущены в массовое производство в 2015 году. К примеру, этим занимается испанская компания Graphenano. По словам производителя, использование этих аккумуляторов в электрокарах на логистических площадках показывает реальные практические возможности батареи с графеновым катодом. Для полной зарядки ему требуется всего восемь минут. Максимальную длину пробега также способны увеличить графеновые аккумуляторы. Зарядка на 1000 км вместо трехсот - вот что хочет предложить потребителю корпорация Graphenano.

Испания и Китай

С Graphenano сотрудничает китайская компания Chint, которая купила 10 % акций испанской корпорации за 18 миллионов евро. На совместные средства будет осуществляться постройка завода с двадцатью производственными линиями. Проект уже получил около 30 миллионов инвестиций, которые будут вложены в установку оборудования и наем сотрудников. По первоначальному плану завод должен был начать выпускать около 80 миллионов батарей. На начальном этапе основным рынком должен стать Китай, а затем планировалось начало поставок в другие страны.

На втором этапе компания Chint готова инвестировать 350 миллионов евро для постройки еще одного завода, на котором будет около пяти тысяч сотрудников. Такие цифры неудивительны, если учесть, что суммарный доход будет составлять около трех миллиардов евро. К тому же Китай, известный своими проблемами с экологией, будет обеспечен экологичным и дешевым "топливом". Однако, как мы можем наблюдать, кроме громких заявлений, свет не увидел ничего, только тестовые модели. Хотя корпорация Volkswagen тоже объявила о своем намерении сотрудничать с Graphenano.

Ожидания и реальность

На дворе 2017 год, а это значит, что Graphenano занимаются "массовым" производством аккумуляторов уже два года, однако встретить электромобиль на дороге - большая редкость не только для России. Все характеристики и данные, обнародованные корпорацией, довольно неопределенны. В целом они никак не выходят за рамки общепринятых теоретических представлений о том, какими параметрами должен обладать графеновый аккумулятор для электромобиля.

К тому же до сих пор все, что было представлено как потребителям, так и инвесторам, - это только компьютерные модели, никаких настоящих прототипов. Добавляет проблем и то, что графен - материал, который очень дорог в производстве. Несмотря на громкие заявления ученых о том, как его можно будет "печатать на коленке", на данном этапе снизить удается только стоимость некоторых компонентов.

Графен и мировой рынок

Сторонники всяческих теорий заговоров скажут, что никому не выгодно появление такого автомобиля, потому что тогда нефть уйдет на задний план, а значит, сократятся и доходы от ее добычи. Однако, скорее всего, инженеры столкнулись с какими-то проблемами, но не хотят это афишировать. Слово "графен" сейчас на слуху, многие считают его поэтому, возможно, ученым не хочется портить его славу.

Проблемы в разработках

Однако дело может быть и в том, что материал действительно инновационный, поэтому подхода требует соответствующего. Возможно, аккумуляторы с использованием графена должны быть принципиально отличными от традиционных литий-ионных или литий-полимерных.

Существует и еще одна теория. Корпорация Graphenano заявила, что новые аккумуляторы заряжаются всего за восемь минут. Специалисты подтверждают, что это действительно возможно, только мощность источника питания должна быть не менее одного мегаватта, что возможно в тестовых условиях на заводе, но никак не в домашних. Постройка достаточного количества заправок с такой мощностью будет стоить огромных денег, цена одной подзарядки будет довольно высока, поэтому графеновый аккумулятор для авто не принесет никакой выгоды.

Практика показывает, что революционные технологии достаточно долго встраиваются в мировой рынок. Необходимо провести множество тестов, чтобы убедиться в безопасности продукта, поэтому выход новых технологических устройств порой затягивается на долгие годы.



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: