Решить симплекс таблицу онлайн. Симплексный метод решения задач линейного программирования

Для разрешения выполнения апплета на вашем компьютере надо сделать следующее - нажать кнопку Пуск>Панельуправления>Программы>Java. В окне Java Control Panel выбираем вкладку Security (Безопастность) нажимаем кнопку Edit Site List, кнопку add и вставляем в свободное поле путь к этой страницы из адресной строки браузера. Далее нажимаем кнопки ОК, после этого перезагружаем компьютер.

Для запуска апплета нажмите на кнопку "Simplex". Если над этой строкой не видна кнопка "Simplex", то на компьютере не установлена Java.

    После нажатия на кнопку « Simplex » выводится первое окно для ввода числа переменных и числа ограничений задачи на симплекс-метод.

    После нажатия на кнопку « ok » выводится окно для ввода остальных данных задачи на симплекс-метод: режима отображения (десятичные дроби или обыкновенные), тип критерия задачи min или max , ввод коэффициентов целевой функции и коэффициентов системы ограничений со знаками « ≤ », « ≥ » или « = », ограничения вида х i ≥ 0 вводить не надо, их учитывает в своем алгоритме.

    После нажатия на кнопку «Решить» выводится окно с результатами решения задачи на . Окно состоит из двух частей, в верхней части находится текстовое поле, содержащее описание приведения исходной задачи к канонической форме, которая используется для составления первой симплекс-таблицы. В нижней части окна в панели со вкладками расположены симплекс-таблицы каждой итерации с небольшим текстовым полем внизу с указанием разрешающего столбца, разрешающей строки и другой информации, что делает программу обучающей. Во вкладке с оптимальной (последней) таблицей в текстовом поле приведено полученное оптимальное решение задачи.

Замеченные ошибки и комментарии по работе апплета присылайте на [email protected] или звоните 8 962 700 77 06, за что мы будем Вам очень благодарны.

Программа М-метод

Программа для решения транспортной задачи

Здесь приведено ручное (не апплетом) решение двух задач симплекс-методом (аналогичным решению апплетом) с подробными объяснениями для того, чтобы понять алгоритм решения задач. Первая задача содержит знаки неравенства только " ≤ " (задача с начальным базисом), вторая может содержить знаки " ≥ ", " ≤ " или " = " (задача с искусственным базисом), они решаются по разному.

Симплекс-метод, решение задачи с начальным базисом

1)Симплекс-метод для задачи с начальным базисом (все знаки неравенств-ограничений " ≤ ").

Запишем задачу в канонической форме, т.е. ограничения-неравенства перепишем в виде равенств, добавляя балансовые переменные:

Эта система является системой с базисом (базис s 1 , s 2 , s 3 , каждая из них входит только в одно уравнение системы с коэффициентом 1), x 1 и x 2 - свободные переменные. Задачи, при решении которых применяется симплекс-метод, должны обладать следующими двумя свойствами:
-система ограничений должна быть системой уравнений с базисом;
-свободные члены всех уравнений в системе должны быть неотрицательны.

Полученная система - система с базисом и ее свободные члены неотрицательны, поэтому можно применить симплекс-метод. Составим первую симплекс-таблицу (Итерация 0), т.е. таблицу коэффициентов целевой функции и системы уравнений при соответствующих переменных. Здесь "БП" означает столбец базисных переменных, «Решение» - столбец правых частей уравнений системы. Решение не является оптимальным, т.к. в z – строке есть отрицательные коэффициенты.

итерация 0

БП

Решение Отношение

Для улучшения решения перейдем к следующей итерации, получим следующую симплекс-таблицу. Для этого надо выбрать разрешающий столбец , т.е. переменную, которая войдет в базис на следующей итерации. Он выбирается по наибольшему по модулю отрицательному коэффициенту в z-строке (в задаче на максимум) – в начальной итерации это столбец x 2 (коэффициент -6).

Затем выбирается разрешающая строка , т.е. переменная, которая выйдет из базиса на следующей итерации. Она выбирается по наименьшему отношению столбца "Решение" к соответствующим положительным элементам разрешающего столбца (столбец «Отношение») – в начальной итерации это строка s 3 (коэффициент 20).

Разрешающий элемент находится на пересечении разрешающего столбца и разрешающей строки, его ячейка выделена цветом, он равен 1. Следовательно, на следующей итерации переменная x 2 заменит в базисе s 3 . Заметим, что в z-строке отношение не ищется, там ставится прочерк " - ". В случае если есть одинаковые минимальные отношения, то выбирается любое из них. Если в разрешающем столбце все коэффициенты меньше или равны 0, то решение задачи бесконечно.

Заполним следующую таблицу «Итерация 1». Её мы получим из таблицы «Итерация 0». Цель дальнейших преобразований - превратить разрешающий столбец х 2 в единичный (с единицей вместо разрешающего элемента и нулями вместо остальных элементов).

1)Вычисление строки х 2 таблицы "Итерация 1". Сначала делим все члены разрешающей строки s 3 таблицы "Итерация 0" на разрешающий элемент (он равен 1 в данном случае) этой таблицы, получим строку x 2 в таблице «Итерации 1». Т.к. разрешающий элемент в данном случае равен 1, то строка s 3 таблицы "Итерация 0" будет совпадать со строкой х 2 таблицы "Итерация 1". Строку x 2 таблицы "Итерации 1" мы получили 0 1 0 0 1 20, остальные строки таблицы "Итерация 1" будут получены из этой строки и строк таблицы "Итерация 0" следующим образом:

2) Вычисление z-строки таблицы "Итерация 1". На месте -6 в первой строке (z-строке) в столбце х 2 таблицы "Итерация 0" должен быть 0 в первой строке таблицы "Итерация 1". Для этого все элементы строки х 2 таблицы "Итерация 1" 0 1 0 0 1 20 умножим на 6, получим 0 6 0 0 6 120 и сложим эту строку с первой строкой (z - строкой) таблицы "Итерация 0" -4 -6 0 0 0 0, получим -4 0 0 0 6 120. В столбце x 2 появился ноль 0 , цель достигнута. Элементы разрешающего столбца х 2 выделены красным цветом.

3) Вычисление строки s 1 таблицы "Итерация 1". На месте 1 в s 1 строке таблицы "Итерация 0" должен быть 0 в таблице "Итерация 1". Для этого все элементы строки х 2 таблицы "Итерация 1" 0 1 0 0 1 20 умножим на -1, получим 0 -1 0 0 -1 -20 и сложим эту строку с s 1 - строкой таблицы "Итерация 0" 2 1 1 0 0 64, получим строку 2 0 1 0 -1 44. В столбце х 2 получен необходимый 0.

4) Вычисление строки s 2 таблицы "Итерация 1". На месте 3 в s 2 строке таблицы "Итерация 0" должен быть 0 в таблице "Итерация 1". Для этого все элементы строки х 2 таблицы "Итерация 1" 0 1 0 0 1 20 умножим на -3, получим 0 -3 0 0 -3 -60 и сложим эту строку с s 2 - строкой таблицы "Итерация 0" 1 3 0 1 0 72, получим строку 1 0 0 1 -3 12. В столбце х 2 получен нужный 0. Столбец х 2 в таблице "Итерация 1" стал единичным, он содержит одну 1 и остальные 0.

Строки таблицы «Итерация 1» получаем по следующему правилу:

Новая строка = Старая строка – (Коэффициент разрешающего столбца старой строки)*(Новая разрешающая строка).

Например для z -строки имеем:

Старая z-строка (-4 -6 0 0 0 0)
-(-6)*Новая разрешающая строка -(0
-6 0 0 -6 -120)
=Новая z-строка
(-4 0 0 0 6 120) .

Для следующих таблиц пересчет элементов таблицы делается аналогично, поэтому мы его опускаем.

итерация 1

Решение Отношение

Разрешающий столбец х 1 , разрешающая строка s 2 , s 2 выходит из базиса, х 1 входит в базис. Совершенно аналогично получим остальные симплекс-таблицы, пока не будет получена таблица со всеми положительными коэффициентами в z-строке. Это признак оптимальной таблицы.

Итерация 2

Решение Отношение

Разрешающий столбец s 3 , разрешающая строка s 1 , s 1 выходит из базиса, s 3 входит в базис.

Итерация 3

Решение Отношение

В z-строке все коэффициенты неотрицательны, следовательно, получено оптимальное решение x 1 = 24, x 2 = 16, z max = 192.

Симплекс-метод, решение задачи с искусственным базисом

2) Решим задачу с искусственным базисом (хотя бы один знак неравенств-ограничений " ≥ " или " = ").

Запишем задачу в канонической форме (в виде системы уравнений, что требует симплекс-метод), для этого введем две переменные х 3 ≥ 0 и х 4 ≥ 0 получим:

Система ограничений предлагает только одну допустимую базисную переменную x 4 , только она входит только в одно уравнение в третье с коэффициентом 1, поэтому в первое и второе уравнения добавляем искусственные переменные R 1 ≥ 0 и R 2 ≥ 0 Чтобы можно было примененить симплекс-метод система уравнений-ограничений должна быть системой с базисом, т.е. в каждом уравнении должна быть переменная с коэффициентом 1, которая входит только в одно уравнение системы, в нашем случае это R 1 , R 2 и x 4 . Получили, так называемую, М-задачу:

Данная система является системой с базисом, в которой R 1 , R 2 и x 4 базисные переменные, а x 1 , x 2 и x 3 свободные переменные, свободние члены всех уравнений неотрицательны. Следовательно, для решения задачи можно применить симплекс-метод. Запишем начальную симплекс-таблицу:

итерация 0

Решение Отношение
-16

В таблицу для задач с искусственным базисом добавлена строка «Оценка». Она получается суммированием соответствующих коэффициентов строк с искусственными переменными (R) с обратным знаком. Она будет присутствовать в таблице до тех пор, пока хотя бы одна из искусственных переменных есть в базисе. По наибольшему по модулю отрицательному коэффициенту строки "Оценка" определяется разрешающий столбец пока она есть в таблице. Когда строка "Оценка" выйдет из таблицы (в базисе нет искусственных переменных) разрешающий столбец будет определяться по z-строке, как и в задаче с начальным базисом. В данной таблице разрешающий столбец х 2 , он выбран по наибольшей по модулю отрицательной оценке (-7). Разрешающая строка R 2 выбрана по наименьшему отношению столбца "Решение" к соответствующим положительным элементам разрешающего столбца, как и в задаче без искусственных переменных. Это значит, что на следующей итерации переменная х 2 из свободной перейдет в базисную, а переменная R 2 из базисной – в свободную. Запишем следующую симплекс-таблицу:

Разрешающий столбец х 1 , разрешающая строка R 1 , R 1 выходит из базиса, x 1 входит в базис. После этого в базисе не остается искусственных переменных, поэтому строки «Оценка» в следующей таблице нет:

итерация 2

Решение Отношение

Далее разрешающий столбец выбирается по z-строке. В z-строке все коэффициенты неотрицательны кроме коэффициента при искусственной переменной R 1 , который не влияет на оптимальность, когда искусственные переменные вышли из базиса. Следовательно, получено оптимальное решение x 1 = 6/5; x 2 = 3/5; z max = 72/5.

Особые случаи применения симплекс-метода

1) Когда прямая (если рассматривается двухмерная задача линейного программирования, а в общем случае гиперплоскость), представляющая целевую функцию параллельна прямой (гиперплоскости), соответствующей одному из неравенств-ограничений (которое в точке оптимума выполняется, как точное равенство) целевая функция принимает одно и тоже оптимальное значение на некотором множестве точек границы области допустимых решений. Эти решения называются альтернативными оптимальными решениями . Наличие альтернативных решений можно определить по оптимальной симплекс-таблице. Если в z-строке оптимальной таблицы есть нулевые коэффициенты небазисных переменных, то есть альтернативные решения.

2) Если в разрешающем столбце симплекс-таблицы все коэффициенты меньше или равны нуль, то нельзя выбрать разрешающую строку, в этом случае решение неограничено.

3) Если ограничения задачи линейного программирования несовместны (т.е. они не могут выполняться одновременно), то задача не имеет допустимых решений. Такая ситуация не может возникнуть, если все неравенства, составляющие систему ограничений, имеют тип " ≤ " с неотрицательными правыми частями, т.к. в этом случае дополнительные переменные могут составить допустимое решение. Для других типов ограничений использются искусственные переменные. Если задача имеет решение, то в оптимальной таблице в базисе нет искусственных переменных (R i). Если они там есть, то задача не имеет решений.


. Алгоритм симплекс-метода

Пример 5.1. Решить следующую задачу линейного программирования симплекс-методом:

Решение:

I итерация:

х3 , х4 , х5 , х6 х1 ,х2 . Выразим базисные переменные через свободные:

Приведем целевую функциюк следующему виду:

На основе полученной задачи сформируем исходную симплекс-таблицу:

Таблица 5.3

Исходная симплекс-таблица

Оценочные отношения

Согласно определению базисного решения свободные переменные равны нулю, а значения базисных переменных – соответствующим значениям свободных чисел, т.е.:

3 этап: проверка совместности системы ограничений ЗЛП.

На данной итерации (в таблице 5.3) признак несовместности системы ограничений (признак 1) не выявлен (т.е. нет строки с отрицательным свободным числом (кроме строки целевой функции), в которой не было бы хотя бы одного отрицательного элемента (т.е. отрицательного коэффициента при свободной переменной)).

На данной итерации (в таблице 5.3) признак неограниченности целевой функции (признак 2) не выявлен (т.е. нет колонки с отрицательным элементом в строке целевой функции (кроме колонки свободных чисел), в которой не было бы хотя бы одного положительного элемента).

Так как найденное базисное решение не содержит отрицательных компонент, то оно является допустимым.

6 этап: проверка оптимальности.

Найденное базисное решение не является оптимальным, так как согласно признаку оптимальности (признак 4) в строке целевой функции не должно быть отрицательных элементов (свободное число данной строки при рассмотрении данного признака не учитывается). Следовательно, согласно алгоритму симплекс-метода переходим к 8 этапу.

Так как найденное базисное решение допустимое, то поиск разрешающей колонки будем производить по следующей схеме: определяем колонки с отрицательными элементами в строке целевой функции (кроме колонки свободных чисел). Согласно таблице 5.3, таких колонок две: колонка «х1 » и колонка «х2 ». Из таких колонок выбирается та, которая содержит наименьший элемент в строке целевой функции. Она и будет разрешающей. Колонка «х2 » содержит наименьший элемент (–3) в сравнении с колонкой «х1

Для определения разрешающей строки находим положительные оценочные отношения свободных чисел к элементам разрешающей колонки, строка, которой соответствует наименьшее положительное оценочное отношение, принимается в качестве разрешенной.

Таблица 5.4

Исходная симплекс-таблица

В таблице 5.4 наименьшее положительное оценочное отношение соответствует строке «х5 », следовательно, она будет разрешающей.

Элемент, расположенный на пересечение разрешающей колонки и разрешающей строки, принимается в качестве разрешающего. В нашем примере – это элемент , который расположен на пересечении строки «х5 » и колонки «х2 ».

Разрешающий элемент показывает одну базисную и одну свободную переменные, которые необходимо поменять местами в симплекс-таблице, для перехода к новому «улучшенному» базисному решению. В данном случае это переменные х5 и х2 , в новой симплекс-таблице (таблице 5.5) их меняем местами.

9.1. Преобразование разрешающего элемента.

Разрешающий элемент таблицы 5.4 преобразовывается следующим образом:

Полученный результат вписываем в аналогичную клетку таблицы 5.5.

9.2. Преобразование разрешающей строки.

Элементы разрешающей строки таблицы 5.4 делим на разрешающий элемент данной симплекс-таблицы, результаты вписываются в аналогичные ячейки новой симплекс-таблицы (таблицы 5.5). Преобразования элементов разрешающей строки приведены в таблице 5.5.

9.3. Преобразование разрешающей колонки.

Элементы разрешающей колонки таблицы 5.4 делим на разрешающий элемент данной симплекс-таблицы, а результат берется с обратным знаком. Полученные результаты вписываются в аналогичные ячейки новой симплекс-таблицы (таблицы 5.5). Преобразования элементов разрешающей колонки приведены в таблице 5.5.

9.4. Преобразование остальных элементов симплекс-таблицы.

Преобразование остальных элементов симплекс-таблицы (т.е. элементов не расположенных в разрешающей строке и разрешающей колонке) осуществляется по правилу «прямоугольника».

К примеру, рассмотрим преобразование элемента, расположенного на пересечении строки «х3 » и колонки «», условно обозначим его «х3 ». В таблице 5.4 мысленно вычерчиваем прямоугольник, одна вершина которого располагается в клетке, значение которой преобразуем (т.е. в клетке «х3 »), а другая (диагональная вершина) – в клетке с разрешающим элементом. Две другие вершины (второй диагонали) определяются однозначно. Тогда преобразованное значение клетки «х3 » будет равно прежнему значению данной клетки минус дробь, в знаменателе которой разрешающий элемент (из таблицы 5.4), а в числителе произведение двух других неиспользованных вершин, т.е.:

«х3 »: .

Аналогично преобразуются значения других клеток:

«х3 х1 »: ;

«х4 »: ;

«х4 х1 »: ;

«х6 »: ;

«х6 х1 »: ;

«»: ;

«х1 »: .

В результате данных преобразований получили новую симплекс- таблицу (таблица 5.5).

II итерация:

1 этап: составление симплекс-таблицы.

Таблица 5.5

Симплекс-таблица II итерации

Оценочные

отношения

2 этап: определение базисного решения.

В результате проведенных симплекс-преобразований получили новое базисное решение (таблица 5.5):

Как видно, при данном базисном решении значение целевой функции =15, что больше чем при предыдущем базисном решении.

Не совместность системы ограничений в соответствии с признаком 1 в таблице 5.5 не выявлена.

4 этап: проверка ограниченности целевой функции.

Неограниченность целевой функции в соответствии с признаком 2 в таблице 5.5 не выявлена.

5 этап: проверка допустимости найденного базисного решения.

Найденное базисное решение в соответствии с признаком 4 не оптимальное, так как в строке целевой функции симплекс-таблицы (таблица 5.5) содержится отрицательный элемент: –2 (свободное число данной строки при рассмотрении данного признака не учитывается). Следовательно, переходим к 8 этапу.

8 этап: определение разрешающего элемента.

8.1. Определение разрешающей колонки.

Найденное базисное решение допустимое, определяем колонки с отрицательными элементами в строке целевой функции (кроме колонки свободных чисел). Согласно таблице 5.5, такой колонкой является только одна колонка: «х1 ». Следовательно, ее принимаем в качестве разрешенной.

8.2. Определение разрешающей строки.

Согласно полученным значениям положительных оценочных отношений в таблице 5.6, минимальным является отношение, соответствующее строке «х3 ». Следовательно, ее принимаем в качестве разрешенной.

Таблица 5.6

Симплекс-таблица II итерации

Оценочные

отношения

3/1=3 – min

9 этап: преобразование симплекс-таблицы.

Преобразования симплекс-таблицы (таблицы 5.6) выполняются аналогично, как и в предыдущей итерации. Результаты преобразований элементов симплекс-таблицы приведены в таблице 5.7.

III итерация

По результатам симплекс-преобразований предыдущей итерации составляем новую симплекс-таблицу:

Таблица 5.7

Симплекс-таблица III итерации

Оценочные

отношения

2 этап: определение базисного решения.

В результате проведенных симплекс-преобразований получили новое базисное решение (таблица 5.7):

3 этап: проверка совместности системы ограничений.

Не совместность системы ограничений в соответствии с признаком 1 в таблице 5.7 не выявлена.

4 этап: проверка ограниченности целевой функции.

Неограниченность целевой функции в соответствии с признаком 2 в таблице 5.7 не выявлена.

5 этап: проверка допустимости найденного базисного решения.

Найденное базисное решение в соответствии с признаком 3 допустимое, так как не содержит отрицательных компонент.

6 этап: проверка оптимальности найденного базисного решения.

Найденное базисное решение в соответствии с признаком 4 не оптимальное, так как в строке целевой функции симплекс-таблицы (таблица 5.7) содержится отрицательный элемент: –3 (свободное число данной строки при рассмотрении данного признака не учитывается). Следовательно, переходим к 8 этапу.

8 этап: определение разрешающего элемента.

8.1. Определение разрешающей колонки.

Найденное базисное решение допустимое, определяем колонки с отрицательными элементами в строке целевой функции (кроме колонки свободных чисел). Согласно таблице 5.7, такой колонкой является только одна колонка: «х5 ». Следовательно, ее принимаем в качестве разрешенной.

8.2. Определение разрешающей строки.

Согласно полученным значениям положительных оценочных отношений в таблице 5.8, минимальным является отношение, соответствующее строке «х4 ». Следовательно, ее принимаем в качестве разрешенной.

Таблица 5.8

Симплекс-таблица III итерации

Оценочные

отношения

5/5=1 – min

9 этап: преобразование симплекс-таблицы.

Преобразования симплекс-таблицы (таблицы 5.8) выполняются аналогично, как и в предыдущей итерации. Результаты преобразований элементов симплекс-таблицы приведены в таблице 5.9.

IV итерация

1 этап: построение новой симплекс-таблицы.

По результатам симплекс-преобразований предыдущей итерации составляем новую симплекс-таблицу:

Таблица 5.9

Симплекс-таблица IV итерации

Оценочные

отношения

–(–3/5)=3/5

–(1/5)=–1/5

–(9/5)=–9/5

–(–3/5)=3/5

2 этап: определение базисного решения.

В результате проведенных симплекс-преобразований получили новое базисное решение, согласно таблице 5.9 решение следующее:

3 этап: проверка совместности системы ограничений.

Не совместность системы ограничений в соответствии с признаком 1 в таблице 5.9 не выявлена.

4 этап: проверка ограниченности целевой функции.

Неограниченность целевой функции в соответствии с признаком 2 в таблице 5.9 не выявлена.

5 этап: проверка допустимости найденного базисного решения.

Найденное базисное решение в соответствии с признаком 3 допустимое, так как не содержит отрицательных компонент.

6 этап: проверка оптимальности найденного базисного решения.

Найденное базисное решение в соответствии с признаком 4 оптимальное, так как в строке целевой функции симплекс-таблицы (таблица 5.9) нет отрицательных элементов (свободное число данной строки при рассмотрении данного признака не учитывается).

7 этап: проверка альтернативности решения.

Найденное решение является единственным, так как в строке целевой функции (таблица 5.9) нет нулевых элементов (свободное число данной строки при рассмотрении данного признака не учитывается).

Ответ: оптимальное значение целевой функции рассматриваемой задачи =24, которое достигается при.

Пример 5.2. Решить вышеприведенную задачу линейного программирования при условии, что целевая функция минимизируется:

Решение:

I итерация:

1 этап: формирование исходной симплекс-таблицы.

Исходная задача линейного программирования задана в стандартной форме. Приведем ее к каноническому виду путем введения в каждое из ограничений-неравенств дополнительной неотрицательной переменной, т.е.

В полученной системе уравнений примем в качестве разрешенных (базисных) переменные х3 , х4 , х5 , х6 , тогда свободными переменными будут х1 ,х2 . Выразим базисные переменные через свободные.

Если вы уже разобрались с графическим методом решения задач линейного программирования, самое время переходить к симплекс-методу . В отличие от первого, он практически не имеет ограничений на задачу (любое количество переменных, разные знаки и т.п.) и модифицируется в зависимости от типа задачи (например, М-метод или метод искусственного базиса).

При решении задачи симплекс методом вычисления обычно ведутся (для компактности и наглядности) в таблицах (табличный симплекс-метод), причем последняя таблица с оптимальным решением содержит важную дополнительную информацию: решение двойственной задачи, остатки ресурсов, сведения о дефицитных ресурсах и т.п., которая позволяет провести экономический анализ задачи линейного программирования (см. ниже пример 3).

Примеры решений задач симплекс-методом выложены бесплатно для вашего удобства — изучайте, ищите похожие, решайте. Если вам нужна помощь в выполнении подобных заданий, перейдите в раздел: решение линейного программирования на заказ.

Решение задач симплекс-методом: примеры онлайн

Задача 1. Компания производит полки для ванных комнат двух размеров — А и В. Агенты по продаже считают, что в неделю на рынке может быть реализовано до 550 полок. Для каждой полки типа А требуется 2 м2 материала, а для полки типа В — 3 м2 материала. Компания может получить до 1200 м2 материала в неделю. Для изготовления одной полки типа А требуется 12 мин машинного времени, а для изготовления одной полки типа В — 30 мин; машину можно использовать 160 час в неделю. Если прибыль от продажи полок типа А составляет 3 денежных единицы, а от полок типа В — 4 ден. ед., то сколько полок каждого типа следует выпускать в неделю?

Составление математической модели и решение ЗЛП симплекс-методом (pdf, 33 Кб)

Задача 2. Решить задачу линейного программирования симплекс-методом.

Решение симплекс-методом с искусственным базисом (pdf, 45 Кб)

Задача 3. Предприятие производит 3 вида продукции: А1, А2, А3, используя сырьё двух типов. Известны затраты сырья каждого типа на единицу продукции, запасы сырья на планируемый период, а также прибыль от единицы продукции каждого вида.

  1. Сколько изделий каждого вида необходимо произвести, чтобы получить максимум прибыли?
  2. Определить статус каждого вида сырья и его удельную ценность.
  3. Определить максимальный интервал изменения запасов каждого вида сырья, в пределах которого структура оптимального плана, т.е. номенклатура выпуска, не изменится.
  4. Определить количество выпускаемой продукции и прибыль от выпуска при увеличении запаса одного из дефицитных видов сырья до максимально возможной (в пределах данной номенклатуры выпуска) величины.
  5. Определить интервалы изменения прибыли от единицы продукции каждого вида, при которых полученный оптимальный план не изменится.

Решение задачи линейного программирования с экономическим анализом (pdf, 163 Кб)

Задача 4. Решить задачу линейного программирования симплексным методом:

Решение табличным симплекс-методом с поиском опорного плана (pdf, 44 Кб)

Задача 5. Решить задачу линейного программирования симплекс-методом:

Решение табличным симплекс-методом (pdf, 47 Кб)

Задача 6. Решить задачу симплекс-методом, рассматривая в качестве начального опорного плана, план, приведенный в условии:

Решение ручным симплекс-методом (pdf, 60 Кб)

Задача 7. Решить задачу модифицированным симплекс-методом.
Для производства двух видов изделий А и Б используется три типа технологического оборудования. На производство единицы изделия А оборудование первого типа используется а1=4 часов, оборудование второго типа а2=8 часов, а оборудование третьего типа а3=9 часов. На производство единицы изделия Б оборудование первого типа используется б1=7 часов, оборудование второго типа б2=3 часов, а оборудование третьего типа б3=5 часов.
На изготовление этих изделий оборудование первого типа может работать не более чем t1=49 часов, оборудование второго типа не более чем t2=51 часов, оборудование третьего типа не более чем t3=45 часов.
Прибыль от реализации единицы готового изделия А составляет АЛЬФА=6 рублей, а изделия Б – БЕТТА=5 рублей.
Составить план производства изделий А и Б, обеспечивающий максимальную прибыль от их реализации.

Решение модифицированным симплекс-методом (pdf, 67 Кб)

Задача 8. Найти оптимальное решение двойственным симплекс-методом

Решение двойственным симплекс-методом (pdf, 43 Кб)

Примеры решений задач по линейному программированию

Методы решения задачи линейного программирования

Опорные решения задачи линейного программирования

Пусть дана задача линейного программирования в канонической форме записи

при условиях

Будем обозначать через множество решений системы (2) – (3). Предположим, что , где – ранг матрицы , – количество уравнений в системе (2).

Из системы векторов-столбцов матрицы выберем некоторую линейно независимую подсистему из векторов . Она существует, так как . Эта система образует базис в . Обозначим через , . Назовем множеством базисных значений индекса , – базиснойподматрицей матрицы . Координаты вектора будем называть базисными , если , и небазисными в противном случае.

Запишем систему (2) в виде . Разобьем слагаемые левой части на базисные и небазисные, то есть

Определим частное решение этой системы следующим образом. Положим в (4) все небазисные переменные равными нулю . Тогда система (4) примет вид

Назовем (5) базисной подсистемой системы уравнений (2). Обозначим через вектор, составленный из базисных координат вектора . Тогда систему (2) можно переписать в векторно-матричном виде

Так как подматрица является базисной, она

невырождена. Поэтому система (6) имеет единственное решение . Полученное таким образом частное решение системы (2) назовем опорным решением прямой задачи линейного программирования, соответствующим базису . (Иногда опорное решение также называют базисным ). Как видим, базису соответствует единственное опорное решение. Очевидно, что число опорных решений конечно.

Для данного базиса определим также и опорное решение двойственной задачи линейного программирования. Напомним, что задача двойственная к канонической имеет вид

при условиях

Запишем систему (8) в виде

Напомним, что множество решений системы (8) обозначается через .

Определим вектор двойственных переменных из условия выполнения базисных ограничений в системе (9) как равенств. Получим следующую систему линейных уравнений:

Обозначим через вектор, составленный из ба-

зисных координат вектора . Тогда систему (10) можно переписать в векторно-матричном виде

Система (11) также имеет единственное решение .

Назовем его опорным (базисным ) решением двойственной задачи линейного программирования, соответствующим базису . Это опорное решение также определяется однозначно.

Итак, любому базису соответствуют два вектора – два опорных решения и прямой и двойственной задач линейного программирования, соответственно.

Определим далее следующие разновидности базисов и опорных решений. Если все координаты опорного решения неотрицательны, то базис, которому соответствует это опорное решение, называется допустимым опорным планом прямой задачи линейного программирования, а соответствующее тому же базису опорное решение называется псевдопланом двойственной задачи. Фактически для допустимости базиса достаточно неотрицательности базисных координат . Заметим, что опорный план является допустимым вектором прямой задачи линейного программирования ().

Если опорное решение удовлетворяет всем ограничениям (9) двойственной задачи, то базис, которому соответствует это опорное решение, называется двойственно допустимым . В этом случае вектор называется опорным планом двойственной задачи линейного программирования, а соответствующее тому же базису опорное реше-

ние называется псевдопланом прямой задачи.

Для двойственной допустимости базиса достаточно выполнения только небазисных неравенств . Заметим, что опорный план является допустимым вектором двойственной задачи линейного программирования ().

Разности левых и правых частей неравенств (9) обозначим через , . Тогда двойственную допустимость базиса можно устанавливать, проверяя неотрицательность всех . Заметим, что, как следует непосредственно из определения, все базисные невязки равны нулю ().

Пример решения прямой и двойственной задачи симплекс методом

Поэтому достаточно убедиться в выполнении неравенств для всех .

Теорема 1. Пусть и – опорные решения задачи линейного программирования, соответствующие некоторому базису , тогда имеет место равенство .

Доказательство . Из определений опорных решений легко получить равенства

откуда и следует справедливость теоремы.

Теорема 2. (Критерий оптимальности опор-ных решений) Если базис одновременно допустим и двойственно допустим, то соответствующие ему опорные решения и являются решениями, соответственно, прямой и двойственной задач линейного программирования.

Доказательство. Справедливость этого утверждения следует из теории двойственности в линейном программировании и теоремы 1.

Теорема 3. Допустимое решение задачи (1) – (3) является опорным планом задачи тогда и только тогда, когда оно является вершиной выпуклого многогранного множества .

Доказательство. Пусть – опорный план задачи (1) – (3). Докажем, что – вершина множества . По определению опорный план допустимое опорное решение, соответствующее некоторому базису , то есть решениесистемы линейных уравнений относительно переменных

Легко увидеть, что эта система имеет единственное решение. Значит, несущая плоскость грани, содержащей точку , имеет размерность 0. Следовательно, – вершина множества .

Обратно. Пусть – вершина множества . Докажем, что – опорный план задачи (1) – (3). Так как – вершина, то она является гранью множества , размерность которой равна нулю. Следовательно, у вектора найдется не менее нулевых компонент, множество номеров которых обозначим . Таким образом, единственное решение системы

где . Поэтому осталось доказать, что система векторов линейно независима. Предположим противное. Тогда существуют числа не все равные нулю, такие что . Поэтому

Это означает, что система (12) имеет решение, отличное от , что противоречит единственности ее решения. Таким образом, – базис, а вектор – соответствующий ему опорный план задачи (1) – (3). Что и требовалось.

Заметим, что допустимое решение задачи (7), (8) (двойственной задаче (1) – (3)) также является опорным планом тогда и только тогда, когда оно является вершиной допустимого множества .

Дата публикования: 2015-01-10; Прочитано: 695 | Нарушение авторского права страницы

Studopedia.org — Студопедия.Орг — 2014-2018 год.(0.005 с)…

Для определенности считаем, что решается задача на отыскание минимума.

1. Задачу линейного программирования привести к каноническому виду.

После введения добавочных переменных систему уравнений и линейную функцию записываем в виде, который называется расширенной системой:

Предполагаем, что все добавочные переменные имеют тот же знак, что и свободные члены; в противном случае используем так называемый М – метод, который будет рассмотрен ниже.

2. Определить базисные и свободные переменные.

3. Исходную расширенную систему заносим в первую симплекс – таблицу. Последняя строка таблицы, в которой приведено уравнение для линейной функции цели, называется оценочной . В ней указываются коэффициенты функции цели . В левом столбце таблицы записываем основные переменные (базис), в последующих – коэффициенты при свободных переменных. В предпоследнем столбце – свободные члены расширенной системы . Последний столбец подготовлен для оценочных отношений, необходимых для определения базисной переменной на основании соотношения (6.29).

4. Определить возможность решения задачи по значениям согласно теоремам 6.7,…, 6.9.

5. Выбрать разрешающий (опорный) элемент .

Решение производственной задачи табличным симплекс-методом

Если критерий оптимальности не выполнен (не выполнены условия теоремы 6.7 или 6.8), то наибольший по модулю отрицательный коэффициент в последней строке определяет разрешающий (опорный) столбец .

Составляем оценочные отношения каждой строки по следующим правилам:

1 0) , если все и имеют разные знаки;

2 0) , если все и ;

3 0) , если ;

4 0) 0, если и ;

5 0) , если и имеют одинаковые знаки.

Определим . Если конечного минимума нет, то задача не имеет конечного оптимума (). Если минимум конечен, то выбираем строку q , на которой он достигается (любую, если их несколько), и называем ее разрешающей (опорной) строкой. На пересечении разрешающих строки и столбца находится разрешающий (опорный) элемент .

6 0) Переход к следующей таблице по правилам:

а) в левом столбце записываем новый базис: вместо основной переменной – переменную , т.е. поменяем местами переменные и ;

б) на место опорного элемента поставить 1;

в) на остальных местах опорной строки в новой таблице оставить элементы исходной таблицы;

г) на остальные места в опорном столбце поставить соответствующие элементы исходной таблицы, умноженные на –1;

д) на оставшиеся свободные места элементов , , в новой таблице записать числа , , , которые находятся следующим образом:

Для упрощения вычислений по этим формулам их можно сформулировать в виде «правила прямоугольника» (рис. 6.8): элементы на диагоналях прямоугольника с вершинами (или , , , , или , , , ) перемножаются (произведение, не содержащее опорного элемента , берется со знаком минус) и полученные произведения складываются;

е) все полученные элементы новой таблицы разделить на опорный элемент .

7 0) По значению элемента определить, найдено ли оптимальное значение целевой функции. В случае отрицательного ответа продолжить решение (возврат к пункту 6).

Рис. 6.8. Правило прямоугольника для определения чисел:

а − , б − , в − .

Рассмотрен алгоритм преобразования симплекс – таблиц для невырожденных допустимых базисных решений, т.е. выполнялась ситуация, описанная теоремой 6.9. Если исходная задача линейного программирования является вырожденной, то в ходе ее решения симплекс – методом могут появиться и вырожденные базисные решения. При этом возможны холостые шаги симплекс – метода, т.е. итерации, на которых f (x) не изменяется. Возможно так же и зацикливание, т.е. бесконечная последовательность холостых шагов. Для его предотвращения разработаны специальные алгоритмы – антициклины. Однако в подавляющем большинстве случаев холостые шаги сменяются шагами с убыванием целевой функции и процесс решения завершается в результате конечного числа итераций.

Пример 6.8. Решить задачу, приведенную в примере 6.7, симплекс методом.

⇐ Предыдущая45678910111213Следующая ⇒

Дата публикования: 2015-01-23; Прочитано: 174 | Нарушение авторского права страницы

Studopedia.org — Студопедия.Орг — 2014-2018 год.(0.002 с)…

Главная >> Пример №3. Симплекс метод. Нахождение наибольшего значения функции (искусственный базис)

Симплекс метод

x 1 + x 2 1
x 1 + 3 x 2 15
2 x 1 + x 2 4
Переменная называется базисной для данного уравнения, если она входит в данное уравнение с коэффициентом один и не входит в оставшиеся уравнения (при условии, что в правой части уравнения стоит положительное число).

Если в каждом уравнении присутствует базисная переменная, тогда говорят, что в системе присутствует базис.
Переменные, которые не являются базисными, называются свободными. (см. систему ниже)

Идея симплекс метода заключается в том, чтобы переходить от одного базиса к другому, получая значение функции, как минимум, не меньше имеющегося (каждому базису соответствует единственное значение функции).
Очевидно, количество всевозможных базисов для любой задачи число конечное (и не очень большое).
Следовательно, рано или поздно, ответ будет получен.

Как осуществляется переход от одного базиса к другому?
Запись решения удобнее вести в виде таблиц. Каждая строка эквивалентна уравнению системы. Выделенная строка состоит из коэффициентов функции (сравните сами). Это позволяет не переписывать переменные каждый раз, что существенно экономит время.
B выделенной строке выбираем наибольший положительный коэффициент. Это необходимо для того, чтобы получить значение функции, как минимум, не меньше имеющегося.
Выбран столбец.
Для положительных коэффициентов выбранного столбца считаем отношение Θ и выбираем наименьшее значение. Это необходимо для того, чтобы после преобразования столбец свободных членов остался положительным.
Выбрана строка.
Следовательно, определен элемент, который будет базисным. Далее считаем.

x 1 = 0 x 2 = 0 S 1 = 0
S 2 = 15 S 3 = 4 R 1 = 1
=> W = 1
x 1 x 2 S 1 S 2 S 3 R 1 св. член Θ
-1 1 -1 0 0 1 1 1: 1 = 1
1 3 0 1 0 0 15 15: 3 = 5
-2 1 0 0 1 0 4 4: 1 = 4
1 -1 1 0 0 0 W — 1
-1 1 -1 0 0 1 1
4 0 3 1 0 -3 12
-1 0 1 0 1 -1 3
0 0 0 0 0 1 W — 0
x 1 x 2 S 1 S 2 S 3 св. член Θ
-1 1 -1 0 0 1
4 0 3 1 0 12 12: 4 = 3
-1 0 1 0 1 3
4 0 1 0 0 F — 1
-1 1 -1 0 0 1
1 0 3/4 1/4 0 3
-1 0 1 0 1 3
4 0 1 0 0 F — 1
0 1 -1/4 1/4 0 4
1 0 3/4 1/4 0 3
0 0 7/4 1/4 1 6
0 0 -2 -1 0 F — 13
S 1 = 0 S 2 = 0
x 1 = 3 x 2 = 4 S 3 = 6
=> F — 13 = 0 => F = 13

Среди коэффициентов выделенной строки нет положительных. Следовательно, найдено наибольшее значение функции F.

Ответ:

x 1 = 3 x 2 = 4

F max = 13

Перейти к решению своей задачи

© 2010-2018, по всем вопросам пишите по адресу [email protected]

Условие задачи

Для реализации трех групп товаров коммерческое предприятие располагает тремя видами ограниченных материально-денежных ресурсов в количестве b 1 = 240, b 2 = 200, b 3 = 160 единиц. При этом для продажи 1 группы товаров на 1 тыс. руб. товарооборота расходуется ресурса первого вида в количестве a 11 = 2 единицы, ресурса второго вида в количестве a 21 = 4 единицы, ресурса третьего вида в количестве a 31 = 4 единицы. Для продажи 2 и 3 групп товаров на 1 тыс. руб. товарооборота расходуется соответственно ресурса первого вида в количестве a 12 = 3, a 13 = 6 единицы, ресурса второго вида в количестве a 22 = 2, a 23 = 4 единицы, ресурса третьего вида в количестве a 32 = 6, a 33 = 8 единиц. Прибыль от продажи трех групп товаров на 1 тыс.

Симплексный метод решения ЗЛП

руб. товарооборота составляет соответственно c 1 = 4, c 2 = 5, c 3 = 4 (тыс. руб.). Определить плановый объем и структуру товарооборота так, чтобы прибыль торгового предприятия была максимальной.

К прямой задаче планирования товарооборота, решаемой симплекс методом , составить двойственную задачу линейного программирования.
Установить сопряженные пары переменных прямой и двойственной задачи.
Согласно сопряженным парам переменных из решения прямой задачи получить решение двойственной задачи , в которой производится оценка ресурсов , затраченных на продажу товаров.

Решение задачи симплекс методом

Пусть x 1 , x 2 , x 3 — количество реализованных товаров, в тыс. руб., 1, 2, 3 — ей групп, соответственно. Тогда математическая модель задачи имеет вид:

F = 4·x 1 + 5·x 2 + 4·x 3 ->max

Решаем симплекс методом.

Вводим дополнительные переменные x 4 ≥ 0, x 5 ≥ 0, x 6 ≥ 0, чтобы неравенства преобразовать в равенства.

В качестве базиса возьмем x 4 = 240; x 5 = 200; x 6 = 160.

Данные заносим в симплекс таблицу

Симплекс таблица № 1

Целевая функция:

0 · 240 + 0 · 200 + 0 · 160 = 0

Вычисляем оценки по формуле:

Δ 1 = 0 · 2 + 0 · 4 + 0 · 4 - 4 = - 4
Δ 2 = 0 · 3 + 0 · 2 + 0 · 6 - 5 = - 5
Δ 3 = 0 · 6 + 0 · 4 + 0 · 8 - 4 = - 4
Δ 4 = 0 · 1 + 0 · 0 + 0 · 0 - 0 = 0
Δ 5 = 0 · 0 + 0 · 1 + 0 · 0 - 0 = 0
Δ 6 = 0 · 0 + 0 · 0 + 0 · 1 - 0 = 0

Поскольку есть отрицательные оценки, то план не оптимален. Наименьшая оценка:

Вводим переменную x 2 в базис.

Определяем переменную, выходящую из базиса. Для этого находим наименьшее неотрицательное отношение для столбца x 2 .

= 26.667

Наименьшее неотрицательное: Q 3 = 26.667. Выводим переменную x 6 из базиса

3-ю строку делим на 6.
Из 1-й строки вычитаем 3-ю строку, умноженную на 3
Из 2-й строки вычитаем 3-ю строку, умноженную на 2

Вычисляем:

Получаем новую таблицу:

Симплекс таблица № 2

Целевая функция:

0 · 160 + 0 · 440/3 + 5 · 80/3 = 400/3

Вычисляем оценки по формуле:

Δ 1 = 0 · 0 + 0 · 8/3 + 5 · 2/3 - 4 = - 2/3
Δ 2 = 0 · 0 + 0 · 0 + 5 · 1 - 5 = 0
Δ 3 = 0 · 2 + 0 · 4/3 + 5 · 4/3 - 4 = 8/3
Δ 4 = 0 · 1 + 0 · 0 + 5 · 0 - 0 = 0
Δ 5 = 0 · 0 + 0 · 1 + 5 · 0 - 0 = 0
Δ 6 = 0 · (-1)/2 + 0 · (-1)/3 + 5 · 1/6 - 0 = 5/6

Поскольку есть отрицательная оценка Δ 1 = - 2/3, то план не оптимален.

Вводим переменную x 1 в базис.

Определяем переменную, выходящую из базиса. Для этого находим наименьшее неотрицательное отношение для столбца x 1 .

Наименьшее неотрицательное: Q 3 = 40. Выводим переменную x 2 из базиса

3-ю строку делим на 2/3.
Из 2-й строки вычитаем 3-ю строку, умноженную на 8/3

Вычисляем:

Получаем новую таблицу:

Симплекс таблица № 3

Целевая функция:

0 · 160 + 0 · 40 + 4 · 40 = 160

Вычисляем оценки по формуле:

Δ 1 = 0 · 0 + 0 · 0 + 4 · 1 - 4 = 0
Δ 2 = 0 · 0 + 0 · (-4) + 4 · 3/2 - 5 = 1
Δ 3 = 0 · 2 + 0 · (-4) + 4 · 2 - 4 = 4
Δ 4 = 0 · 1 + 0 · 0 + 4 · 0 - 0 = 0
Δ 5 = 0 · 0 + 0 · 1 + 4 · 0 - 0 = 0
Δ 6 = 0 · (-1)/2 + 0 · (-1) + 4 · 1/4 - 0 = 1

Поскольку отрицательных оценок нет, то план оптимален.

Решение задачи:

Ответ

x 1 = 40; x 2 = 0; x 3 = 0; x 4 = 160; x 5 = 40; x 6 = 0; F max = 160

То есть необходимо реализовать товар первого вида в объеме 40 тыс.

руб. Товар 2-го и 3-го видов реализовывать не надо. При этом максимальная прибыль составит F max = 160 тыс. руб.

Решение двойственной задачи

Двойственная задача имеет вид:

Z = 240·y 1 + 200·y 2 + 160·y 3 ->min

Вводим дополнительные переменные y 4 ≥ 0, y 5 ≥ 0, y 6 ≥ 0, чтобы неравенства преобразовать в равенства.

Сопряженные пары переменных прямой и двойственной задач имеют вид:

Из последней симплекс таблицы № 3 прямой задачи, находим решение двойственной задачи:

Z min = F max = 160;
y 1 = Δ 4 = 0; y 2 = Δ 5 = 0; y 3 = Δ 6 = 1; y 4 = Δ 1 = 0; y 5 = Δ 2 = 1; y 6 = Δ 3 = 4;

Ответ

y 1 = 0; y 2 = 0; y 3 = 1; Z min = 160;

Симплексный метод – это вычислительная процедура, основанная на принципе последовательного улучшения решений при переходе от одной базисной точки (базисного решения) к другой. При этом значение целевой функции улучшается.

Базисным решением является одно из допустимых решений, находящихся в вершинах области допустимых значений. Проверяя на оптимальность вершину за вершиной симплекса, приходят к искомому оптимуму. На этом принципе основан симплекс-метод.

Симплекс – это выпуклый многоугольник в n-мерном пространстве с n+1 вершинами, не лежащими в одной гиперплоскости (гиперплоскость делит пространство на два полупространства).

Например, линия бюджетных ограничений делит блага на доступные и недоступные.

Доказано, что если оптимальное решение существует, то оно обязательно будет найдено через конечное число итераций (шагов), кроме случаев «зацикливания».

Алгоритм симплексного метода состоит из ряда этапов.

Первый этап. Строится исходная оптимизационная модель. Далее исходная матрица условий преобразуется в приведенную каноническую форму, которая среди всех других канонических форм выделяется тем, что:

а) правые части условий (свободные члены bi) являются величинами неотрицательными;

б) сами условия являются равенствами;

в) матрица условий содержит полную единичную подматрицу.

Если свободные члены отрицательные, то обе части неравенства умножаются на — 1, а знак неравенства меняется на противоположный. Для преобразования неравенств в равенства вводятся дополнительные переменные, которые, обычно, обозначают объем недоиспользованных ресурсов. В этом их экономический смысл.

Наконец, если после добавления дополнительных переменных, матрица условий не содержит полную единичную подматрицу, то вводятся искусственные переменные, которые не имеют никакого экономического смысла. Они вводятся исключительно для того, чтобы получить единичную подматрицу и начать процесс решения задачи при помощи симплексного метода.

В оптимальном решении задачи все искусственные переменные (ИП) должны быть равными нулю. Для этого вводят искусственные переменные в целевую функцию задачи с большими отрицательными коэффициентами (-М) при решении задачи на max, и с большими положительными коэффициентами (+М), когда задача решается на min. В этом случае даже незначительное ненулевое значение искусственной переменной будет резко уменьшать (увеличивать) значение целевой функции. Обычно М в 1000 раз должно быть больше, чем значения коэффициентов при основных переменных.

Второй этап. Строится исходная симплекс-таблица и отыскивается некоторое начальное базисное решение. Множество переменных, образующих единичную подматрицу, принимается за начальное базисное решение. Значения этих переменных равны свободным членам. Все остальные внебазисные переменные равны нулю.

Третий этап. Проверка базисного решения на оптимальность осуществляется при помощи специальных оценок коэффициентов целевой функции. Если все оценки коэффициентов целевой функции отрицательны или равны нулю, то имеющееся базисное решение – оптимальное. Если хотя бы одна оценка коэффициента целевой функции больше нуля, то имеющееся базисное решение не является оптимальным и должно быть улучшено.

Четвертый этап. Переход к новому базисному решению. Очевидно, что в оптимальный план должна быть введена такая переменная, которая в наибольшей степени увеличивает целевую функцию. При решении задач на максимум прибыли в оптимальный план вводится продукция, производство которой наиболее выгодно. Это определяется по максимальному положительному значению оценки коэффициента целевой функции.

Столбец симплексной таблицы с этим номером на данной итерации называется генеральным столбцом.

Для отыскания генеральной строки все свободные члены (ресурсы) делятся на соответствующие элементы генерального столбца (норма расхода ресурса на единицу изделия). Из полученных результатов выбирается наименьший. Соответствующая ему строка на данной итерации называется генеральной. Она соответствует ресурсу, который лимитирует производство на данной итерации.

Элемент симплексной таблицы, находящийся на пересечении генеральных столбца и строки, называется генеральным элементом.

Затем все элементы генеральной строки (включая свободный член), делятся на генеральный элемент. В результате этой операции генеральный элемент становится равным единице. Далее необходимо, чтобы все другие элементы генерального столбца стали бы равны нулю, т.е. генеральный столбец должен стать единичным. Все строки (кроме генеральной) преобразуются следующим образом. Полученные элементы новой строки умножаются на соответствующий элемент генерального столбца и полученное произведение вычитается из элементов старой строки.

Значения новых базисных переменных получим в соответствующих ячейках столбца свободных членов.

Пятый этап. Полученное базисное решение проверяется на оптимальность (см. третий этап). Если оно оптимально, то вычисления прекращаются. В противном случае необходимо найти новое базисное решение (четвертый этап) и т.

Симплекс метод

Пример решения оптимизационных задач линейного программирования симплексным методом

Пусть необходимо найти оптимальный план производства двух видов продукции (х1 и х2).

Исходные данные:

Построим оптимизационную модель

– ограничение по ресурсу А;

– ограничение по ресурсу В.

Приведем задачу к приведенной канонической форме. Для этого достаточно ввести дополнительные переменные Х3 и Х4. В результате неравенства преобразуются в строгие равенства.

Построим исходную симплексную таблицу и найдем начальное базисное решение. Им будут дополнительные переменные, т. к. им соответствует единичная подматрица.

1-я итерация. Находим генеральный столбец и генеральную строку:

Генеральный элемент равняется 5.

2-я итерация. Найденное базисное решение не является оптимальным, т.к. cтрока оценок (Fj-Cj) содержит один положительный элемент. Находим генеральный столбец и генеральную строку:

max (0,0.3,-1.4,0) = 0.2

Найденное решение оптимально, так как все специальные оценки целевой функции Fj – Cj равны нулю или отрицательны. F(x)=29 x1=2; x2=5.

Краткая теория

Для решения задач линейного программирования предложено немало различных методов. Однако наиболее эффективным и универсальным среди них оказался симплекс-метод. При этом следует отметить, что при решении некоторых задач могут оказаться более эффективными другие методы. Например, при ЗЛП с двумя переменными оптимальным является , а при решении - метод потенциалов. Симплекс-метод является основным и применимым к любой ЗПЛ в канонической форме.

В связи с основной теоремой линейного программирования естественно возникает мысль о следующем пути решения ЗЛП с любым числом переменных. Найти каким-нибудь способом все крайние точки многогранника планов (их не больше, чем ) и сравнить в них значения целевой функции. Такой путь решения даже с относительно небольшим числом переменных и ограничений практически неосуществим, так как процесс отыскания крайних точек сравним по трудности с решением исходной задачи, к тому же число крайних точек многогранника планов может оказаться весьма большим. В связи с этими трудностями возникла задача рационального перебора крайних точек.

Суть симплексного метода в следующем. Если известны какая-нибудь крайняя точка и значение в ней целевой функции, то все крайние точки, в которых целевая функция принимает худшее значение, заведомо не нужны. Отсюда естественно стремление найти способ перехода от данной крайней точки к смежной по ребру лучшей, от нее к еще лучшей (не худшей) и т. д. Для этого нужно иметь признак того, что лучших крайних точек, чем данная крайняя точка, вообще нет. В этом и состоит общая идея наиболее широко применяемого в настоящее время симплексного метода (метода последовательного улучшения плана) для решения ЗЛП. Итак, в алгебраических терминах симплексный метод предполагает:

  1. умение находить начальный опорный план;
  2. наличие признака оптимальности опорного плана;
  3. умение переходить к нехудшему опорному плану.

Пример решения задачи

Условие задачи

Для реализации трех групп товаров коммерческое предприятие располагает тремя видами ограниченных материально-денежных ресурсов в количестве , , , единиц. При этом для продажи 1 группы товаров на 1 тыс. руб. товарооборота расходуется ресурса первого вида в количестве единиц, ресурса второго вида в количестве единиц, ресурса третьего вида в количестве единиц. Для продажи 2 и 3 групп товаров на 1 тыс. руб. товарооборота расходуется соответственно ресурса первого вида в количестве , единиц, ресурсов второго вида в количестве , единиц, ресурсов третьего вида в количестве , единиц. Прибыль от продажи трех групп товаров на 1 тыс. руб. товарооборота составляет соответственно , , тыс. руб.

  • Определить плановый объем и структуру товарооборота так, чтобы прибыль торгового предприятия была максимальной.
  • К прямой задаче планирования товарооборота, решаемой симплексным методом, составить двойственную задачу линейного программирования.
  • Установить сопряженные пары переменных прямой и двойственной задач.
  • Согласно сопряженным парам переменных из решения прямой задачи получить решение двойственной задачи, в которой производится оценка ресурсов, затраченных на продажу товаров.

Если ваш допуск к сессии зависит от решения блока задач, а у вас нет ни времени, ни желания садиться за расчёты – используйте возможности сайта сайт. Заказ задач – дело нескольких минут. Подробно (как оставить заявку, цены, сроки, способы оплаты) можно почитать на странице Купить решение задач по линейному программированию...

Решение задачи

Построение модели

Через обозначим товарооборот 1-го, 2-го и третьего вида товаров соответственно.

Тогда целевая функция, выражающая получаемую прибыль:

Ограничения по материально-денежным ресурсам:

Кроме того, по смыслу задачи

Получаем следующую задачу линейного программирования:

Приведение к каноническому виду ЗЛП

Приведем задачу к каноническому виду. Для преобразования неравенств в равенства введем дополнительные переменные . Переменные входят в ограничения с коэффициентом 1. В целевую функцию все дополнительные переменные введем с коэффициентом, равным нулю.

Ограничение имеет предпочтительный вид, если при неотрицательности правой части левая часть имеет переменную, входящую с коэффициентом, равным единице, а остальные ограничения-равенства - с коэффициентом, равным нулю. В нашем случае 1-е, 2-е, 3-е ограничения имеют предпочтительный вид с соответствующими базисными переменными .

Решение симплекс-методом

Заполняем симплексную таблицу 0-й итерации.

БП Симплексные
отношения
8 6 4 0 0 0 0 520 16 18 9 1 0 0 65/2 0 140 7 7 2 0 1 0 20 0 810 9 2 1 0 0 1 90 0 -8 -6 -4 0 0 0

Так как мы решаем задачу на максимум – наличие в индексной строке отрицательных чисел при решении задачи на максимум свидетельствует о том, что нами оптимальное решение не получено и что от таблицы 0-й итерации необходимо перейти к следующей.

Переход к следующей итерации осуществляем следующим образом:

Ведущий столбец соответствует .

Ключевая строка определяется по минимуму соотношений свободных членов и членов ведущего столбца (симплексных отношений):

На пересечении ключевого столбца и ключевой строки находим разрешающий элемент, т.е.7.

Теперь приступаем к составлению 1-й итерации. Вместо единичного вектора вводим вектор .

В новой таблице на месте разрешающего элемента пишем 1, все остальные элементы ключевого столбца –нули. Элементы ключевой строки делятся на разрешающий элемент. Все остальные элементы таблицы вычисляются по правилу прямоугольника.

Получаем таблицу 1-й итерации:

БП Симплексные
отношения
8 6 4 0 0 0 0 200 0 2 31/7 1 -16/7 0 1400/31 8 20 1 1 2/7 0 1/7 0 70 0 630 0 -7 -11/7 0 -9/7 1 - 160 0 2 -12/7 0 8/7 0

Ключевой столбец для 1-й итерации соответствует .

Находим ключевую строку, для этого определяем:

На пересечении ключевого столбца и ключевой строки находим разрешающий элемент, т.е. 31/7.

Вектор выводим из базиса и вводим вектор .

Получаем таблицу 2-й итерации:

БП Симплексные
отношения
8 6 4 0 0 0 4 1400/31 0 14/31 1 7/31 -16/31 0 8 220/31 1 27/31 0 -2/31 9/31 0 0 21730/31 0 -195/31 0 11/31 -65/31 1 7360/31 0 86/31 0 12/31 8/31 0

В индексной строке все члены неотрицательные, поэтому получено следующее решение задачи линейного программирования (выписываем из столбца свободных членов):

Таким образом, необходимо продавать 7,1 тыс.р. товара 1-го вида и 45,2 тыс.р. товара 3-го вида. Товар 2-го вида продавать невыгодно. При этом прибыль будет максимальна и составит 237,4 тыс.р. При реализации оптимального плана остаток ресурса 3-го вида составит 701 ед.

Двойственная задача ЛП

Запишем модель двойственной задачи.

Для построения двойственной задачи необходимо пользоваться следующими правилами:

1) если прямая задача решается на максимум, то двойственная - на минимум, и наоборот;

2) в задаче на максимум ограничения-неравенства имеют смысл ≤, а в задаче минимизации - смысл ≥;

3) каждому ограничению прямой задачи соответствует переменная двойственной задачи, и наоборот, каждому ограничению двойственной задачи соответствует переменная прямой задачи;

4) матрица системы ограничений двойственной задачи получается из матрицы системы ограничений исходной задачи транспонированием;

5) свободные члены системы ограничений прямой задачи являются коэффициентами при соответствующих переменных целевой функции двойственной задачи, и наоборот;

6) если на переменную прямой задачи наложено условие неотрицательности, то соответствующее ограничение двойственной задачи записывается как ограничение-неравенство, если же нет, то как ограничение-равенство;

7) если какое-либо ограничение прямой задачи записано как равенство, то на соответствующую переменную двойственной задачи условие неотрицательности не налагается.

Транспонируем матрицу исходной задачи:

Приведем задачу к каноническому виду. Введем дополнительные переменные. В целевую функцию все дополнительные переменные введем с коэффициентом, равным нулю. Дополнительные переменные прибавим к левым частям ограничений, не имеющих предпочтительного вида, и получим равенства.

Решение двойственной задачи ЛП

Соответствие между переменными исходной и двойственной задачи:

На основании симплексной таблицы получено следующее решение двойственной задачи линейного программирования (выписываем из нижней строки):

Таким образом, наиболее дефицитным является ресурс первого вида. Его оценка максимальна и равна . Ресурс третьего вида является избыточным -его двойственная оценка равна нулю . Каждая дополнительно проданная единица товара 2-й группы будет снижать оптимальную прибыль на
Рассмотрен графический метод решения задачи линейного программирования (ЗЛП) с двумя переменными. На примере задачи приведено подробное описание построения чертежа и нахождения решения.

Решение транспортной задачи
Подробно рассмотрена транспортная задача, ее математическая модель и методы решения - нахождение опорного плана методом минимального элемента и поиск оптимального решения методом потенциалов.

Принятие решений в условиях неопределенности
Рассмотрено решение статистической матричной игры в условиях неопределенности с помощью критериев Вальда, Сэвиджа, Гурвица, Лапласа, Байеса. На примере задачи подробно показано построение платежной матрицы и матрицы рисков.

Один из методов решения оптимизационных задач (как правило связанных с нахождением минимума или максимума ) линейного программирования называется . Симплекс-метод включает в себя целую группу алгоритмов и способов решения задач линейного программирования. Один из таких способов, предусматривающий запись исходных данных и их пересчет в специальной таблице, носит наименование табличного симплекс-метода .

Рассмотрим алгоритм табличного симплекс-метода на примере решения производственной задачи , которая сводится к нахождению производственного плана обеспечивающего максимальную прибыль.

Исходные данные задачи на симплекс-метод

Предприятие выпускает 4 вида изделий, обрабатывая их на 3-х станках.

Нормы времени (мин./шт.) на обработку изделий на станках, заданы матрицей A:

Фонд времени работы станков (мин.) задан в матрице B:

Прибыль от продажи каждой единицы изделия (руб./шт.) задана матрицей C:

Цель производственной задачи

Составить такой план производства, при котором прибыль предприятия будет максимальной.

Решение задачи табличным симплекс-методом

(1) Обозначим X1, X2, X3, X4 планируемое количество изделий каждого вида. Тогда искомый план: (X1, X2, X3, X4 )

(2) Запишем ограничения плана в виде системы уравнений:

(3) Тогда целевая прибыль:

То есть прибыль от выполнения производственного плана должна быть максимальной.

(4) Для решения получившейся задачи на условный экстремум, заменим систему неравенств системой линейных уравнений путем ввода в нее дополнительных неотрицательных переменных (X5, X6, X7 ).

(5) Примем следующий опорный план :

X1 = 0, X2 = 0, X3 = 0, X4 = 0, X5 = 252, X6 = 144, X7 = 80

(6) Занесем данные в симплекс-таблицу :

В последнюю строку заносим коэффициенты при целевой функции и само ее значение с обратным знаком;

(7) Выбираем в последней строке наибольшее (по модулю ) отрицательное число.

Вычислим b = Н / Элементы_выбранного_столбца

Среди вычисленных значений b выбираем наименьшее .

Пересечение выбранных столбца и строки даст нам разрешающий элемент. Меняем базис на переменную соответствующую разрешающему элементу (X5 на X1 ).

  • Сам разрешающий элемент обращается в 1.
  • Для элементов разрешающей строки – a ij (*) = a ij / РЭ (то есть каждый элемент делим на значение разрешающего элемента и получаем новые данные ).
  • Для элементов разрешающего столбца – они просто обнуляются.
  • Остальные элементы таблицы пересчитываем по правилу прямоугольника.

a ij (*) = a ij – (A * B / РЭ)

Как видите, мы берем текущую пересчитываемую ячейку и ячейку с разрешающим элементом. Они образуют противоположные углы прямоугольника. Далее перемножаем значения из ячеек 2-х других углов этого прямоугольника. Это произведение (A * B ) делим на разрешающий элемент (РЭ ). И вычитаем из текущей пересчитываемой ячейки (a ij ) то, что получилось. Получаем новое значение - a ij (*) .

(9) Вновь проверяем последнюю строку (c ) на наличие отрицательных чисел . Если их нет – оптимальный план найден, переходим к последнему этапу решения задачи. Если есть – план еще не оптимален, и симплекс-таблицу вновь нужно пересчитать.

Так как у нас в последней строке снова имеются отрицательные числа, начинаем новую итерацию вычислений.

(10) Так как в последней строке нет отрицательных элементов, это означает, что нами найден оптимальный план производства! А именно: выпускать мы будем те изделия, которые перешли в колонку «Базис» - X1 и X2. Прибыль от производства каждой единицы продукции нам известна (матрица C ). Осталось перемножить найденные объемы выпуска изделий 1 и 2 с прибылью на 1 шт., получим итоговую (максимальную! ) прибыль при данном плане производства.

ОТВЕТ:

X1 = 32 шт., X2 = 20 шт., X3 = 0 шт., X4 = 0 шт.

P = 48 * 32 + 33 * 20 = 2 196 руб.

Галяутдинов Р.Р.


© Копирование материала допустимо только при указании прямой гиперссылки на



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: