Квантование отсчетов по уровню и их кодирование. Общие характеристики форматов сжатия MPEG

2.2. Дискретизация, квантование и кодирование сигналов

Современные цифровые технологии, обладая неограниченными возможностями по обработке, передаче и хранению больших объемов информации, всё активнее внедряются в самые разные сферы человеческой деятельности, даже в те из них, где прежде традиционно господствовали аналоговые. Однако все известные физические явления и процессы, которые служат источниками исходных данных для решения вычислительных задач, являются непрерывными аналоговыми величинами. Поэтому, прежде чем произвести какое-либо вычисление, надо получить численные значения величин, над которыми производятся вычислительные операции, т. е. осуществить преобразование аналоговой величины в соответствующий ей цифровой эквивалент. И точность такого преобразования должна быть не хуже желаемой точности результата. Кроме того, нередко результат вычисления также должен быть представлен в виде аналоговой величины с высокой степенью точности.

Еще одним аргументом в пользу цифрового представления аналоговой информации является возможность сохранения последней в неизменном виде в течение практически неограниченного времени. Многие из аналоговых процессов быстротечны и не повторяются вновь, фиксация их аналоговыми методами - записью на какой-нибудь носитель - фотопленку или магнитную ленту, недостаточно надежна и имеет свойство со временем ухудшаться - вплоть до полного разрушения. Цифровые же методы подобными недостатками не страдают, поскольку запись производится всего двумя символами - «единицей» (есть сигнал) и «нулем» (сигнала нет). В таком виде информация неизмеримо более устойчива к воздействию разного рода искажающих факторов. Нет необходимости заботиться о точной форме импульса - достаточно, чтобы он был вообще. К тому же разработанные на сегодняшний день алгоритмы защиты цифровой информации от ошибок позволяют практически свести к нулю результат любого искажающего воздействия, такого, которое для аналоговой информации было бы равносильно ее безвозвратной утрате.

По указанным выше причинам роль приборов, преобразующих аналоговые величины в цифровые и обратно - аналого-цифровых и цифро-аналоговых преобразователей (АЦП и ЦАП) становится чрезвычайно значимой, поскольку им отводится роль своего рода «посредников», между аналоговой природой окружающего нас мира и вычислительной мощью «цифрового мира». Роль эта весьма ответственна. Какова точность преобразования, такова будет и точность результата.

Прежде чем приступать к анализу процедур аналого-цифрового и цифро-аналогового преобразования, следует ознакомиться с основными видами электрических сигналов, которые в дальнейшем будут служить объектами упомянутых преобразований. В самом общем случае такие сигналы можно разделить на четыре класса:

1. произвольные по величине и непрерывные по времени (рис. 1.1 а);

2. произвольные по величине и дискретные во времени (рис. 1.1 б);

3. квантованные по величине и непрерывные по времени (рис. 1.1 в);


квантованные по величине и дискретные по времени (рис. 1.1 д).

Сигнал s ( t ), показанный на рис. 1 а называется аналоговым, поскольку его можно толковать как электрическое отображение реальных физических процессов. Аналоговые сигналы задаются по оси времени на несчетном множестве точек и являются непрерывными. По оси ординат такие сигналы также могут принимать любые значения в определенном интервале.

Сигнал S ( nT ), показанный на рис. 1.1 б, также, как и аналоговый, может принимать любые значения по оси ординат, но по оси времени он определен только для некоторых фиксированных точек, т. е. является функцией дискретной переменной ( n Т), где n = 0, 1, 2 ..., а Т - интервал дискретизации. Такой сигнал называется дискретным, причем в данном случае термин «дискретный» характеризует не сам сигнал, а способ его задания на временной оси.

Сигнал, показанный на рис. 1.1 в, задан на всей временной оси, однако величина его может принимать только дискретные значения. В подобном случае говорят о сигнале, квантованном по уровню. Чтобы отличить дискретность сигнала по уровню от дискретности по времени, термин «дискретный» будет применяться только к дискретизации по времени, дискретность же по уровню будет характеризоваться термином «квантование».

Квантование используют в том случае, когда необходимо преобразовать сигнал в цифровую форму. Для этого весь диапазон изменения величины сигнала разбивают на счетное число уровней и каждому уровню присваивают определенный номер, который затем кодируют двоичным кодом с конечным числом разрядов. Величина сигнала измеряется в заданных точках на оси времени. Такой сигнал - дискретный по времени и квантованный по уровню, называется цифровым. Он показан на рис. 1.1 г .

Обобщенная структурная схема тракта цифрового ТВ.

Общие характеристики форматов сжатия MPEG

Основные понятия.

ТВ системы, где для передачи, консервации, обработки и приема используется аналоговый сигнал, называются аналоговыми. Эти системы имеют ряд недостатков, серьезно, сужающие возможности развития ТВ. Одним из главных является низкая помехоустойчивость аналогового сигнала, который подвергается воздействию шумов и помех в каждом звене длиной цепи устройств преобразования и передачи сигналов, число звеньев которой с развитием ТВ сильно увеличивается. При аналоговой системе передачи помехи каждого звена накапливаются. Сейчас используется большое количество аппаратуры различных спецэффектов, разнообразящих передачу, но требующих дополнительных преобразований сигналов. Поэтому повышение помехозащищенности приобретает все более важное значение. Существенно уменьшить искажения от помех и решить ряд других задач позволяют цифровые методы.

Цифровое ТВ – область ТВ техники, в которой операции обработки, консервации и передачи ТВ сигнала связаны с его преобразованием в цифровую форму.

Цифровые системы ТВ различают 2 типов:

1. Полностью цифровой в которой аналого-цифровое и цифро-аналоговое, преобразование изображения производится непосредственно в преобразователях свет-сигнал и сигнал-свет и во всех звеньях тракта сигнал передается в цифровой форме. Однако на данном этапе развития техники таких систем еще не существует.

2. Комбинированные, в которых аналоговый сигнал, получаемый с датчиков, преобразуется в цифровую форму, подвергается всей необходимой обработке, передаче или консервации, а затем вновь приобретает аналоговую форму.

В таких системах на вход тракта цифрового ТВ поступает аналоговый сигнал, где он кодируется, т.е. преобразуется в цифровую форму. Это преобразование представляет комплекс операций, основными из которых являются: дискретизация, квантование и непосредственно кодирование.

Дискретизация – замена непрерывного аналогового сигнала последовательностью отдельных во времени значений уровня сигнала (отсчетов), которые при равномерной дискретизации , выбираются по теореме Котельникова. По этой теореме для того чтобы передать любой непрерывный сигнал, имеющий ограниченный спектр частот (рис 14.1,а), достаточно передавать его значения с частотой дискретизацией ³2Fmax (рис.14.1,б), где Fmax – максимальная частота спектра исходного сигнала. Для восстановления исходного аналогового сигнала отсчеты необходимо пропустить через идеальный ФНЧ со срезом на Fmax.


В ТВ чаще всего применяется дискретизация с постоянной частотой, которая может быть связана, или не связана с частотами развертки. При жесткой связи получается постоянное число отсчетов в строке, соответствующее одним и тем же элементам изображения, а на изображении получается фиксированная ортогональная структура дискретизации , где отсчеты располагаются в узлах прямоугольной решетки. Этот способ сейчас наиболее распространен в цифровых устройствах ТВ вещания.

После дискретизации следует процессквантования – замене мгновенных значений отсчетов ближайшими из набора отдельных фиксированных уровней(уровней квантования) . Это тоже дискретизация, но не времени, а по уровню (рис.14.1,в). При этомразница между уровнями квантования называетсяшагом квантования, а округление отсчетов до верхнего или нижнего уровня определяется порогом квантования . По своему смыслу операция квантования предполагает появление ошибки между истинным значением сигнала и его квантованным приближением – ошибки или шумов квантования . Если собственные шумы аналоговой системы

Рис.14.1. Преобразование аналогового сигнала в цифровую форму

невелики по сравнению с шагом квантования, то шумы квантования проявляются в виде ложных контуров, особенно заметных при «грубом» квантовании, когда число уровней недостаточно. Если же шумы аналоговой системы велики, шумы квантования сказываются как равномерно распределенные шумы, что зрительно увеличивает зашумленность изображения. На цветном изображение это сказывается в виде цветных узоров. Для улучшения качества изображения требуется увеличивать число уровней квантования, а для уменьшения размера цифрового поток применяют нелинейную шкалу квантования, основанную на законе Вебера-Фехнера (ощущение приращения яркости пропорционально логарифму отношения конечной яркости к начальной ). При этом виде квантования шаги его увеличиваются к верхней части диапазона. Экспериментально доказано, что при 2 7 уровнях мы получаем качество изображения, соответствующее 2 8 . Возможность восстановления сигнала по его квантованному приближению вытекает из ограниченности контрастной и цветовой чувствительности зрительной системы человека.

Заключительная операция преобразования аналогового сигнала в цифровую форму - кодирование – заменой квантованного значения отсчета соответствующим двоичным числом кодовой комбинацией символов (рис.14.1,г). Способ кодирования, в котором значения отсчетов представляются натуральном двоичном коде, называется импульсно-кодовой модуляции (ИКМ).

Дискретизация, квантование и кодирование обычно выполняются одним устройством –аналого-цифровым преобразователем (АЦП), а обратное преобразование производится в цифро-аналоговом преобразователе (ЦАП).

Исследования цифрового способа передачи применительно к ТВ начались еще в 30-е годы, но лишь недавно началось его применение в вещательном ТВ. Это обусловлено жесткими требованиями к быстродействию устройств преобразования и передачи цифрового сигнала поскольку для вещательного ТВ сигнала с верхней частотой спектра6 МГц необходима частота дискретизации fтакт=12 МГц . В системахЦТВ для унификации цифрового ТВ сигнала стандартов различных стран ее устанавливают равной 13,5 МГц. Для обеспечения максимального числа градаций яркости различимых глазом, которое колеблется от 100 до 200 необходимо использовать 7 или 8 разрядный код, обеспечивающий 128 или 256 полутонов. При этом скорость передачи составит C=Nfтакт= 8*13.5=108 Мбит/с , где N – разрядность кода. Таким высоким быстродействием должны обладать как устройства обработки ТВ сигнала, так и каналы связи для его передачи, что технически трудно реализуемо

Для сокращения требуемой скорости передачи используют специальные методы сжатия ТВ сигналов, за счет устранения информационной избыточности, которую разделяют условно на статистическую и физиологическую.

Статистическая избыточность определяется свойствами изображений, которые не являются в общем случае хаотическим распределением яркостей, а описываются законами, устанавливающими определенные связи (корреляцию) между яркостями отдельных элементов. Особенно велика корреляция между соседними в пространстве и времени элементами изображения, что позволяет не передавать многократно одну и ту же информацию, и тем самым сократить цифровой поток.

Физиологическая избыточность обуславливается ограниченностью возможностей зрительного аппарата человека, то есть можно не передавать в сигнале информацию, которая не будет воспринята нашим зрением.

Экспериментально установлено, что в зрительном анализаторе человека существуют совокупности рецепторов – рецептивные поля – которые обрабатывают одновременно большие группы элементов, причем реагируя не столько на яркость, сколько на форму, выделяя наиболее информативные части – контуры, перепады яркости. Это позволяет восстанавливать целостные контуры, даже когда они нарушены из-за помех. Т.е. и в ТВ можно ограничиться передачей определенных конфигураций и при этом сократить число передаваемых элементов. Например, при ортогональной структуре дискретизации обнаруживается чрезмерная избыточность по диагональным направлениям. Для устранения этого используют более совершенную шахматную структуру.

Большое значение на эффективность цифрового сигнала оказывает способ кодирования. Так ИКМ имеет низкую чувствительность к шумам, помехам и искажениям, простоту восстановления, однако требует очень высоких скоростей передачи, поскольку не устраняет избыточной информации в соседних элементах. Поэтому сейчас нашли применение более эффективные методы кодирования, которые можно условно разбить на три группы: кодирование с предсказанием, групповое кодирование с преобразованием и адаптивное групповое кодирование.

Кодирование с предсказанием заключается в передаче вместо истинного значения сигнала закодированной разности истинного и предсказанного значений, из-за чего они получили название систем сдифференциальной ИКМ – ДИКМ.

Групповые методы кодирования основаны на передаче вместо каждого из дискретных отсчетов определенных линейных комбинаций из совокупности этих отсчетов. Групповые методы кодирования обеспечивают более высокие качественные показатели, чем ДИКМ. Их эффективность меньше зависит от статистических свойств изображений и они менее подвержены канальным ошибкам. В наиболее совершенных системах на элемент изображения требуется только 0,5 – 1 бит. Их недостатком является сложность реализации.

При использовании ЭВМ для обработки информации от различных устройств (объектов, процессов), в которых информация представлена непрерывными (аналоговыми) сигналами, требуется преобразовать аналоговый сигнал в цифровой - в число, пропорциональное амплитуде этого сигнала, и наоборот. В общем случае процедура аналого-цифрового преобразования состоит из трех этапов:

дискретизации;

квантования по уровню;

кодирования.

Под дискретизацией понимают преобразование функции непрерывного времени в функцию дискретного времени, а сам процесс дискретизации состоит в замене непрерывной функции её отдельными значениями в фиксированные моменты времени.

Дискретизация может быть равномерной и неравномерной. При неравномерной дискретизации длительность интервалов между отсчетами различна. Наиболее часто применяется равномерная дискретизации, при которой длительность интервала между отсчетами Т Д , постоянна. Период дискретизации Т Д непрерывного сигнала и(t) (рис. 1 а) выбирается в соответствии с теоремой Котельникова:

где F в - высшая частота в спектре частот сигнала и(t) (рис. 1 б)

Рис. 1.Процесс аналого-цифрового преобразования

Под квантованием понимают преобразование некоторой величины с непрерывной шкалой значений в величину, имеющую дискретную шкалу значений.

Для этого весь диапазон значений сигнала и(t), называемый шкалой делится на равные части – кванты, h – шаг квантования. Процесс квантования сводится к замене любого мгновенного значения одним из конечного множества разрешенных значений, называемых уровнями квантования.

Вид сигнала и(t) в результате совместного проведения операций дискретизации и квантования представлен на рис. 1 в). Дискретизированное значение сигнала и(t), находящееся между двумя уровнями квантования, отождествляется с ближайшим уровнем квантования. Это приводит к ошибкам квантования, которые всегда меньше шага квантования (кванта), т. е. чем меньше шаг квантования, тем меньше погрешность квантования, но больше уровней квантования.

Число уровней квантования на рис. 1 в) равно восьми. Обычно их значительно больше. Можно провести нумерацию уровней и выразить их в двоичной системе счисления. Для восьми уровней достаточно трех двоичных разрядов. Каждое дискретное значение сигнала представляется в этом случае двоичным кодом (табл. 1) в виде последовательности сигналов двух уровней.

Таблица 6.1

Наличие или отсутствие импульса на определенном месте интерпретируется единицей или нолем в соответствующем разряде двоичного числа. Цифровая форма представления сигнала и(t) показана на рис. 1 г). Импульсы старших разрядов расположены крайними справа.

Таким образом, в результате дискретизации, квантования и кодирования аналогового сигнала получаем последовательность n -разрядных кодовых комбинаций, которые следуют с периодом дискретизации Т л. При этом рациональное выполнение операций дискретизации и квантования приводит к значительному экономическому эффекту как за счет снижения затрат на хранение и обработку получаемой информации, так и вследствие сокращения времени обработки информации.

2.2. Дискретизация, квантование и кодирование сигналов

Современные цифровые технологии, обладая неограниченными возможностями по обработке, передаче и хранению больших объемов информации, всё активнее внедряются в самые разные сферы человеческой деятельности, даже в те из них, где прежде традиционно господствовали аналоговые. Однако все известные физические явления и процессы, которые служат источниками исходных данных для решения вычислительных задач, являются непрерывными аналоговыми величинами. Поэтому, прежде чем произвести какое-либо вычисление, надо получить численные значения величин, над которыми производятся вычислительные операции, т. е. осуществить преобразование аналоговой величины в соответствующий ей цифровой эквивалент. И точность такого преобразования должна быть не хуже желаемой точности результата. Кроме того, нередко результат вычисления также должен быть представлен в виде аналоговой величины с высокой степенью точности.

Еще одним аргументом в пользу цифрового представления аналоговой информации является возможность сохранения последней в неизменном виде в течение практически неограниченного времени. Многие из аналоговых процессов быстротечны и не повторяются вновь, фиксация их аналоговыми методами - записью на какой-нибудь носитель - фотопленку или магнитную ленту, недостаточно надежна и имеет свойство со временем ухудшаться - вплоть до полного разрушения. Цифровые же методы подобными недостатками не страдают, поскольку запись производится всего двумя символами - «единицей» (есть сигнал) и «нулем» (сигнала нет). В таком виде информация неизмеримо более устойчива к воздействию разного рода искажающих факторов. Нет необходимости заботиться о точной форме импульса - достаточно, чтобы он был вообще. К тому же разработанные на сегодняшний день алгоритмы защиты цифровой информации от ошибок позволяют практически свести к нулю результат любого искажающего воздействия, такого, которое для аналоговой информации было бы равносильно ее безвозвратной утрате.

По указанным выше причинам роль приборов, преобразующих аналоговые величины в цифровые и обратно - аналого-цифровых и цифро-аналоговых преобразователей (АЦП и ЦАП) становится чрезвычайно значимой, поскольку им отводится роль своего рода «посредников», между аналоговой природой окружающего нас мира и вычислительной мощью «цифрового мира». Роль эта весьма ответственна. Какова точность преобразования, такова будет и точность результата.

Прежде чем приступать к анализу процедур аналого-цифрового и цифро-аналогового преобразования, следует ознакомиться с основными видами электрических сигналов, которые в дальнейшем будут служить объектами упомянутых преобразований. В самом общем случае такие сигналы можно разделить на четыре класса:

1. произвольные по величине и непрерывные по времени (рис. 1.1 а);

2. произвольные по величине и дискретные во времени (рис. 1.1 б);

3. квантованные по величине и непрерывные по времени (рис. 1.1 в);


квантованные по величине и дискретные по времени (рис. 1.1 д).

Сигнал s ( t ), показанный на рис. 1 а называется аналоговым, поскольку его можно толковать как электрическое отображение реальных физических процессов. Аналоговые сигналы задаются по оси времени на несчетном множестве точек и являются непрерывными. По оси ординат такие сигналы также могут принимать любые значения в определенном интервале.

Сигнал S ( nT ), показанный на рис. 1.1 б, также, как и аналоговый, может принимать любые значения по оси ординат, но по оси времени он определен только для некоторых фиксированных точек, т. е. является функцией дискретной переменной ( n Т), где n = 0, 1, 2 ..., а Т - интервал дискретизации. Такой сигнал называется дискретным, причем в данном случае термин «дискретный» характеризует не сам сигнал, а способ его задания на временной оси.

Сигнал, показанный на рис. 1.1 в, задан на всей временной оси, однако величина его может принимать только дискретные значения. В подобном случае говорят о сигнале, квантованном по уровню. Чтобы отличить дискретность сигнала по уровню от дискретности по времени, термин «дискретный» будет применяться только к дискретизации по времени, дискретность же по уровню будет характеризоваться термином «квантование».

Квантование используют в том случае, когда необходимо преобразовать сигнал в цифровую форму. Для этого весь диапазон изменения величины сигнала разбивают на счетное число уровней и каждому уровню присваивают определенный номер, который затем кодируют двоичным кодом с конечным числом разрядов. Величина сигнала измеряется в заданных точках на оси времени. Такой сигнал - дискретный по времени и квантованный по уровню, называется цифровым. Он показан на рис. 1.1 г .

При использовании ЭВМ для обработки информации от различных устройств (объектов, процессов), в которых информация представлена непрерывными (аналоговыми) сигналами, требуется преобразовать аналоговый сигнал в цифровой - в число, пропорциональное амплитуде этого сигнала, и наоборот. В общем случае процедура аналого-цифрового преобразования состоит из трех этапов:

дискретизации;

квантования по уровню;

кодирования.

Под дискретизацией понимают преобразование функции непрерывного времени в функцию дискретного времени, а сам процесс дискретизации состоит в замене непрерывной функции её отдельными значениями в фиксированные моменты времени.

Дискретизация может быть равномерной и неравномерной. При неравномерной дискретизации продолжительность интервалов между отсчетами различна. Наиболее часто применяется равномерная дискретизации, при которой продолжительность интервала между отсчетами Т Д , постоянна. Период дискретизации Т Д непрерывного сигнала и(t) (рис. 1 а) выбирается в соответствии с теоремой Котельникова:

где F в - высшая частота в спектре частот сигнала и(t) (рис. 1 б)

Рис. 1.Процесс аналого-цифрового преобразования

Под квантованием понимают преобразование некоторой величины с непрерывной шкалой значений в величину, имеющую дискретную шкалу значений.

Для этого весь диапазон значений сигнала и(t), называемый шкалой делится на равные части – кванты, h – шаг квантования. Процесс квантования сводится к замене любого мгновенного значения одним из конечного множества разрешенных значений, называемых уровнями квантования.

Вид сигнала и(t) в результате совместного проведения операций дискретизации и квантования представлен на рис. 1 в). Дискретизированное значение сигнала и(t), находящееся между двумя уровнями квантования, отождествляется с ближайшим уровнем квантования. Это приводит к ошибкам квантования, которые всœегда меньше шага квантования (кванта), т. е. чем меньше шаг квантования, тем меньше погрешность квантования, но больше уровней квантования.

Число уровней квантования на рис. 1 в) равно восьми. Обычно их значительно больше. Можно провести нумерацию уровней и выразить их в двоичной системе счисления. Для восьми уровней достаточно трех двоичных разрядов. Каждое дискретное значение сигнала представляется в этом случае двоичным кодом (табл. 1) в виде последовательности сигналов двух уровней.

Таблица 6.1

Наличие или отсутствие импульса на определœенном месте интерпретируется единицей или нолем в соответствующем разряде двоичного числа. Цифровая форма представления сигнала и(t) показана на рис. 1 г). Импульсы старших разрядов расположены крайними справа.

Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, в результате дискретизации, квантования и кодирования аналогового сигнала получаем последовательность n -разрядных кодовых комбинаций, которые следуют с периодом дискретизации Т л. При этом рациональное выполнение операций дискретизации и квантования приводит к значительному экономическому эффекту как за счет снижения затрат на хранение и обработку получаемой информации, так и вследствие сокращения времени обработки информации.

На практике преобразование аналогового сигнала в цифровую форму осуществляется с помощью аналого-цифрового преобразователя (АЦП). Для решения обратной задачи преобразования числа в пропорциональную аналоговую величину, представленную в виде электрического напряжения, тока и т. п., служит цифроаналоговый преобразователь (ЦАП). В ЦАП каждая двоичная кодовая комбинация преобразуется в аналоговый сигнал, и на выходе создается последовательность модулированных по амплитуде импульсов с периодом Т л.



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: