Как устроен компилятор? Что такое компилятор – описание.

Если вы только приступили к изучению программирования или интересуетесь данным вопросом, то вы наверняка сталкивались с таким таинственным словом, как «компилятор». Одним своим видом это страшное понятие способно отпугнуть пользователей. В данном обзоре мы попытаемся разобраться, действительно ли все так ужасно на самом деле.

Компилятор: определение и история возникновения

Если говорить простыми словами, то под компилятором сегодня имеется в виду программа, которая преобразует текст программы, написанной пользователем, в определенную форму, пригодную для выполнения на вычислительной машине. Такие программы появились одновременно с зарождением первых языков программирования. Это произошло еще в конце 50-х годов. Получается, что история, связанная с языками программирования и компиляторами, насчитывает уже более 60 лет. Данное направление компьютерной науки, несмотря на столь серьезный срок, нельзя назвать устоявшимся или устаревшим. Наоборот, с ходом времени, появлением новых задач и отраслей, для решения которых используются персональные компьютеры, появляется необходимость в разработке новых, более удобных языков программирования. Для этих языков соответственно и требуются компиляторы. Свои разработки существуют для каждой платформы.

Компилятор: принцип работы

Исходный текст, созданный на языке высокого уровня разработчиком, должен быть преобразован в программу, написанную на специальном машинном языке. Этот код и называют исполняемой программой. Исполняемую программу можно устанавливать и запускать на любом персональном компьютере, не делая при этом никаких преобразований.

Компиляторы по традиции являются одной из основных вещей в информатике, наряду с базами данных и операционными системами. Что же собой представляет компилятор? Это в каком-то смысле базис современной компьютерной науки. Сама тема создания таких программ с другой точки зрения подразумевает большое количество технологических и теоретических аспектов, связанных с программированием. Как полагают многие разработчики, данная тема вообще является наиболее привлекательной в информатике. При разработке программы, решающей определенную задачу, программист пишет ее на специальном языке программирования. В процессе разработки он использует термины, которые близки именно к той области, с которой ему приходится иметь дело. Компьютер совершенно не понимает, что человек от него хочет. Он может разобраться только в простых вещах, таких как переменные, регистры, ячейки, постоянная и временная память. Что же собой представляет компилятор? Это специальная программа, основная задача которой заключается в переводе понятий, близких к предметной области программиста, в понятия, которыми может манипулировать персональный компьютер. Именно эту задачу выполняет компилятор для любого языка программирования. При появлении нового языка появляется необходимость в переводе написанного на нем кода в вид, который сможет понять компьютер. В противном случае, код не будет выполнен. Всегда имеется семантический зазор между понятиями человека и персонального компьютера. Компиляторы языка программирования предназначены как раз для его преодоления.

Создатели компиляторов сталкиваются со множеством различных проблем. Это и научные проблемы, которые связаны с правильным отображением понятий в прикладной области, и технологические, и инженерные проблемы, связанные с реализацией отображения. При создании компилятора приходится выполнять множество разнородных подзадач. Это очень сложная отрасль, которой программисты посвящают всю свою жизнь.

Компилятор и класс

Многие из вас наверняка слышали о таких языках программирования, как C++ и C. Это одни из наиболее распространенных и популярных языков. Такие серьезные языки программирования содержат мощные понятия, которые удобны для отображения понятий прикладных областей. Там, к примеру, присутствует такое понятие, как классы и функции. Они являются основополагающими для многих языков программирования, но для C++ они особенно характерны. Программисту намного удобнее будет создавать модели при помощи таких понятий. Компилятор C для любой операционной системы дает возможность отобразить такие высокоуровневые вещи в понятной для компьютера форме. Тогда компьютер легко сможет ими манипулировать. Любая вычислительная машина, какой бы сложной она не была, оперирует простыми понятиями. Однако понятие класса можно назвать трудным, поскольку с его помощью удобно отражать многие объекты реальной жизни. Задача компилятора заключается в том, чтобы превращать сложные понятия в примитивные.

Разработка компиляторов

В последнее время можно проследить четкую тенденцию, связанную с тем, что любая крупная компания в сфере информационных технологий выпускает собственный язык программирования, который затем продвигается в массы. Для каждого языка программирования требуется свой собственный компилятор. Как правило, их создают вместе с языками. Однако, существует большое количество фирм и самостоятельных программистов, которые хотят иметь собственные компиляторы для тех или иных языков, или же разрабатывают собственные языки программирования и соответственно компиляторы к ним. Можно с полной уверенность сказать, что программист, который решил посвятить свою жизнь данной сфере, без работы точно не останется. Теперь вам должно быть более-менее понятно, что собой представляет компилятор. Это своеобразная программа-переводчик, которая используется для взаимодействия между разработчиком и компьютером. Сегодня в сфере компьютерной техники без данного элемента никуда.

Иногда на язык ассемблера) или непосредственно на машинном языке или ином двоичнокодовом низкоуровневом командном языке и последующую сборку исполняемой машинной программы. Если компилятор генерирует исполняемую машинную программу на машинном языке, то такая программа непосредственно исполняется физической программируемой машиной (например компьютером). В других случаях исполняемая машинная программа выполняется соответствующей виртуальной машиной . Входной информацией для компилятора (исходный код) является описание алгоритма или программы на предметно-ориентированном языке , а на выходе компилятора - эквивалентное описание алгоритма на машинно-ориентированном языке (объектный код) .

Компили́ровать - проводить трансляцию машинной программы с предметно-ориентированного языка на машинно-ориентированный язык. .

Виды компиляторов [ | ]

  • Векторизующий . Базируется на трансляторе, транслирующем исходный код в машинный код компьютеров, оснащённых векторным процессором .
  • Гибкий . Сконструирован по модульному принципу, управляется таблицами и запрограммирован на языке высокого уровня или реализован с помощью.
  • Диалоговый . См.: .
  • Инкрементальный . Пересобирает программу, заново транслируя только измененные фрагменты программы без перетрансляции всей программы.
  • Интерпретирующий (пошаговый) . Последовательно выполняет независимую компиляцию каждого отдельного оператора (команды) исходной программы.
  • Компилятор компиляторов . Транслятор, воспринимающий формальное описание языка программирования и генерирующий компилятор для этого языка.
  • Отладочный . Устраняет отдельные виды синтаксических ошибок .
  • Резидентный . Постоянно находится в оперативной памяти и доступен для повторного использования многими задачами.
  • Самокомпилируемый . Написан на том же языке программирования, с которого осуществляется трансляция.
  • Универсальный . Основан на формальном описании синтаксиса и семантики входного языка. Составными частями такого компилятора являются: ядро, синтаксический и семантический загрузчики.

Виды компиляции [ | ]

Структура компилятора [ | ]

Процесс компиляции состоит из следующих этапов:

В первом случае компилятор представляет собой пакет программ, включающий в себя трансляторы с разных языков программирования и компоновщики. Такой компилятор может компилировать программу, разные части исходного текста которой написаны на разных языках программирования. Нередко такие компиляторы управляются встроенным интерпретатором того или иного командного языка. Яркий пример таких компиляторов - имеющийся во всех UNIX-системах (в частности в Linux) компилятор make .

Во втором случае компилятор де-факто выполняет только трансляцию и далее вызывает компоновщик как внешнюю подпрограмму, который и компонует машинно-ориентированную программу. Этот факт нередко служит поводом считать компилятор разновидностью транслятора, что естественно неверно, - все современные компиляторы такого типа поддерживают организацию импорта программой процедуры (функции) из уже оттранслированого программного модуля, написанного на другом языке программирования. Так в программу на С/С++ можно импортировать функцию написанную например Pascal или Fortran . Аналогично и напротив написанная на С/С++ функция может быть импортирована в Pascal- или Fortran-программу соответственно. Это как правило было бы невозможно без поддержки многими современными компиляторами организации обработки входных данных в процедуру (функций) в соответствии с соглашениями других языков программирования. Например современные компиляторы с языка Pascal помимо соглашения самого Pascal поддерживает организацию обработки процедурая/функцией входных в соответствии с соглашениями языка С/С++. (Чтобы на уровне машинного кода написанная на Pascal процедура/функция работала с входными параметрами в соответствии с соглашениями языка С/С++, - оператор объявления такой Pascal-процедуры/Pascal-функции должен содержать ключевое слово cdecl .) Примерами таких компиляторов являются компиляторы со всех без исключения языков программирования, используемые непосредственно.

Трансляция программы как неотъемлемая составляющая компиляции включает в себя:

Генерация кода [ | ]

Генерация машинного кода [ | ]

Большинство компиляторов переводит программу с некоторого высокоуровневого языка программирования в машинный код , который может быть непосредственно выполнен физическим процессором . Как правило, этот код также ориентирован на исполнение в среде конкретной операционной системы , поскольку использует предоставляемые ею возможности (системные вызовы , библиотеки функций). Архитектура (набор программно-аппаратных средств), для которой компилируется (собирается) машинно-ориентированная программа, называется целевой машиной .

Результат компиляции - исполнимый программный модуль - обладает максимально возможной производительностью, однако привязан к конкретной операционной системе (семейству или подсемейству ОС) и процессору (семейству процессоров) и не будет работать на других.

Некоторые компиляторы переводят программу с языка высокого уровня не прямо в машинный код, а на язык ассемблера . (Пример: PureBasic , транслирующий бейсик-код в ассемблер FASM .) Это делается для упрощения части компилятора, отвечающей за генерацию кода, и повышения его переносимости (задача окончательной генерации кода и привязки его к требуемой целевой платформе перекладывается на ассемблер), либо для возможности контроля и исправления результата компиляции (в т. ч. ручной оптимизации) программистом.

Генерация байт-кода [ | ]

Результатом работы компилятора может быть программа на специально созданном низкоуровневом языке двоично-кодовых команд, выполняемых виртуальной машиной . Такой язык называется псевдокодом или байт-кодом . Как правило, он не есть машинный код какого-либо компьютера и программы на нём могут исполняться на различных архитектурах, где имеется соответствующая виртуальная машина, но в некоторых случаях создаются аппаратные платформы, напрямую выполняющие псевдокод какого-либо языка. Например, псевдокод языка Java называется байт-кодом Java и выполняется в Java Virtual Machine , для его прямого исполнения была создана спецификация процессора picoJava . Для платформы .NET Framework псевдокод называется Common Intermediate Language (CIL), а среда исполнения - Common Language Runtime (CLR).

Некоторые реализации интерпретируемых языков высокого уровня (например, Perl) используют байт-код для оптимизации исполнения: затратные этапы синтаксического анализа и преобразование текста программы в байт-код выполняются один раз при загрузке, затем соответствующий код может многократно использоваться без перекомляции.

Динамическая компиляция [ | ]

Из-за необходимости интерпретации байт-код выполняется значительно медленнее машинного кода сравнимой функциональности, однако он более переносим (не зависит от операционной системы и модели процессора). Чтобы ускорить выполнение байт-кода, используется динамическая компиляция , когда виртуальная машина транслирует псевдокод в машинный код непосредственно перед его первым исполнением (и при повторных обращениях к коду исполняется уже скомпилированный вариант).

Наиболее популярной разновидностью динамической компиляции является JIT . Другой разновидностью является .

CIL-код также компилируется в код целевой машины JIT-компилятором, а библиотеки .NET Framework компилируются заранее.

Трансляция байт-кода в машинный код [ | ]

Трансляция байт-кода в машинный код специальным транслятором байт-кода как указано выше неотъемлемая фаза динамической компиляции. Но трансляция байт-кода применима и для простого преобразования программы на байт-коде в эквивалентную программу на машинном языке. В машинный код может транслироваться как заранее скомпилированный байт-код. Но также трансляция байт-кода в машинный код может выполняться компилятором байт-кода сразу следом за компиляцией байт-кода. Практически всегда в последнем случае трансляция байт-кода выполняется внешним транслятором, вызываемым компилятором байт-кода.

Декомпиляция [ | ]

Существуют программы, которые решают обратную задачу - перевод программы с низкоуровневого языка на высокоуровневый. Этот процесс называют декомпиляцией, а такие программы - декомпиляторами . Но поскольку компиляция - это процесс с потерями, точно восстановить исходный код, скажем, на C++, в общем случае невозможно. Более эффективно декомпилируются программы в байт-кодах - например, существует довольно надёжный декомпилятор для Flash . Разновидностью декомпиляции является дизассемблирование машинного кода в код на языке ассемблера, который почти всегда благополучно выполняется (при этом сложность может представлять самомодифицирующийся код или код, в котором собственно код и данные не разделены). Связано это с тем, что между кодами машинных команд и командами ассемблера имеется практически взаимно-однозначное соответствие.

Раздельная компиляция [ | ]

Раздельная компиляция (библиотеки , которые можно компилировать независимо друг от друга. В процессе трансляции программы сам компилятор или вызываемый компилятором транслятор порождает объектный модуль , содержащий дополнительную информацию, которая потом - в процессе компоновки частей в исполнимый модуль - используется для связывания и разрешения ссылок между частями программы. Раздельная компиляция также позволяет писать разные части исходного текста программы на разных языках программирования.

Появление раздельной компиляции и выделение компоновки как отдельной стадии произошло значительно позже создания компиляторов. В связи с этим вместо термина «компилятор» иногда используют термин «транслятор» как его синоним: либо в старой литературе, либо когда хотят подчеркнуть его способность переводить программу в машинный код (и наоборот, используют термин «компилятор» для подчёркивания способности собирать из многих файлов один). Вот только использование в таком контексте терминов «компилятор» и «транслятор» неправильно. Даже если компилятор выполняет трансляцию программы самостоятельно, поручая компоновку вызываемой внешней программе-компоновщику, такой компилятор не может считаться разновидностью транслятора, - транслятор выполняет трансляцию исходной программы и только. И уж тем более не являются трансляторами компиляторы вроде системной утилиты-компилятора make , имеющейся во всех UNIX-системах.

Одной из ключевых характеристик PHP является то, что это интерпретируемый язык программирования. С другой стороны, языки программирования наподобие C , изначально разрабатывались для компиляции. Что это значит?

Компилируется ли язык программирования или интерпретируется, на самом деле это не зависит от природы языка программирования. Любой язык программирования может интерпретироваться так называемым интерпретатором или компилироваться с помощью так называемого компилятора.

Рабочий цикл программы

При использовании любого языка программирования существует определенный рабочий цикл создания кода. Вы пишете его, запускаете, находите ошибки и отлаживаете. Таким образом, вы переписываете и дописываете программу, проверяете ее. То, о чем пойдет речь в этой статье, это «запускаемая » часть программы.

Когда пишете программу, вы хотите, чтобы ее инструкции работали на компьютере. Компьютер обрабатывает информацию с помощью процессора, который поэтапно выполняет инструкции, закодированные в двоичном формате. Как из выражения «a = 3; » получить закодированные инструкции, которые процессор может понять?

Мы делаем это с помощью компиляции. Существует специальные приложения, известные как компиляторы. Они принимают программу, которую вы написали. Затем анализируют и разбирают каждую часть программы и строят машинный код для процессора. Часто его также называют объектным кодом.

На одном из этапов процесса обработки задействуется компоновщик, принимающий части программы, которые отдельно были преобразованы в объектный код, и связывает их в один исполняемый файл. Вот схема, описывающая данный процесс:

Конечным элементом этого процесса является исполняемый файл. Когда вы запускаете или сообщаете компьютеру, что это исполняемый файл, он берет первую же инструкцию из него, не фильтрует, не преобразует, а сразу запускает программу и выполняет ее без какого-либо дополнительного преобразования. Это ключевая характеристика процесса компиляции — его результат должен быть исполняемым файлом, не требующим дополнительного перевода, чтобы процессор мог начать выполнять первую инструкцию и все следующие за ней.

Первые компиляторы были написаны непосредственно через машинный код или с использованием ассемблеров. Но цель компилятора очевидна: перевести программу в исполняемый машинный код для конкретного процессора.

Некоторые языки программирования разрабатывались с учетом компиляции. C , например, предназначался для того, чтобы дать возможность программистам с легкостью реализовать разные вещи. Но в итоге он разрабатывался таким образом, чтобы его можно было легко перевести на машинный код. Компиляция в программировании это серьезно!

Не все языки программирования учитывают это в своей концепции. Например, Java предназначался для запуска в «интерпретирующей » среде, а Python всегда должен интерпретироваться.

Интерпретация программы

Альтернативой компиляции является интерпретация. Основная разница между компилятором и интерпретатором заключается в том, как они работают. Компилятор берет всю программу и преобразует ее в машинный код, который понимает процессор.

Интерпретатор — это исполняемый файл, который поэтапно читает программу, а затем обрабатывает, сразу выполняя ее инструкции.

Другими словами, интерпретатор выполняет программу поэтапно как часть собственного исполняемого файла. Объектный код не передается процессору, интерпретатор сам является объектным кодом, построенным таким образом, чтобы его можно было вызвать в определенное время.

Это ломает рабочий цикл, который был приведен на диаграмме выше. Теперь у нас есть новая диаграмма:


На ней мы видим, что в отличие от компилятора, интерпретатор всегда должен быть под рукой, чтобы мы могли вызвать его и запустить нашу программу. В некотором смысле интерпретатор становится процессором. Программы, написанные для интерпретации, называются «скриптами », потому что они являются сценариями действий для другой программы, а не прямым машинным кодом.

Например, так работают такие языки программирования, как Python . Вы пишете программу. Затем вводите код в интерпретатор Python , и он выполняет все описанные вами шаги. В командной строке вы можете ввести примерно следующее:

C:>python myprogram.py

В этой команде Python — это исполняемый файл. Вы вводите в него все, что находится в файле myprogram.py, и он выполняет эти инструкции. Компьютер не запустит myprogram.py без Python . Это не машинный код, который понимает процессор. Можно скомпилировать программы Python в объектный или машинный код и запустить его непосредственно в процессоре. Но эта процедура включает в себя компиляцию кода и добавление в качестве ее части всего интерпретатора Python .

Природа интерпретатора

Интерпретаторы могут создаваться по-разному. Существуют интерпретаторы, которые читают исходную программу и не выполняют дополнительной обработки. Они просто берут определенное количество строк кода за раз и выполняют его.

Некоторые интерпретаторы выполняют собственную компиляцию, но обычно преобразуют программу байтовый код, который имеет смысл только для интерпретатора. Это своего рода псевдо машинный язык, который понимает только интерпретатор.

Такой код быстрее обрабатывается, и его проще написать для исполнителя (части интерпретатора, которая исполняет ), который считывает байтовый код, а не код источника.

Есть интерпретаторы, для которых этот вид байтового кода имеет более важное значение. Например, язык программирования Java «запускается » на так называемой виртуальной машине. Она является исполняемым кодом или частью программы, которая считывает конкретный байтовый код и эмулирует работу процессора. Обрабатывая байтовый код так, как если бы процессор компьютера был виртуальным процессором.

У меня есть эмулятор для игровой приставки NIntendo . Когда я загружаю ROM-файл Dragon Warrior , он форматируется в машинный код, который понимает только процессор NES . Но если я создаю виртуальный процессор, который интерпретирует байтовый код во время работы на другом процессоре, я могу запустить Dragon Warrior на любой машине с эмулятором.

Это использует концепция компиляции Java , а также все интерпретаторы. На любом процессоре, для которого я могу создать интерпретатор / эмулятор, можно запускать мои интерпретируемые программы / байтовый код. В этом заключается основное преимущество интерпретатора над компилятором.

За и против

Основным аргументом за использование процесса компиляции является скорость. Возможность компилировать любой программный код в машинный, который может понять процессор ПК, исключает использование промежуточного кода. Можно запускать программы без дополнительных шагов, тем самым увеличивая скорость обработки кода.

Но наибольшим недостатком компиляции является специфичность. Когда компилируете программу для работы на конкретном процессоре, вы создаете объектный код, который будет работать только на этом процессоре. Если хотите, чтобы программа запускалась на другой машине, вам придется перекомпилировать программу под этот процессор. А перекомпиляция может быть довольно сложной, если процессор имеет ограничения или особенности, не присущие первому. А также может вызывать ошибки компиляции.

Основное преимущество интерпретации — гибкость. Можно не только запускать интерпретируемую программу на любом процессоре или платформе, для которых интерпретатор был скомпилирован. Написанный интерпретатор может предложить дополнительную гибкость. В определенном смысле интерпретаторы проще понять и написать, чем компиляторы.

С помощью интерпретатора проще добавить дополнительные функции, реализовать такие элементы, как сборщики мусора, а не расширять язык.

Другим преимуществом интерпретаторов является то, что их проще переписать или перекомпилировать для новых платформ.

Написание компилятора для процессора требует добавления множества функций, или полной переработки. Но как только компилятор написан, можно скомпилировать кучу интерпретаторов и на выходе мы имеем перспективный язык. Не нужно повторно внедрять интерпретатор на базовом уровне для другого процессора.

Самым большим недостатком интерпретаторов является скорость. Для каждой программы выполняется так много переводов, фильтраций, что это приводит к замедлению работы и мешает выполнению программного кода.

Это проблема для конкретных real-time приложений, таких как игры с высоким разрешением и симуляцией. Некоторые интерпретаторы содержат компоненты, которые называются just-in-time компиляторами (JIT ). Они компилируют программу непосредственно перед ее исполнением. Это специальные программы, вынесенные за рамки интерпретатора. Но поскольку процессоры становятся все более мощными, данная проблема становится менее актуальной.

Заключение

Имейте всегда в виду, что некоторые языки программирования специально предназначены для компиляции кода, например, C . В то время как другие языки всегда должны интерпретироваться, например Java .

Для меня не имеет значения, скомпилировано что-то или интерпретировано, если оно может выполнить задачу эффективно.

Некоторые системы не предлагают технические условия для эффективного использования интерпретаторов. Поэтому вы должны запрограммировать их с помощью чего-то, что может быть непосредственно скомпилировано, например C . Иногда нужно выполнить вычисления настолько интенсивно, насколько это возможно. Например, при точном распознавании голоса роботом. В других случаях скорость или вычислительная мощность могут быть не столь критичными, и написать эмулятор на оригинальном языке может быть проще.

Компиля́тор - программа или техническое средство, выполняющее компиляцию .

Компиляция - трансляция программы, составленной на исходном языке высокого уровня, в эквивалентную программу на низкоуровневом языке, близком машинному коду (абсолютный код, объектный модуль, иногда на язык ассемблера). Входной информацией для компилятора (исходный код) является описание алгоритма или программа напроблемно-ориентированном языке, а на выходе компилятора - эквивалентное описание алгоритма на машинно-ориентированном языке (объектный код).

Компилировать - проводить трансляцию машинной программы с проблемно-ориентированного языка на машинно-ориентированный язык.

Виды компиляторов

    Векторизующий . Транслирует исходный код в машинный код компьютеров, оснащённых векторным процессором.

    Гибкий . Сконструирован по модульному принципу, управляется таблицами и запрограммирован на языке высокого уровня или реализован с помощью компилятора компиляторов.

    Диалоговый . См.: диалоговый транслятор.

    Инкрементальный . Повторно транслирует фрагменты программы и дополнения к ней без перекомпиляции всей программы.

    Интерпретирующий (пошаговый) . Последовательно выполняет независимую компиляцию каждого отдельного оператора (команды) исходной программы.

    Компилятор компиляторов . Транслятор, воспринимающий формальное описание языка программирования и генерирующий компилятор для этого языка.

    Отладочный . Устраняет отдельные виды синтаксических ошибок.

    Резидентный . Постоянно находится в оперативной памяти и доступен для повторного использования многими задачами.

    Самокомпилируемый . Написан на том же языке, с которого осуществляется трансляция.

    Универсальный . Основан на формальном описании синтаксиса и семантики входного языка. Составными частями такого компилятора являются: ядро, синтаксический исемантический загрузчики.

Виды компиляции

    Пакетная . Компиляция нескольких исходных модулей в одном пункте задания.

    Построчная . То же, что и интерпретация.

    Условная . Компиляция, при которой транслируемый текст зависит от условий, заданных в исходной программе директивами компилятора. Так, в зависимости от значения некоторой константы, можно включать или выключать трансляцию части текста программы.

Структура компилятора

Процесс компиляции состоит из следующих этапов:

    Лексический анализ. На этом этапе последовательность символов исходного файла преобразуется в последовательность лексем.

    Синтаксический (грамматический) анализ. Последовательность лексем преобразуется в дерево разбора.

    Семантический анализ. Дерево разбора обрабатывается с целью установления его семантики (смысла) - например, привязка идентификаторов к их декларациям, типам, проверка совместимости, определение типов выражений и т. д. Результат обычно называется «промежуточным представлением/кодом», и может быть дополненным деревом разбора, новым деревом, абстрактным набором команд или чем-то ещё, удобным для дальнейшей обработки.

    Оптимизация. Выполняется удаление излишних конструкций и упрощение кода с сохранением его смысла. Оптимизация может быть на разных уровнях и этапах - например, над промежуточным кодом или над конечным машинным кодом.

    Генерация кода. Из промежуточного представления порождается код на целевом языке.

В конкретных реализациях компиляторов эти этапы могут быть разделены или, наоборот, совмещены в том или ином виде.

Генерация кода

Генерация машинного кода

Большинство компиляторов переводит программу с некоторого высокоуровневого языка программирования в машинный код, который может быть непосредственно выполнен процессором. Как правило, этот код также ориентирован на исполнение в среде конкретной операционной системы, поскольку использует предоставляемые ею возможности (системные вызовы, библиотеки функций). Архитектура (набор программно-аппаратных средств), для которой производится компиляция, называется целевой машиной .

Результат компиляции - исполнимый модуль - обладает максимальной возможной производительностью, однако привязан к определённой операционной системе и процессору (и не будет работать на других).

Для каждой целевой машины (IBM, Apple, Sun и т. д.) и каждой операционной системы или семейства операционных систем, работающих на целевой машине, требуется написание своего компилятора. Существуют также так называемые кросс-компиляторы , позволяющие на одной машине и в среде одной ОС генерировать код, предназначенный для выполнения на другой целевой машине и/или в среде другой ОС. Кроме того, компиляторы могут оптимизировать код под разные модели из одного семейства процессоров (путём поддержки специфичных для этих моделей особенностей или расширений наборов инструкций). Например, код, скомпилированный под процессоры семейства Pentium, может учитывать особенности распараллеливания инструкций и использовать их специфичные расширения - MMX, SSE и т. п.

Некоторые компиляторы переводят программу с языка высокого уровня не прямо в машинный код, а на язык ассемблера. Это делается для упрощения части компилятора, отвечающей за кодогенерацию, и повышения его переносимости (задача окончательной генерации кода и привязки его к требуемой целевой платформе перекладывается на ассемблер), либо для возможности контроля и исправления результата компиляции программистом.

Генерация байт-кода

Результатом работы компилятора может быть программа на специально созданном низкоуровневом языке, подлежащем интерпретации виртуальной машиной . Такой язык называется псевдокодом или байт-кодом. Как правило, он не является машинным кодом какого-либо компьютера и программы на нём могут исполняться на различных архитектурах, где имеется соответствующая виртуальная машина, но в некоторых случаях создаются аппаратные платформы, напрямую поддерживающие псевдокод какого-либо языка. Например, псевдокод языка Java называется байт-кодом Java (англ. Java bytecode ) и выполняется в Java Virtual Machine, для его прямого исполнения была создана спецификация процессора picoJava. Для платформы.NET Framework псевдокод называется Common Intermediate Language (CIL), а среда исполнения - Common Language Runtime (CLR).

Некоторые реализации интерпретируемых языков высокого уровня (например, Perl) используют байт-код для оптимизации исполнения: затратные этапы синтаксического анализа и преобразование текста программы в байт-код выполняются один раз при загрузке, затем соответствующий код может многократно использоваться без промежуточных этапов.

Динамическая компиляция

Основная статья: JIT-компиляция

Из-за необходимости интерпретации байт-код выполняется значительно медленнее машинного кода сравнимой функциональности, однако он более переносим (не зависит от операционной системы и модели процессора). Чтобы ускорить выполнение байт-кода, используется динамическая компиляция , когда виртуальная машина транслирует псевдокод в машинный код непосредственно перед его первым исполнением (и в при повторных обращениях к коду исполняется уже скомпилированный вариант).

CIL-код также компилируется в код целевой машины JIT-компилятором, а библиотеки.NET Framework компилируются заранее.

Декомпиляция

Существуют программы, которые решают обратную задачу - перевод программы с низкоуровневого языка на высокоуровневый. Этот процесс называют декомпиляцией, а такие программы - декомпиляторами. Но поскольку компиляция - это процесс с потерями, точно восстановить исходный код, скажем, на C++, в общем случае невозможно. Более эффективно декомпилируются программы в байт-кодах - например, существует довольно надёжный декомпилятор для Flash. Разновидностью декомпилирования являетсядизассемблирование машинного кода в код на языке ассемблера, который почти всегда выполняется успешно (при этом сложность может представлять самомодифицирующийся код или код, в котором собственно код и данные не разделены). Связано это с тем, что между кодами машинных команд и командами ассемблера имеется практически взаимно-однозначное соответствие.

Раздельная компиляция

Раздельная компиляция (англ. separate compilation ) - трансляция частей программы по отдельности с последующим объединением их компоновщиком в единый загрузочный модуль.

Исторически особенностью компилятора, отражённой в его названии (англ. compile - собирать вместе, составлять), являлось то, что он производил как трансляцию, так и компоновку, при этом компилятор мог порождать сразу абсолютный код. Однако позже, с ростом сложности и размера программ (и увеличением времени, затрачиваемого на перекомпиляцию), возникла необходимость разделять программы на части и выделять библиотеки, которые можно компилировать независимо друг от друга. При трансляции каждой части программы компилятор порождает объектный модуль, содержащий дополнительную информацию, которая потом, при компоновке частей в исполнимый модуль, используется для связывания и разрешения ссылок между частями.

Появление раздельной компиляции и выделение компоновки как отдельной стадии произошло значительно позже создания компиляторов. В связи с этим вместо термина «компилятор» иногда используют термин «транслятор» как его синоним: либо в старой литературе, либо когда хотят подчеркнуть его способность переводить программу в машинный код (и наоборот, используют термин «компилятор» для подчёркивания способности собирать из многих файлов один).

Номере "Компьютерных вестей" за этот год я рассказал вам о том, как устроен отладчик. Конечно, с тех пор прошло уже немало времени, но узнавать новое никогда не поздно. Сегодня мы с вами поговорим об устройстве ничуть не менее важного для программиста инструмента - компилятора.

Конечно, во многих ВУЗах есть специальные курсы, посвящённые устройству различных компонентов современных компиляторов и интерпретаторов. И современные компиляторы слишком сложны для того, чтобы рассказать о них в одной статье достаточно подробно. Тем не менее, базовые механизмы работы компиляторов остались неизменными со времён выпуска первого компилятора языка Фортран.


С высоты птичьего полёта...

Компилятор представляет собой монолит - этакий чёрный ящик , который прожёвывает исходный код программы, а затем выдаёт на-гора либо исполняемый файл , либо, хотя бы, просто какой-то исполняемый байт-код, который потом может быть успешно скормлен виртуальной машине. Но, конечно же, на самом деле такая сложная вещь, как компилятор, не может быть просто монолитным куском - любой компилятор состоит из нескольких частей, которые должны быть "состыкованы" в определённом порядке.

Итак, что же это за части? Это лексический анализатор, или сканер; синтаксический анализатор, или парсер; семантический анализатор; а также один или несколько генераторов кода и один или несколько оптимизаторов. Также к компилятору часто относят дополнительные инструменты, нужные для создания исполняемого файла - сборщик и компоновщик.

Все эти названия для непосвящённого человека выглядят настоящей китайской грамотой. Однако, когда вы прочтёте о том, что делает каждый из компонентов компилятора, думаю, согласитесь, что концептуально это всё довольно просто.


От "А" до "Я"

Первый этап разбора исходного текста программы, осуществляемого компилятором, - это лексический анализ. Лексический анализатор считывает последовательно все слова (токены, лексемы) в тексте программы, преобразуя их в конструкции, которые затем уже используются для дальнейшего разбора текста. Делается это для того, чтобы различить в последующем различные идентификаторы и непосредственные конструкции самого языка (такие, как зарезервированные слова).

Следом за лексическим анализом может быть препроцессор. Тем, кто знаком с языками программирования C или С++, нет нужды объяснять, в чём состоит его функция. Для остальных же скажу, что основная задача препроцессора - это замена одних лексем другими, которые были заранее определены в тексте программы. Используется препроцессор также для условной компиляции (т.е. когда кусок кода должен быть откомпилирован только при выполнении определённых условий - для определённой платформы, только при отладочном билде и т.д. и т.п.), для выполнения определённых макросов (как в том же C/C++) и некоторых других подобных вещей. Препроцессор не является обязательной частью компилятора, поскольку многие языки программирования не нуждаются в нём.

Следующий этап - это синтаксический анализ, или парсинг. Этот этап компиляции выполняется синтаксическим анализатором, или парсером, и является, пожалуй, самым важным и, если можно так сказать, ответственным этапом компиляции. Компилятор рассматривает все токены, и, в зависимости от их значения и положения в тексте программы, формирует так называемое дерево разбора. То есть программа, бывшая до этого в недрах компилятора просто линейным набором символов, становится деревом, элементы которого расположены в соответствии с грамматикой того языка программирования, для которого написан данный конкретный компилятор.

Следом за синтаксическим анализом следует этап анализа семантического. Если синтаксический анализатор строил скелет нашей программы, то семантический помогает этому скелету обрасти плотью. Программа наполняется смыслом: переменные становятся переменными, объекты - объектами, а баги - багами. На самом деле, никакого волшебства не происходит - просто дерево разбора, терпеливо построенное парсером, дополняется семантической информацией о значении идентификаторов. Кстати, на этом этапе возникают и многие ошибки компиляции - например, такие, как несоответствие типов. Хотя, конечно, на парсинг тоже приходится изрядное количество ошибок, без которых, к сожалению, текст свеженаписанной программы обходится крайне редко даже у очень опытных программистов .

Дальше пути различных компиляторов расходятся. В большинстве компиляторов следом за этапом семантического анализа идёт перевод программы в некоторый промежуточный код, который может использоваться для генерации кода под разные аппаратные платформы. Если компилятор выполняет компиляцию только для какой-то одной аппаратной платформы, то программа может транслироваться в коды на языке Ассемблера соответствующей процессорной архитектуры, или, если компилятор трудится для какой-то виртуальной машины (как, например, в случае Java или Microsoft .NET), то переводиться программа может затем в специальный байт-код, понятный соответствующей виртуальной машине. Тем не менее, в большинстве современных компиляторов нет непосредственной трансляции в ассемблерный код - даже если в итоге компилятор не должен стараться для создания кросс-платформенных программ, всё равно, сначала идёт трансляция программы в какой-то промежуточный код, а только потом уже в исполняемый. Причина этого в оптимизации кода.

Современные компиляторы, даже самые слабенькие и плохонькие, поддерживают хотя бы базовую оптимизацию кода. Более мощные коммерческие компиляторы содержат в себе очень мощные алгоритмы оптимизации кода, которые позволяют при некоторых условиях сделать её в разы быстрее. Особенно мощными в плане оптимизации давным-давно тому назад считались компиляторы производства Watcom, сейчас, вроде бы, постепенно восстанавливающие свою былую славу в виде open-source продукта. Потом пальма первенства перешла к компиляторам Intel, и сейчас именно они считаются самыми лучшими компиляторами в плане оптимизации. Что ж, это довольно логично - кому, как ни создателям процессоров, знать, как лучше всего оптимизировать программы для работы на них. Впрочем, не важно, плоха оптимизация в компиляторе или нет - главное, что в любом оптимизирующем компиляторе есть модуль, называемый оптимизатором, который начинает свою работу после генератора промежуточного кода. Справедливости ради стоит сказать, что оптимизатор может работать и после генерации уже исполняемого кода, но в наши дни такая схема встречается уже редко, поскольку производители компиляторов, как правило, выпускают целую линейку подобных продуктов для разных языков программирования и стараются делать оптимизаторы, которые можно встроить в любой из этих компиляторов. Какими именно методами оптимизатор может повышать скорость работы программы - это тема отдельной статьи, которую, возможно, вы когда-нибудь и сможете увидеть на страницах "Компьютерных вестей".

В любом случае, работа компилятора заканчивается генерацией исполняемого кода. Это может быть код виртуальной машины или код на языке ассемблера, но этот код уже пригоден для выполнения скомпилированной программы.

Для того, чтобы вы легче могли представить себе работу компилятора и последовательность работы его составных частей, я решил снабдить статью небольшой схемой. На ней чёрным цветом изображены те компоненты, которые присутствуют в любом компиляторе, а серым - необязательные для ряда компиляторов составные части.


Дополнительные компоненты

Как правило, компиляторы снабжаются, как я уже говорил выше, сборщиком и компоновщиком (ассемблером и линкером, как их называют чаще). Они помогают компилятору создать из исходного текста программы не просто ассемблерный код, а исполняемый файл, который программист может передать пользователю той операционной системы, для которой он писал программу, а тот уже сможет его запустить точно таким же образом, каким привык запускать все другие программы на своём компьютере.

Ассемблер и компоновщик в ряде случаев встроены прямо в компилятор, в других же случаях они выделяются в отдельные программы, которые запускаются после завершения работы самого компилятора. Их может и вовсе не быть, как, например, для компиляторов, преобразующих программы с одного языка высокого уровня на другой высокоуровневый язык (так называемых фронт-эндов), или они могут присутствовать только в виде, например, специфического сборщика, создающего код для виртуальной машины и помещающего его в какую-то специальную оболочку компоновщика (классический пример - Java с её JAR-файлами). Стоит, тем не менее, сказать пару слов о назначении этих двух инструментов.

Ассемблер (сборщик) - это программа, которая переводит код на языке Ассемблера в инструкции (операционные коды) процессора или в инструкции виртуальной машины. Поскольку язык Ассемблера - это низкоуровневый язык, то ассемблер не считают компилятором, хотя, конечно, он тоже производит некоторые этапы разбора программы, характерные для компилятора.

Компоновщик создаёт из того кода, который сгенерировал ассемблер, исполняемые файлы. Даже для одной и той же процессорной архитектуры исполняемые файлы будут отличаться в зависимости от операционной системы. Например, для Windows формат исполняемых файлов - это Portable Executable (PE), а для Linux - Executable Linked File (EXE).


Резюме

Как видите, если смотреть на компиляторы со стороны, то всё в них просто и не вызывает никаких особенно заковыристых вопросов. На практике всё, мягко говоря, немного сложнее. И если вы вдруг решите написать собственный компилятор, то не стоит заранее пугаться, хотя к определённым сложностям нужно, как и в любой новой работе, быть готовым. Я бы лично рекомендовал начинать знакомство с предметом с написания какого-нибудь простого эзотерического языка вроде Brainfuck или Whitespace. Поскольку сам я в своё время интересовался благодаря своему знакомому Марату Духану первым из них, то и вам рекомендую его.

Вообще, если же вы вдруг решили проникнуть глубже в тайны создания компиляторов, то в Интернете для вас найдётся масса литературы - и простой, и академически точной и подробной. Начать можно, например, отсюда: kit.kulichki.net . Хотя сайт уже не обновлялся целую вечность, информация, размещённая на нём, подойдёт для новичка и не устареет ещё не один десяток лет. Вообще, если погуглить, информации найдёте очень много, даже придётся её фильтровать. Так что успехов вам с компиляторами!

Вадим СТАНКЕВИЧ



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: