Что такое пид регулятор температуры. Типовые законы регулирования

Нужно держать температуру на заданном неком уровне и менять задание. Есть микроконтроллер, к которому прицеплены измеритель температуры, и симистор для управления мощностью. Не будем греть голову на ТАУ, ни разностными схемами , просто возьмём и сделаем «в лоб» ПИД-регулятор.

II. Теоретическая вводная

Как получается ПИД-регулятор? Берём разницу между текущей температурой и нужной, умножаем на настраиваемый коэффициент, получаем мощность, которую надо выдать в данный момент. Это пропорциональная составляющая, она работает в момент появления рассогласования - то есть моментально откликается как на изменение уставки, так и на поведение объекта. Начал подогреваться? Мощность начинает спадать. Перегрелся? Выключилось, или даже дали сигнал охлаждения. Всё хорошо, вот только в реальной жизни эффект от воздействия проявляется с запаздыванием, а на объект воздействуем не только мы, но еще и окружающая среда: разогретый реактор не только внутри горячий, но еще и остывает, отдавая тепло комнате, а потому как только выключаем мощность, он сразу начинает остывать. Поэтому чистый пропорциональный регулятор колеблется вокруг точки поддержания, и тем сильнее колеблется, чем выше воздействие окружающей среды / содержимого реактора.

Чтобы компенсировать «внешние» воздействия на реактор, в цепь добавляют интегральную составляющую. Всё рассогласование, которое было в системе, идёт на интегратор (соответственно, как только мы перегрели - сумма уменьшается, пока недогрето - сумма увеличивается). И накопленный интеграл, со своим коэффициентом, даёт свою прибавку-убавку к мощности. В результате такого подхода, при стационарном процессе, через некоторое время интеграл подбирает такой вклад в сумму с мощностью, который компенсирует потери окружающей среды, и колебания исчезают - интеграл становится стабильным, поэтому величина выдаваемой мощности становится постоянной. Причем так как при этом держится нужная температура, рассогласование отсутствует, пропорциональная составляющая не работает вообще.

Для компенсации влияния задержек между воздействием и реакцией системы, в систему добавляют дифференциальную составляющую. Просто пропорциональный регулятор даёт мощность всё время, пока температура не достигнет нужной точки, пропорционально-дифференциальный начинает снижать подаваемую мощность раньше, чем догрелся до нужной точки - так как рассогласование уменьшается, имеется наличие отрицательной производной, уменьшающей воздействие. Это позволяет минимизировать перегрев при больших переходах.

Итак, с физическим смыслом разобрались, перейдём к основым вопросам реализации.

III. Кому пользоваться регулятором?

- Техникам.

Что из этого следует? Из этого следует, что техники понимают физическую составляющую, и имеют опыт настройки аппаратных пид регуляторов. А значит, программная реализация должна исходить из удобства настройки техниками - повторяя физическую модель. И это крайне важно! Очень часто в угоду упрощения кода коэффициенты меняют, например, на обратные - чтобы избавиться от деления. В результате, настройка превращается в ад и кошмар, и требуется опыт настройки данного конкретного регулятора, вместо понимания процесса. Отсюда получаем, что наши коэффициенты - постоянная интегрирования и постоянная дифференцирования - должны иметь размерность времени, то есть задаваться в секундах, а никак не в «1/с», как это любят делать.

IV. Область функционирования.

Мы пытаемся сделать универсальный регулятор, а значит, он должен работать как на мелких быстрых объектах, так и на мощных большущих печах. Значит, следует исходить из того, что регулируемая температура ограничена в общем-то измерителем. Наиболее часто используемые - ХА(K) и ХК(L). Их область применимости - где-то до 1200°C. Охлаждение требует более сложного оборудования (криостаты), управление доп.охлаждением (вентиляторы и открываемые дверки термошкафов) также требуется редко - значит, пока исключаем из рассмотрения. Получаем, что управляемая температура от ~15°C до ~1200°C, управляется только подача мощности.

Точность управления определяется во-1х точностью измерения: градуировочные таблицы даны через 0.1 градуса; линейность внутри таблиц в принципе достойная, поэтому точность ограничена в первую очередь усилителем и измерителем тока. В моём случае, хотелось добиться точности поддержания 0.1 градуса, поэтому измеритель настроен на 1/32 градуса: это даёт ~3 кванта на 0.1 градуса, таким образом, имея нормальный «шум» регулирования +-1 квант мы остаёмся в пределах всё тех же 0.1 градуса. Использование 1/32 позволяет работать с фиксированной точкой - 5 бит = дробная часть, остальное - целая. В 16 бит это получается представить от 0 до 2047 °. Вместо работы с отрицательными числами, мы будем работать в кельвинах вместо цельсиев, таким образом - представляется от 0 до 2047 °K, что эквивалентно от -273 до 1775 °C; с шагом в 0,03125 °.

V. Диапазон настраиваемости.

Для управления микрореактором с мощной силовой установкой может оказаться что для нагрева на 10 градусов достаточно 1% мощности, в то время как для большой инертной печи для того чтобы подогреть на градус едва-едва хватает 100% мощности подогрева. (В реальной жизни, это выглядит так - есть несколько подогревателей с ручным управлением - они включаются отдельным рубильником и производят начальный нагрев, в дальнейшем поддержание рабочей точки обеспечивает терморегулятор, управляя еще одним подогревателем, который на полной мощности выдаёт максимум +10°C к тому, что нагрели постоянно включенные). Исходя из этого, предельным коэффициентом пропорциональности логично предположить 100% мощности на 1 градус. Больше не имеет смысла, так как мы хотим получить управляемость в 0.1 градуса. Минимальный, для простоты, я взял инверсным - 1% мощности на 100 градусов.

Диапазоны временных коэффициентов вычисляются просто исходя из наших условий работы регулятора. Так как мы управляем через мощностью симистор путём вычисления задержки момента включения после прохождения через 0, предельная частота работы регулятора - 50Гц. Если мы уверены, что управляем мощностью которой пофиг плюс или минус, мы можем работать на 100Гц, но это не всегда так, и потому лучше каждый раз дозировать равное количество как положительной так и отрицательной полуволны. Для упрощения жизни, я снизил время работы до 25Гц, тем самым любое вычисленное воздействие будет действовать в течение 4 полуволн, и за это время у меня будет возможность рассчитать новое воздействие.

Таким образом, постоянные времени задаются через 1/25 сек, от 0 до ~2000 сек (2000*25 = 50000, как раз в 16бит влазит).

Ну и еще у нас есть ограничение мощности минимальное и максимальное, от 0 до 100%.

VI. Управление мощностью.

Начиная с этого момента все теоретические выкладки заканчиваются, начинается горькая практика, привязанная к конкретной реализации.

Итак, мы уже решили что управляем задержкой открывания симистора после прохождения через 0. Таким образом, задержка в 0 означает 100% мощность, бесконечная задержка = 0% мощности.

Вопрос: с какой точностью мы можем управлять мощностью? Вообще, с точностью отсчета времени нашего таймера. С другой стороны, какая нужна мощность? Мы вычисляем какой % мощности нужно подать на 0.04сек. В принципе, по опыту, управления мощностью даже с точностью в 1% на частоте в 0.1сек хватает для поддержания температуры в 1 градус. У нас управление 0.04сек (в 2.5раза быстрее). Поэтому было принято решение рассчитать таблицу мощности через 1/250 от максимума (с шагом в 0.4%). Это позволяет таблицу иметь не сильно большую (500 байт), и при этом иметь точность выше 1%. Если ваш случай требует бОльшей точности - пересчитать не так сложно.

Теперь поговорим о расчете этой самой таблицы. Во-1х следует учесть, что есть момент срабатывания сигнала прохождения через ноль. В моем случае - 12В. То есть когда входное напряжение упадёт ниже 12В, я получу сигнал прохождения через 0.

Это означает, что для 100% мощности время запуска = времени прохождения 12В.

Решим систему уравнений

; IntMoment:= 12V ; Max:= sqr(220*sqrt(2)) ; { Sqr(Sin(Pi/2)*K) = Max ; { Sqr(Sin(X)*K) = IntMoment ; ; 2*k/MaxCode = 1 - cos(T*Pi) ; cos(T*Pi) = 1-2*k/MaxCode ; T*Pi = arccos(1-2*k/MaxCode) ; T = arccos(1-2*k/MaxCode) / Pi

Процессор у меня работает на частоте 32786, PLL настроен на 384/2, полуволна имеет 100Гц, откуда получаем, что код для загрузки константы в таймер для времени T имеет вид:

65536-(T*(32768*384/2)/100.0 + 773)

Нам нужно рассчитать время задержки, дающее равномерное увеличение площади включенной части синусоиды. То есть нам нужно иметь отсчеты времени, дающие равномерное увеличение мощности. Полная мощность, которую мы выдаём - это интеграл по всей синусоиде. [кто знает, как на хабре формулы вставлять? никак? пишу в maple-нотации тогда].

Max = int(sqr(sin(x)), x=0..Pi) int(sqr(sin(x)), x=0..T*Pi) = x/2 - sin(2*x)/4 + C | 0..T*PI = (T*Pi)/2 - sin(2*T*Pi)/4 (T*Pi)/2 - sin(2*T*Pi)/4 = Q*Pi/2

Таким образом, нам нужно пройтись по всем Q с заданной точностью, и для каждой из них найти T.

Я для себя это решил вот таким тупым способом:

Генератор на перле

#!/usr/bin/perl # (T*Pi)/2 - sin(2*T*Pi)/4 = Q*Pi/2 use constant PI => 4 * atan2(1, 1); $T = 1; for($i = 250; $i >= 0; $i--) { $int = $i*PI/2/250; $ev = ($T*PI)/2-sin(2*$T*PI)/4; while(abs($ev-$int) > 0.0005) { $T -= 0.0001; $ev = ($T*PI)/2-sin(2*$T*PI)/4; } #print $i."\t".$T."\n"; $code = 65536-($T*(32768*384/2)/100.0 + 773); printf "DB 0%02Xh, 0%02Xh ; %04Xh = $i/250 of power\n", $code%256, int($code/256), $code, $i; }

Всё, на выходе мы получили табличку в 250 значений, соответствующих константам загрузки таймера до момента поджига после получения сигнала о прохождении через 0 (точнее, через 12В, как я говорил выше).

VII. Измерение входных данных

Я пропускаю этот вопрос, потому как он достоен отдельной большой статьи. О том, как я решал вопрос с термосопротивлением, можно найти в архиве почившего в бозе моего блога.

Главное что нам надо знать, это что мы измеряем данные с нужной нам частотой (в данном случае - 25Гц), и нужной точностью (на выходе - число от 0 до 2048 градусов кельвина через 1/32 градуса). Данные предполагаются уже нормализованные для всех дальнейших расчетов.

Если будет кому интересно - пишите в комментах, распишу в следующий раз как это делается для термопар.

VIII. Вычисление воздействия

И вот свершилось: у нас есть все данные для того, чтобы наконец-то произвести то, ради чего мы всё затевали: вычислить какую же мощность следует подать на управляющий элемент.

Вспомним еще раз формулу ПИД регулятора:

U = K * (Err + (1/Ti)*Int + Td*dErr)

  • U - мощность, которую следует выдать;
  • K - пропорциональный коэффициент (обратите внимание - вынесен за скобки, почему - чуть ниже опишу);
  • Ti - постоянная времени интегрирования. Обратите внимание - в расчетах используется обратная величина;
  • Td - постоянная времени дифференцирования
  • Err - текущее рассогласование (разница между уставкой и измеренной температурой
  • dErr - производная рассогласования (разница между текущей и прошлой ошибкой)
  • Int - накопленный интеграл рассогласования (сумма всех Err"ов, кои мы видели)

Мы снова пришли к вопросу, который поднимался в разделе III : этим будут пользоваться техники. Поэтомоу крайне важно не допустить классической ошибки всех реализаций - «размерности коэффициентов как получится». Мы делаем прибор для управления физическим процессом, а значит, модель должна соответствовать.

Произведём вывод всех размерностей. Частично забегая вперёд я уже описал в , но теперь раскроем подробнее:

  • U - имеет величину в % мощности. Еще точнее - в 2/5 от % мощности, так как у нас таблица идёт через 1/250 от 100%.
  • Err - рассогласование, задаётся в градусах. Точнее - через 1/32 градуса.
  • Int - интеграл, представляет собой сумму градусов во времени - а значит, имеет размерность градус*сек. Точнее - (1/32 градуса)*(1/25 сек)
  • Ti - задаётся через 1/25 сек
  • (1/Ti)*Int - после вычисления даёт вклад, имеющий размерность (1/32 градуса).
  • dErr - производная, имеет размерность градус/сек, а точнее (1/32 градуса)/(1/25 сек)
  • Td - задаётся через 1/25 сек
  • Td*dErr - после произведения приводит вклад к размерности (1/32 градуса)
  • (...) - итак, все слагаемые под скобками приведены к размерности (1/32 градуса)
  • K - согласует U и (...) , а значит имеет размерность процента-на-градус, точнее (2/5)%/(1/32 градуса)

Вот теперь хорошо видно, зачем выносится за скобки пропорциональный коэффициент - это позволяет оставить диф и инт коэффициенты просто постоянными времени, в результате оператор при настройке оперирует простыми и понятными числами - процентом на градус для пропорциональной и секундами для интегральной и дифференциальной коэффициентами.

А благодаря удобному подбору положения точек и размерностей времени, как мы сейчас увидим, все расчеты производятся практически «в лоб».

Кроме одного - у нас есть величина Ti , а для расчета требуется 1/Ti . Операция деления большой разрядности - очень дорогая. Операция умножения в разы дешевле, поэтому воспользуемся отличной статьёй Division by Invariant Integers using Multiplication . У нас ведь K / Ti / Td меняются крайне редко, а потому мы можем себе позволить как угодно извращаться с ними после их изменения, главное чтобы основной цикл расчетов работал быстро.

Таким образом, вместо Ti для расчетов мы раскладываем в набор Ti_m , Ti_sh1 , Ti_sh2 ; и на каждом цикле производим вычисление:
T1 = MULUH(Ti_m, Int) Q = SHR(T1+SHR(Int-T1, Ti_sh1), Ti_sh2)

Теперь производим расчет баланса разрядности. Для этого распишем полную формулу пошагово:

  1. Eo = E ; Нам нужна прошла ошибка. Ошибки - по 16бит
  2. E = Y-X ; Вычисляем новое рассогласование. 16bit
  3. Int = Int + (E+Eo)/2 ; Интегрируем ошибку. При этом считаем полусумму разности (разностная схема). 32bit = 32bit + 16bit
  4. cI = Int * (1/Ti) ; Считаем интегральный вклад - 32bit * 32bit => 32bit
  5. cD = Td * (E-Eo) ; Считаем диф вклад - 16*16 => 32bit
  6. PID = E + cI + cD ; Подскобочное; 16+32+32 => 32bit
  7. U = K*PID/256 ; Коэфф; 32*16/8 bit => 40bit.

При всех расчетах положение точки вплоть до 7го шага остаётся на 5м справа месте. В последний момент происходит интересный финт ушами. K задаётся через 1/256, соответственно, после умножения точка сдвигается влево до 5+8=13 места, поэтому мы должны у результата отбросить младшие 8 бит. И самый нижний байт результата - нужная нам мощность через 2/5%. Это - еще одна причина, по которой мощность выровнена по шагам в 1/250 - это позволяет результат уложить в один байт и получить легко по таблице нужный результат.

Дальше, помним, что нас интересует мощность только от 0 до 250 - поэтому 7й шаг вычислений идёт очень просто, как только мы получаем отрицательное число - сразу складываем uMin. Как только выяснили что любой старший байт не ноль - сразу складываем uMax. И только если мощность складывается в диапазоне - производим проверку на меньше uMin или больше uMax.

Если вдруг кому интересно:

полная портянка расчетов

; PID управление CalcMainEnd: ; Вычисления, Go-Go. CalcPid: ; 1. Eo = E | 16bit Pid1: MOV Err0H, ErrH MOV Err0L, ErrL ; 2. E = Y-X | 16bit Pid2: CLR C MOV A, SettingL SUBB A, ThermoL MOV ErrL, A MOV A, SettingH SUBB A, ThermoH MOV ErrH, A JNB OV, Pid2Ov JB ACC.7, Pid2Max Pid2Min: MOV ErrL, #LOW(-500*32) MOV ErrH, #HIGH(-500*32) SJMP Pid2End Pid2Max: MOV ErrL, #LOW(500*32) MOV ErrH, #HIGH(500*32) SJMP Pid2End Pid2Ov: JNB ACC.7, Pid2OvP Pid2OvN: ; Проверим на ограничение вниз CLR C MOV A, ErrL SUBB A, #LOW(-500*32) MOV A, ErrH SUBB A, #HIGH(-500*32) JNC Pid2End ; Если > -500 => всё ок SJMP Pid2Min Pid2OvP: CLR C MOV A, ErrL SUBB A, #LOW(500*32) MOV A, ErrH SUBB A, #HIGH(500*32) JNC Pid2Max ; Если < 500 => всё ок Pid2End: ; 3. Int = Int + (E+Eo)/2 | 32bit+16bit Pid3: JNB PowerReady, Pid3End ; Если нет сети -- интегральную часть не копим MOV A, ErrL ADD A, Err0L MOV R0, A ; временно MOV A, ErrH ADDC A, Err0H MOV C, ACC.7 ; Полусумма всегда влезает в 16 бит, поэтому при сдвиге надо сохранить знак RRC A ; Поделим без потери знака XCH A, R0 ; A= младшая часть, R0 - старшая часть полусуммы RRC A ; Доделили JNB IntS, Pid3IntPos ; Int отрицательный, изменим знак для R0:A, тем самым можно будет просто сложить с Int CLR C CPL A ADD A, #1 XCH A, R0 CPL A ADDC A, #0 XCH A, R0 Pid3IntPos: ; У Int и R0:A сейчас согласованы знаки, поэтому складываем обычным образом ADD A, IntLL MOV IntLL, A MOV A, IntLH ADDC A, R0 MOV IntLH, A MOV A, R0 JB ACC.7, Pid3Neg ; Прибавляли отрицательную разность? ; Если разность положительная, просто распространим перенос JNC jPid3End ; Если прибавили слово и переноса небыло -- делать нам ничего не требуется. INC IntHL ; Распространяем перенос выше MOV A, IntHL JNZ Pid3End ; Если перенос не ушел в 4й байт -- всё нормально INC IntHH ; Распространяем перенос на САМЫЙ старший байт MOV A, IntHH JNZ Pid3End ; Если перенос не ушел еще выше -- всё нормально MOV IntHH, #0FFh ; Если перенс был выше -- ограничиваем интеграл потолком MOV IntHL, #0FFh MOV IntLH, #0FFh MOV IntLL, #0FFh jPid3End: SJMP Pid3End Pid3Neg: ; Если разность отрицательная, то надо продолжать добавлять оба раза, но FFh MOV A, IntHL ADDC A, #0FFh MOV IntHL, A MOV A, IntHH ADDC A, #0FFh MOV IntHH, A JC Pid3End ; Если тут был перенос, значит знак интеграла не изменился CPL IntS ; Если переноса небыло, значит у интеграла изменился знак CPL C ; Обратим знак получившегося числа MOV A, #0 SUBB A, IntLL MOV IntLL, A MOV A, #0 SUBB A, IntLH MOV IntLH, A MOV A, #0 SUBB A, IntHL MOV IntHL, A MOV A, #0 SUBB A, IntHH MOV IntHH, A ; так как оно стало отрицательным -- то перенос тут будет всегда Pid3End: ; 5. cI = Int*(1/Ti) | 32*32=>32bit Pid5: ; R3:R2:R1:R0 = Int*(1/Ti) JB Ti_sh1, Pid5Calc ; если Ti_sh1=0, то 1/Ti=1 или Ti=0. и ничего делать не надо MOV A, Ti_mLL ORL A, Ti_mLH ORL A, Ti_mHL ORL A, Ti_mHH JZ Pid5Zero MOV R0, IntLL MOV R1, IntLH MOV R2, IntHL MOV R3, IntHH AJMP Pid5End Pid5Zero: MOV A, #0 MOV R0, A MOV R1, A MOV R2, A MOV R3, A MOV IntLL, A MOV IntLH, A MOV IntHL, A MOV IntHH, A AJMP Pid5End Pid5Calc: ; R7:R6:R5:R4[:R3] = MULUH(Int*Ti_m) // R3 считаем как часть для округления MOV R2, #0 ;; R7:R6 = IntHH*Ti_mHH MOV A, IntHH MOV B, Ti_mHH MUL AB MOV R7, B MOV R6, A ; R6:R5 += IntHL*Ti_mHH MOV A, IntHL MOV B, Ti_mHH MUL AB MOV R5, A MOV A, R6 ADD A, B MOV R6, A MOV A, R2 ; A=0 ADDC A, R7 MOV R7, A ; R5:R4 += IntLH*Ti_mHH MOV A, IntLH MOV B, Ti_mHH MUL AB MOV R4, A MOV A, R5 ADD A, B MOV R5, A MOV A, R2 ; A=0 ADDC A, R6 MOV R6, A MOV A, R2 ; A=0 ADDC A, R7 MOV R7, A ; R4:R3 += IntLL*Ti_mHH MOV A, IntLL MOV B, Ti_mHH MUL AB MOV R3, A MOV A, R4 ADD A, B MOV R4, A MOV A, R2 ; A=0 ADDC A, R5 MOV R5, A MOV A, R2 ; A=0 ADDC A, R6 MOV R6, A MOV A, R2 ; A=0 ADDC A, R7 MOV R7, A ;; R6:R5 += IntHH*Ti_mHL MOV A, IntHH MOV B, Ti_mHL MUL AB ADD A, R5 MOV R5, A MOV A, R6 ADDC A, B MOV R6, A MOV A, R2 ; A=0 ADDC A, R7 MOV R7, A ; R5:R4 += IntHL*Ti_mHL MOV A, IntHL MOV B, Ti_mHL MUL AB ADD A, R4 MOV R4, A MOV A, R5 ADDC A, B MOV R5, A MOV A, R2 ; A=0 ADDC A, R6 MOV R6, A MOV A, R2 ; A=0 ADDC A, R7 MOV R7, A ; R4:R3 += IntLH*Ti_mHL MOV A, IntLH MOV B, Ti_mHL MUL AB MOV A, R3 MOV R3, A MOV A, R4 ADDC A, B MOV R4, A MOV A, R2 ; A=0 ADDC A, R5 MOV R5, A MOV A, R2 ; A=0 ADDC A, R6 MOV R6, A MOV A, R2 ; A=0 ADDC A, R7 MOV R7, A ;; R5:R4 += IntHH*Ti_mLH MOV A, IntHH MOV B, Ti_mLH MUL AB ADD A, R4 MOV R4, A MOV A, R5 ADDC A, B MOV R5, A MOV A, R2 ; A=0 ADDC A, R6 MOV R6, A MOV A, R2 ; A=0 ADDC A, R7 MOV R7, A ; R4:R3 += IntHL*Ti_mLH MOV A, IntHL MOV B, Ti_mLH MUL AB ADD A, R3 MOV R3, A MOV A, R4 ADDC A, B MOV R4, A MOV A, R2 ; A=0 ADDC A, R5 MOV R5, A MOV A, R2 ; A=0 ADDC A, R6 MOV R6, A MOV A, R2 ; A=0 ADDC A, R7 MOV R7, A ;; R4:R3 += IntHH*Ti_mLL MOV A, IntHH MOV B, Ti_mLL MUL AB ADD A, R3 MOV R3, A MOV A, R4 ADDC A, B MOV R4, A MOV A, R2 ; A=0 ADDC A, R5 MOV R5, A MOV A, R2 ; A=0 ADDC A, R6 MOV R6, A MOV A, R2 ; A=0 ADDC A, R7 MOV R7, A ;;; Если R3 > 7F -- MOV A, R3 JNB ACC.7, Pid5Shift ; Если R3<80 -- округление не надо ANL A, #7Fh JZ Pid5Round ; Если = 80 -- округляем до нечетного MOV A, #1 ADD A, R4 MOV R4, A MOV A, R2 ; A=0 ADDC A, R5 MOV R5, A MOV A, R2 ; A=0 ADDC A, R6 MOV R6, A MOV A, R2 ; A=0 ADDC A, R7 MOV R7, A SJMP Pid5Shift Pid5Round: MOV A, R4 ORL A, #01h MOV R4, A ;JMP Pid5Shift Pid5Shift: ; R3:R2:R1:R0 = (Int-R7:R6:R5:R4) >> 1 CLR C MOV A, IntLL SUBB A, R4 MOV R0, A MOV A, IntLH SUBB A, R5 MOV R1, A MOV A, IntHL SUBB A, R6 MOV R2, A MOV A, IntHH SUBB A, R7 RRC A ; >>1 без потери переноса MOV R3, A MOV A, R2 RRC A MOV R2, A MOV A, R1 RRC A MOV R1, A MOV A, R0 RRC A ;MOV R0, A ; R3:R2:R1:R0 += R7:R6:R5:R4 ;MOV A, R0 ADD A, R4 MOV R0, A MOV A, R1 ADDC A, R5 MOV R1, A MOV A, R2 ADDC A, R6 MOV R2, A MOV A, R3 ADDC A, R7 MOV R7, A ; Теперь сдвинуть вправо на sh2. ; sh2 может быть до 16 (так как у нас Ti 16разрядный; проверим необходимость сдвига на 16 бит) MOV A, Ti_sh2 JNB ACC.4, Pid5ShiftUnder16 ; Надо сдвинуть >=16 -- 2 байта сдвинем mov"ами MOV R0, 18h+2; R2, bank 3 MOV R1, 18h+3; R3, bank 3 MOV R2, #0 MOV R3, #0 Pid5ShiftUnder16: JNB ACC.3, Pid5ShiftUnder8 ; Надо сдвинуть на >=8 -- 1 байт сдвигаем mov"ами MOV R0, 18h+1; R1, bank 3 MOV R1, 18h+2; R2, bank 3 MOV R2, 18h+3; R3, bank 3 MOV R3, #0 Pid5ShiftUnder8: ANL A, #07h JZ Pid5End ; Если внутри байта двигать не надо -- всё MOV R4, A SJMP Pid5ShiftRight Pid5NextShift: CLR C ; К этому моменту C у нас еще возможнозначимый старший бит! Pid5ShiftRight: MOV A, R3 RRC A MOV R3, A MOV A, R2 RRC A MOV R2, A MOV A, R1 RRC A MOV R1, A MOV A, R0 RRC A MOV R0, A DJNZ R4, Pid5NextShift ; Всё, после всех сдвигов получили результат; Не забываем, что у вычисленного в R3:R2:R1:R0 ; сейчас число положительное, а знак его в IntS Pid5End: ; 4. PID += [ cD = Td * (E-Eo) ] | 16*16=>32bit Pid4: ; cD = R7:R6:R5:R4; ErrD = E-Eo CLR C MOV A, ErrL SUBB A, Err0L MOV DiffL, A MOV A, ErrH SUBB A, Err0H MOV DiffH, A MOV C, ACC.7 ; Берём знак результата MOV DiffS, C ; Сохраним знак E-Eo JNC Pid4Mul ; Diff -- орицательный, обратим знак MOV A, DiffL CPL A ADD A, #1 MOV DiffL, A MOV A, DiffH CPL A ADDC A, #0 MOV DiffH, A Pid4Mul: ; R7:R6 = DiffH*TdH ; MOV A, DiffH = в любом случае A=DiffH MOV B, TdH MUL AB MOV R6, A MOV R7, B ; R5:R4 = DiffL*TdL MOV A, DiffL MOV B, TdL MUL AB MOV R4, A MOV R5, B ; R6:R5 += DiffH*TdL MOV A, DiffH MOV B, TdL MUL AB ADD A, R5 MOV R5, A MOV A, R6 ADD A, B MOV R6, A MOV A, R7 ADDC A, #0 MOV R7, A ; R6:R5 += DiffL*TdH MOV A, DiffL MOV B, TdH MUL AB ADD A, R5 MOV R5, A MOV A, R6 ADD A, B MOV R6, A MOV A, R7 ADDC A, #0 MOV R7, A ; 6. PID = E + cI + cD | 32bit Pid6: ; R3:R2:R1:R0 равно cI, знак в IntS; ; R7:R6:R5:R4 = cD; знак в DiffS ; E в обратном дополнительном коде JB IntS, ChkDiffN JNB DiffS, Pid6Add ; Int>0, Diff>0 => Add SJMP Pid6Sub ; Int>0, Diff<0 => Sub ChkDiffN: JNB DiffS, Pid6Sub ; Int<0, Diff>0 => Sub ; Int<0, Diff<0 => Add Pid6Add: ; Одинаковый знак => складываем их с проверкой на переполнение MOV A, R0 ADD A, R4 MOV R0, A MOV A, R1 ADDC A, R5 MOV R1, A MOV A, R2 ADDC A, R6 MOV R2, A MOV A, R3 ADDC A, R7 MOV R3, A JNC Pid6Err ; Если нет переноса - в результате сложения переполнения небыло MOV R3, #0FFh MOV R2, #0FFh MOV R1, #0FFh MOV R0, #0FFh SJMP Pid6Err Pid6Sub: ; Знаки разные -- вычтем одно из другого и проверим знак результата CLR C MOV A, R4 SUBB A, R0 MOV R0, A MOV A, R5 SUBB A, R1 MOV R1, A MOV A, R6 SUBB A, R2 MOV R2, A MOV A, R7 SUBB A, R3 MOV R3, A JNC Pid6Err ; Если нет заимствования -- знак результата равен знаку DiffS CPL DiffS ; Если заимствование было, у DiffS и результата надо обратить знак MOV R6, #0 ; R6=0 MOV A, R0 CPL A ADDC A, R6 ; R6=0, C=1 => действие +1 MOV R0, A MOV A, R1 CPL A ADDC A, R6 ; +перенос MOV R1, A MOV A, R2 CPL A ADDC A, R6 MOV R2, A MOV A, R3 CPL A ADDC A, R6 MOV R3, A Pid6Err: MOV R6, #0 ; R6=0 ; В R3:R2:R1:R0 -- лежит cI+cD; знак суммы в DiffS ; надо прибавить/отнять Err, записанное в обратном коде; Приведём знак Err к DiffS MOV R4, ErrL MOV A, ErrH JB ACC.7, Pid6ChkDiffS JNB DiffS, Pid6SumErrNoInv ; Err>0, Diff>0 => NoInv SJMP Pid6SumErrInv Pid6ChkDiffS: JNB DiffS, Pid6SumErrNoInv ; Err<0, Diff>0 => NoInv Pid6SumErrInv: ; У Err знак отличается от DiffS -- инвертируем SETB C ; Не уверен в состоянии C MOV A, ErrL CPL A ADDC A, R6 ; A+=R6+C, R6=0 C=1 => A+=1 MOV R4, A ; R4=ErrL MOV A, ErrH CPL A ADDC A, R6 Pid6SumErrNoInv: MOV R5, A ; ErrH Pid6SumErr: ; Итак, в R5:R4 лежит Err, знак которого согласован с DiffS; но в обратно-дополнительном коде MOV A, R0 ADD A, R4 MOV R0, A MOV A, R5 CLR F0 JNB ACC.7, Pid6SubErrPos SETB F0 MOV R6, #0FFh ; Добавляем отрицательное => дополняем FFами Pid6SubErrPos: ADDC A, R1 MOV R1, A MOV A, R2 ADDC A, R6 ; +расширение MOV R2, A MOV A, R3 ADDC A, R6 ; +расширение MOV R3, A MOV R6, #0 ; Надо проверить нет ли смены знака итоговой суммы JNC Pid6ChkF0 JB F0, Pid7 ; Err<0, был перенос => Знак не сменился, переполнения нет SJMP Pid6SumOv ; Err>0, был перенос => переполнение Pid6ChkF0: JNB F0, Pid7 ; Err>0, небыло переноса => нет переполнения;SJMP Pid6SumUf ; Err<0, небыло переноса => сменился знак Pid6SumUf: ; Если Err<0 и небыло переноса => сменился знак CPL DiffS MOV A, R0 CPL A ADD A, #1 ; C=?, поэтому прибавляем 1 обычным методом MOV R0, A MOV A, R1 CPL A ADDC A, R6 MOV R1, A MOV A, R2 CPL A ADDC A, R6 MOV R2, A MOV A, R3 CPL A ADDC A, R6 MOV R3, A SJMP Pid7 ; Знак у результата и DiffS приведены в норму Pid6SumOv: ; Было переполнение => округляем до максимума MOV R0, #0FFh MOV R1, #0FFh MOV R2, #0FFh MOV R3, #0FFh ; 7. U = K*PID/256 | 32bit*16bit/8bit => 40bit, ; | которые усекаются до 10bit ; | при вычислениях Pid7: ; В R3:R2:R1:R0 лежит результат PID, в DiffS его знак; Нужно вычислить K*PID/256, ограничив результат до 10бит; K всегда положительно, поэтому если PID < 0 => минимум JB DiffS, Pid7Umin ; поскольку мы можем жестко ограничить сверху 16ю битами, ; то если R3 != 0 => ставим максимум в любом случае MOV A, R3 JNZ Pid7Umax ; = ; вычисляем, учитывая что должно получиться R7=0 R6=0, ; иначе переполнение, поэтому R7 и R6 вообще не трогаем; но проверяем результат; R7:R6 = R2*KH MOV A, R2 JZ Pid7S1 MOV A, KH JNZ Pid7Umax ; Если R2!=0 и KH!=0 => R7:R6>0 => переполнение Pid7S1: ; R6:R5 = R2*KL MOV A, R2 MOV B, KL MUL AB MOV R5, A MOV A, B JNZ Pid7Umax ; Если R6 > 0 => переполнение; R6:R5 = R1*KH MOV A, R1 MOV B, KH MUL AB ADD A, R5 JC Pid7Umax ; Если R6 > 0 => переполнение MOV R5, A MOV A, B JNZ Pid7Umax ; Если R6 > 0 => переполнение; R5:R4 = R0*KH MOV A, R0 MOV B, KH MUL AB MOV R4, A MOV A, R5 ADD A, B JC Pid7Umax ; Если R6 > 0 => переполнение MOV R5, A ; R5:R4 = R1*KL MOV A, R1 MOV B, KL MUL AB ADD A, R4 MOV R4, A MOV A, R5 ADDC A, B JC Pid7Umax ; Если R6 > 0 => переполнение MOV R5, A ; R4:R3 = R0*KL MOV A, R0 MOV B, KL MUL AB RLC A ; C = R3>=0x80, Z=R3>0x80 MOV R3, #0FFh ; R3<>0x80 => ничего JNZ Pid7S2 MOV R3, #0FEh ; R3==0x80 => округление до четного Pid7S2: MOV A, R4 ADDC A, B ; Складываем умножение, регистр, и перенос-округление ANL A, R3 ; А так же если округление до четного -- отбрасываем после младший бит MOV R4, A MOV A, R5 ADDC A, R6 ; R6=0 у нас с давних пор, хоть мы туда и не складывали ничего во время перемножения JC Pid7Umax ; Если R6 > 0 => переполнение MOV R5, A ; R5:R4 => ограниченный в 16 бит результат; Теперь надо ограничить R5:R4 до Umax/Umin MOV A, UmaxL SUBB A, R4 ; C=0 на текущий момент MOV A, UmaxH SUBB A, R5 JC Pid7Umax ; Если R5:R4>Umax => R5:R4 = Umax MOV A, UminL SUBB A, R4 ; C=0 на текущий момент MOV A, UminH SUBB A, R5 JNC Pid7Umin ; Если R5:R4 R5:R4 = Umin ; Мощность вычислена MOV UH, R5 MOV UL, R4 SETB UReady AJMP CalcExit Pid7Umax: ; Установить максимальную мощность MOV UH, UmaxH MOV UL, UmaxL SETB UReady AJMP CalcExit Pid7Umin: ; Установить минимальную мощность MOV UH, UminH MOV UL, UminL SETB UReady AJMP CalcExit

IX. Применение воздействия.

Итак, у нас есть рассчитанное воздействие, и наша задача - применить его. Для этого работает общий цикл работы с частотой 50Гц. На четном цикле - производится измерение и вычисление, на нечетном - применение воздействия. Таким образом, общая схема получается: выставлена мощность, через одну синусоиду производится измерение и вычисление, еще через одну - применение новой.

X. Подводные камни.

По сравнению с разностной схемой, подводных камней у прямой схемы крайне мало, вот список тех, которые я видел:
  • Учет размерностей . Самое важное, и самая частая ошибка. Нельзя просто взять U=K*(Err+Ki*Int+Kd*Diff), без оговаривания ЧТО есть K, Ki, Kd. И с какой точностью. Особенно важно для коэффициента Ki, который имеет размерность обратную времени - если операция идёт в целых числах, НЕЛЬЗЯ просто умножать на него - так как там должно быть ДЕЛЕНИЕ, а обратное число в целых числах не представимо.
  • Учет знака . Второе очень важное - учет знака. Все операции должны быть знаковыми, интеграл обязан накапливаться знаковый - так как он не только замещает пропорциональную составляющую, но и позволяет сопротивляться внешним воздействиям, например - выделению тепла самой смеси; и тогда его знак отрицательный.
  • Учет переполнения . Нам важно получить либо мощность от 0% до 100%, либо факт того, что вычисленная мощность больше 100% или меньше 0%. Нет нужды производить все вычисления, если мы получили отрицательный подскобочный результат, например. Но при этом важно учесть, что при произведении-сложении может произойти переполнение - и его нужно учесть как «больше 100%», а ни в коем образе не оставить результат после переполнения. Это чревато в первую очередь отсутствием регулирования когда требуется - объект ниже требуемой температуры, а мощность не подаётся
  • Учет времени вычислений . Необходимость великоразрядных умножений (при кривой реализации - еще и деления) требует времени, поэтому крайне важно просчитать время выполнения самого худшего варианта вычислений, и оно должно быть меньше, чем свободное время между измерениями. Невыполнение этого условия ведёт к неуправляемому объекту, который «вроде работает, но как-то не так

XI. Выводы.

В результате, прямая схема реализации не имеет тех проблем, какие имеет разностная схема , но требует больше вычислительных затрат. Однако, при правильной реализации, прямая схема вполне применима даже на дешёвых 8 битных микроконтроллерах, и даёт более предсказуемые результаты.

ПИД (или английская аббревиатура — PID) – это регулятор, осуществляющий пропорциональное, интегрирующее и дифференциальное управление. ПИД регуляторы находят широкое применение в современных системах точного контроля, таких как управление термосистемами и системами позиционирования. Использование ПИД регуляторов помогает уменьшить энергетические потери на настройку системы и обеспечивают более быстрый выход на требуемые параметры.

В общем случае ПИД регулятор получает значение определяющего параметра от объекта (Рис. 1) и воздействует на управление, состояние которого влияет на исходный параметр. Классическим примером применения ПИД регулятора являются управление термосистемой, будь это нагреватель или холодильная установка. Данный пример интересен тем, что нагрев или охлаждение процессы достаточно инертные и зачастую снижение температуры получается естественным путем из-за потерь

ПИД регуляторы применяются в системах, математическое описание которых трудоемко, или не может быть получено из-за случайного характера воздействия внешней среды или помех. Для термосистемы информация о состоянии объекта представляет собой значение температуры с датчика, а объект управления – нагреватель системы. Размерности графиков приведены условно, так как точная модель регулятора зависит от конкретных особенностей термосистемы.

Пропорциональное управление рассчитывается как произведение постоянного коэффициента К p на текущую ошибку отклонения. Если включить в обратную связь нагревателя термосистемы только пропорциональное управление, требуемую температуру вообще невозможно достичь (Рис. 2). Это связано с инерционностью системы, так как управление нагревателем должно осуществляется с учетом динамики повышения температуры объекта.

Интегральное регулирование реализуется умножениясуммы ошибок температурдо текущего момента временина интегральный коэффициент K I . Для термосистем интегрирующее управление вполне может поддерживать заданную температуру(Рис. 3). Такое управление компенсирует запаздывание нагревание объекта и позволяет приблизиться к требуемому значению с большей или меньшей точностью. Для систем с меньшей инерционностью применения только интегрального управления неприменимо, так как запаздывание процесса накопления ошибки приведет к «вылетанию» регулируемого параметра и появлению колебаний.

С применением дифференциального управления система получает возможность компенсировать возможную будущую ошибку параметра. Расчет дифференциальной составляющей численно выглядит как разность между текущим и предыдущим значением параметра, умноженную на коэффициент регулирования K D . Так как используется измерения, выполненные в небольшом интервале времени, ошибки и внешнее воздействие сильно влияет на процесс регулирования. Дифференциальное управление в чистом виде трудно реализуется для большинства систем из-за указанных факторов.

В сумме, три компоненты ПИД регулятора обеспечивает получение эффективного результата в коротком промежутке времени (Рис. 4).

На практике лучшие результаты достигаются подбором констант для каждого компонента регулирования. Также находят применения саморегулирующие ПИД контроллеры, для которых коэффициенты рассчитываются программным путем внутри системы.

ПИД-регулятор - это прибор для управления технологическим процессом, который используется в методе ПИД-регулирования, основанном на трех законах регулирования: пропорциональном, интегральном и дифференциальном.

Принцип действия ПИД-регулятора

Интегральный сильфон и переменное ограничение позволяет обеспечить интегральное регулирование. Два дифференциальных сильфона и другое переменное ограничение дает возможность регулятору осуществлять дифференциальное регулирование.

Если выход увеличивается, то входной сильфон и нижний дифференциальный сильфон расширяются. Верхний дифференциальный сильфон расширяется позднее из-за переменного ограничения. Балансир поворачивается, и выход немедленно повышается.

Когда входной сигнал полностью перетечет в верхний дифференциальный сильфон, этот сильфон приложит силу, которая уничтожит силу, приложенную нижним дифференциальным сильфоном. На этой точке дифференциальное регулирование прекращается. В то же время, когда это происходит, сильфон обратной связи расширяется в результате изменения выхода. Изменение выхода подается на интегральный сильфон, который вызывает силу, стремящуюся удержать клапан ближе к соплу. Это действие держит выход на высоком уровне в течение времени, когда переменная процесса не равна уставке. Выход будет продолжать увеличиваться до тех пор, пока переменная процесса не вернется в заданному значению уставки.

Где применяется ПИД-регулятор

ПИД-регулятор будет хорошим выбором для работающей на газе печи для подогрева нефти, потому что последующий процесс, куда поступает подогретая нефть, допускает лишь очень маленькие отклонения температуры нефти от заданного значения, а большие запаздывания в процессе подогрева делают очень трудной задачу определения и устранения отклонений.


Одна из причин запаздывания - емкость. Печь имеет способность сохранять большое количество тепла внутри своих стенок. Накопленная теплота передается к нефти, но передача не происходит мгновенно. Если внутренние стенки нагреты слишком сильно, потребуется некоторое время для понижения их температуры, в течение которого нефть может быть перегрета. Если внутренние стенки не достаточно нагреты, то нефть может не получить достаточно тепла.

Дифференциальная составляющая ПИД-регулятора помогает преодолевать запаздывания посредством выработки эффективных упреждающих воздействий. Интегральная составляющая непрерывно корректирует выходной сигнал при наличии смещения пока регулируемая температура не возвращается к уставке.

Общие сведения

Обычно, при использовании пропорционально-интегрально-дифференциального или ПИД- (PID- Proportional-Integral-Derivative) регулятора и грамотной его настройке, достигается лучшая точность управления по сравнению с двухпозиционным (релейным) регулятором. Но для оптимальной настройки регулятора и, как следствие, получение желаемого качества управления, необходимо понимание механизмов и принципов работы ПИД-регулятора.
При ПИД-регулировании сигнал управления зависит не только от разницы между текущим и заданным значением (величины ошибки или рассогласования), а также от накопленной ошибки (интеграла) и от скорости изменения ошибки во времени (дифференциала). В результате ПИД-регулятор обеспечивает такое значение сигнала управления, при котором ошибка в установившемся режиме стремится к нулю. Качество управления определяется многими факторами, ключевыми являются недетерминированность объекта управления, точность ввода-вывода регулятора и интенсивность внешних воздействий.

Где:
Xp - полоса пропорциональности
Ei = (SP-PV) = (уставка-тек) = ошибка (рассогласование)
Тд - постоянная времени дифференцирования
∆Ei - разность ошибок соседних измерений (Ei - Ei-1)
∆tизм - время между соседними измерениями (ti - t i-1)
Ти - постоянная времени интегрирования
- Накопленная к i-ому шагу сумма рассогласований (интегральная сумма)
Легко заметить, что сигнал управления является суммой трех составляющих: пропорциональной (слагаемое 1), дифференциальной (слагаемое 2), и интегральной (слагаемое 3).
Пропорциональная составляющая зависит от текущей ошибки Ei и компенсирует текущую ошибку пропорционально ее величине.
Дифференциальная составляющая зависит от скорости изменения ошибки ∆Ei / ∆tизм и компенсирует резкие возмущения.
Интегральная составляющая накапливает ошибку регулирования, что позволяет ПИД-регулятору поддерживать нулевую ошибку в установившемся режиме (устраняет статическую ошибку управления).
Обычно ПИД-регулятор имеет дополнительные параметры помимо трех коэффициентов (Xp, Ти, Тд). Рассмотрим их более подробно на примере скриншота меню параметров ПИД-регулятора прибора “ ”.

Рис. 1

Каналов (выходов) ПИД-регулирования в приборе может быть несколько и параметры для каждого из них свои собственные. Поэтому выберите желаемый канал в первой графе.
Источником обратной связи с объекта управления (текущая контролируемая величина) может быть любой измерительный канал прибора, поэтому необходимо выбрать желаемый измерительный канал в графе ВЛАДЕЛЕЦ.
ПИД-регулятор может управлять как по закону прямой логики (управление печью), так и по обратному закону (управление хладоустановкой). Выберите желаемую логику работы.
Уставка (SP) - это желаемая величина, на которую регулятор должен выйти в установившемся режиме.
Xp - зона пропорциональности. Задается в единицах контролируемой величины (для терморегулятора в градусах). Зона пропорциональности называется так, потому что только в ней ((SP - Xp)…(SP + Xp)) пропорциональная составляющая ПИД-регулятора может формировать мощность выходного сигнала управления пропорционально ошибке. А за ее пределами мощность будет равна либо 0%, либо 100%. Таким образом, чем уже эта зона, тем быстрее отклик регулятора, но слишком высокое быстродействие может ввести систему в автоколебательный режим.
Ти - постоянная времени интегрирования.
Тд - постоянная времени дифференцирования.
Текущая мощность - это информационный параметр.
Минимальная и максимальная мощность определяют границы мощности выхода ПИД-регулятора.
Аварийная мощность - это такая мощность, которая формируется регулятором при неисправности датчика или измерительного канала. Так можно обеспечить отрицательную температуру холодильной камеры или не дать остыть печи даже при аварийной ситуации.
Последним параметром идет период ШИМ. Этот параметр один для всех ПИД-регуляторов, т.к. каналы ШИМ синхронизированы между собой от одного таймера. ШИМ сигнал позволяет регулировать мощность посредством регулировки скважности сигнала (регулируется ширина импульса при постоянной частоте модуляции). Разрядность ШИМ (число позиций мощности) равна 8192 дискреты (13 бит). Период ШИМ (от 1 мс до 250 сек). Этот параметр зависит от типа и коммутационных способностей силовых исполнительных ключей (м.б. реле, пускатель, твердотельное реле, симистор). Чем выше частота коммутации (чем меньше период) тем больше тепловые потери в ключах (квадратичная зависимость потерь от частоты) и больше износ механических коммутаторов, но лучше качество регулирования. Важно найти золотую середину.

Настройка пропорциональной компоненты (Xp)

Перед настройкой зоны пропорциональности интегральная и дифференциальная компоненты отключаются, постоянная интегрирования устанавливается максимально возможной (Ти = макс), а постоянная дифференцирования минимально возможной (Тд = 0). Устанавливается безопасная величина уставки, равная (0,7…0,9)×SP, где SP - это реальная уставка настраиваемой системы. Зона пропорциональности устанавливается минимально возможной (Xp = 0).
В этом случае регулятор выполняет функции двухпозиционного релейного регулятора с гистерезисом равным нулю. Регистрируется переходная характеристика.

Рис. 2


Тο - начальная температура в системе;
Тsp - заданная температура (уставка);
∆T - размах колебаний температуры;
∆t - период колебаний температуры.
Установить зону пропорциональности равной размаху колебаний температуры: Xp = ∆T. Это значение служит
первым приближением для зоны пропорциональности.
Следует проанализировать переходную характеристики еще раз и при необходимости скорректировать значение зоны пропорциональности. Возможные варианты переходных характеристик показаны на рис. 3.
Рис. 3


Переходная характеристика типа 1: Значение зоны пропорциональности очень мало, переходная характеристика далека от оптимальной. Зону пропорциональности следует значительно увеличить.
Переходная характеристика типа 2: В переходной характеристике наблюдаются затухающие колебания (5 - 6 периодов). Если в дальнейшем предполагается использовать и дифференциальную компоненту ПИД-регулятора, то выбранное значение зоны пропорциональности является оптимальным. Для этого случая настройка зоны пропорциональности считается законченной.
Если в дальнейшем дифференциальная компоненты использоваться не будет, то рекомендуется еще увеличить зону пропорциональности так, чтобы получились переходные характеристики типа 3 или 4.
Переходная характеристика типа 3: В переходной характеристике наблюдаются небольшой выброс (перерегулирование) и быстро затухающие колебания (1 - 2 периода). Этот тип переходной характеристики обеспечивает хорошее быстродействие и быстрый выход на заданную температуру. В большинстве случаев его можно считать оптимальным, если в системе допускаются выбросы (перегревы) при переходе с одной температуры на другую.
Выбросы устраняются дополнительным увеличением зоны пропорциональности так, чтобы получилась переходная характеристика типа 4.
Переходная характеристика типа 4: Температура плавно подходит к установившемуся значению без выбросов и колебаний. Этот тип переходной характеристики также можно считать оптимальным, однако быстродействие регулятора несколько снижено.
Переходная характеристика типа 5: Сильно затянутый подход к установившемуся значению говорит о том, что зона пропорциональности чрезмерно велика. Динамическая и статическая точность регулирования здесь мала.
Следует обратить внимание на два обстоятельства. Во-первых, во всех рассмотренных выше случаях установившееся значение температуры в системе не совпадает со значением уставки. Чем больше зона пропорциональности, тем больше остаточное рассогласование. Во-вторых, длительность переходных процессов тем больше, чем больше зона пропорциональности. Таким образом, нужно стремиться выбирать зону пропорциональности как можно меньше. Вместе с тем, остаточное рассогласование, характерное для чисто пропорциональных регуляторов (П-регуляторов), убирается интегральной компонентой регулятора.

Настройка дифференциальной компоненты (Tд)

Этот этап присутствует только в том случае, если применяется полнофункциональный ПИД-регулятор. Если дифференциальная компонента применяться не будет (используется пропорционально-интегральный (ПИ) регулятор), то следует пропустить этот этап.
На предыдущем этапе была задана зона пропорциональности, соответствующая переходной характеристике типа 2, в которой присутствуют затухающие колебания (см. рис. 3, кривая 2, рис. 4, кривая 1.).

Рис. 4


Следует установить постоянную времени дифференцирования Тд так, чтобы переходная характеристика имела вид кривой 2 на рис. 4. В качестве первого приближения постоянная времени дифференцирования делается равной Тд = 0,2×∆t.
Примечательно то, что дифференциальная компонента устраняет затухающие колебания и делает переходную характеристику, похожей на тип 3 (см. рис. 3). При этом зона пропорциональности меньше, чем для типа 3. Это значит, что динамическая и статическая точность регулирования при наличии дифференциальной компоненты (ПД-регулятор) может быть выше, чем для П-регулятора.

Настройка интегральной компоненты (Ти)

После настройки пропорциональной компоненты (а при необходимости и дифференциальной компоненты) получается переходная характеристика, показанная на следующем рисунке, кривая 1.

Рис. 5


Интегральная компонента предназначена для того, чтобы убрать остаточное рассогласование между установившимся в системе значением температуры и уставкой. Начинать настраивать постоянную времени интегрирования следует с величины Ти = ∆t.
Переходная характеристика типа 2: Получается при чрезмерно большой величине постоянной времени интегрирования. Выход на уставку получается очень затянутым.
Переходная характеристика типа 4: Получается при слишком малой величине постоянной времени интегрирования. Если постоянную времени интегрирования уменьшить еще, то в системе могут возникнуть колебания.
Переходная характеристика типа 3: Оптимальная.

Использованные источники информации

  • Сабинин Ю.А. Ковчин С.А. “Теория электропривода”
  • Шрейнер Р. Т. “Системы подчиненного регулирования электроприводов”
  • Олссон, Пиани “Цифровые системы автоматизации и управления”
  • Материалы сайта www.asu-tp.org

Дифференциальный пропорционально-интегральный регулятор – устройство, которое устанавливают в автоматизированных системах для поддержания заданного параметра, способного к изменениям.

На первый взгляд все запутанно, но можно объяснить ПИД регулирование и для чайников, т.е. людей, не совсем знакомых с электронными системами и приборами.

Что такое ПИД регулятор?

ПИД регулятор – прибор, встроенный в управляющий контур, с обязательной обратной связью. Он предназначен для поддержания установленных уровней задаваемых величин, например, температуры воздуха.

Устройство подает управляющий или выходной сигнал на устройство регулирования, на основании полученных данных от датчиков или сенсоров. Контроллеры обладают высокими показателями точности переходных процессов и качеством выполнения поставленной задачи.

Три коэффициента ПИД регулятора и принцип работы

Работа ПИД-регулятора заключается в подаче выходного сигнала о силе мощности, необходимой для поддержания регулируемого параметра на заданном уровне. Для вычисления показателя используют сложную математическую формулу, в составе которой есть 3 коэффициента – пропорциональный, интегральный, дифференциальный.

Возьмем в качестве объекта регулирования ёмкость с водой, в которой необходимо поддерживать температуру на заданном уровне с помощью регулирования степени открытия клапана с паром.

Пропорциональная составляющая появляется в момент рассогласования с вводными данными. Простыми словами это звучит так – берется разница между фактической температурой и желаемой, умножается на настраиваемый коэффициент и получается выходной сигнал, который должен подаваться на клапан. Т.е. как только градусы упали, запускается процесс нагрева, поднялись выше желаемой отметки – происходит выключение или даже охлаждение.

Дальше вступает интегральная составляющая, которая предназначена для того, чтобы компенсировать воздействие окружающей среды или других возмущающих воздействий на поддержание нашей температуры на заданном уровне. Поскольку всегда присутствуют дополнительные факторы, влияющие на управляемые приборы, в момент поступления данных для вычисления пропорциональной составляющей, цифра уже меняется. И чем больше внешнее воздействие, тем сильнее происходят колебания показателя. Происходят скачки подаваемой мощности.

Интегральная составляющая пытается на основе прошлых значений температуры, вернуть её значение, если оно поменялось. Подробнее процесс описан в видео ниже.

Интеграл используется для исключения ошибок путем расчета статической погрешности. Главное в этом процессе – подобрать правильный коэффициент, иначе ошибка (рассогласование) будет влиять и на интегральную составляющую.

Третий компонент ПИД – дифференцирующий. Он предназначен для компенсации влияния задержек, возникающих между воздействием на систему и обратной реакцией. Пропорциональный регулятор подает мощность до тех пор, пока температура не достигнет нужной отметки, но при прохождении информации к прибору, особенно при больших значениях, ошибки всегда возникают. Это может привести к перегреву. Дифференциал прогнозирует отклонения, вызванные задержками или воздействием внешней среды, и снижает подаваемую мощность заранее.

Настройка ПИД регулятора

Настройка ПИД-регулятора осуществляется 2 методами:

  1. Синтез подразумевает вычисление параметров на основании модели системы. Такая настройка получается точной, но требует глубоких познаний теории автоматического управления. Она подвластна только инженерам и ученым. Так как необходимо снимать расходные характеристики и производить кучу расчетов.
  2. Ручной способ основывается на методе проб и ошибок. Для этого за основу берутся данные уже готовой системы, вносятся некоторые коррективы в один или несколько коэффициентов регулятора. После включения и наблюдений за конечным результатом проводится изменение параметров в нужном направлении. И так до тех пор, пока не будет достигнут нужный уровень работоспособности.

Теоретический метод анализа и настройки на практике применяются крайне редко, что связано с незнанием характеристик объекта управления и кучей возможных возмущающих воздействий. Более распространены экспериментальные методы на основе наблюдения за системой.

Современные автоматизированные процессы реализуются как специализированные модули под управлением программ для настройки коэффициентов регулятора.

Назначение ПИД регулятора

ПИД регулятор предназначен для поддержания на требуемом уровне некой величины – температуры, давления, уровня в резервуаре, расхода в трубопроводе, концентрации чего-либо и т.д., изменением управляющего воздействия на исполнительные механизмы, такие как автоматические регулирующие клапана, используя для этого пропорциональную, интегрирующую, дифференцирующую величины для своей настройки.

Целью использования является получение точного управляющего сигнала, который способен контролировать большие производства и даже реакторы электростанций.

Пример схемы регулирования температуры

Часто ПИД регуляторы используются при регулировке температуры, давайте на простом примере подогрева воды в ёмкости рассмотрим данный автоматический процесс.

В емкости налита жидкость, которую нужно подогреть до нужной температуры и поддерживать её на заданном уровне. Внутри бака установлен датчик измерения температуры – или и напрямую связан с ПИД-регулятором.

Для подогрева жидкости будем подавать пар, как показано ниже на рисунке, с клапаном автоматического регулирования. Сам клапан получает сигнал от регулятора. Оператор вводит значение температурной уставки в ПИД-регуляторе, которую необходимо поддерживать в ёмкости.

Если настройки коэффициентов регулятора неверны, будут происходить скачки температуры воды, при этом клапан будет то полностью открыт, то полностью закрыт. В этом случае необходимо рассчитать коэффициенты ПИД регулятора и ввести их заново. Если все сделано правильно, через небольшой промежуток времени система выровняет процесс и температура в ёмкости будет поддерживаться на заданной отметке, при этом степень открытия регулирующего клапана будет находиться в среднем положении.



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: