Способы формирования эталонных сигналов. Формирование сигнала в радиоканале

Изобретение относится к радиотехнике, в частности к радиопередающим устройствам, применяемым на линиях многоканальной цифровой связи с квадратурной амплитудной манипуляцией, может быть использовано в области цифрового радиовещания и цифрового телевидения. Достигаемый технический результат - снижение потерь помехоустойчивости в условиях плохой помеховой обстановки. В способе формирования сигналов квадратурной амплитудной модуляции формирование несущей частоты осуществляется путем модуляции и суммирования двух квадратурных сигналов: sin(wt) и cos(wt) по двум параллельно работающим каналам, в каждом из которых производится фазоамплитудная модуляция с помощью управляемых коммутаторов и делителей напряжения, при этом деление напряжения несущего колебания в каждом из двух квадратурных каналов формирователя сигналов квадратурной амплитудной модуляции синхронно осуществляется с переменным коэффициентом в зависимости от соотношения сигнал-шум на входе демодулятора приемника, полученного по обратному каналу. 4 ил., 2 табл.

Рисунки к патенту РФ 2365050

Изобретение относится к радиотехнике, в частности к радиопередающим устройствам, применяемым на линиях многоканальной цифровой связи с квадратурной амплитудной манипуляцией, а также может быть использовано в области цифрового радиовещания и цифрового телевидения.

Известны способы формирования сигналов относительной и квадратурной фазовой манипуляций (ОФМ, КФМ), в которых для уменьшения спектра передаваемого фазоманипулированного сигнала используется плавный фазовый переход .

Также известны способы формирования сигналов квадратурной амплитудной модуляции (КАМ, QAM), в которых шестнадцатеричный сигнал КАМ (КАМ-16) на передачу формируется в двух квадратурных ветвях (синфазная или синусная и квадратурная или косинусная составляющие), в каждой из которых используется способ формирования сигналов КФМ .

Однако известные аналоги обладают относительно низкой помехоустойчивостью за счет строгого классического построения сигнальной конструкции и ввиду этого невозможностью разделения потока всех бит, переносимых сигналом КАМ на подпотоки по приоритетам , обладающие различной помехоустойчивостью, что очень важно при достаточно плохой помеховой обстановке (т.е. при низких значениях отношений сигнал-шум на входе демодулятора КАМ, что особенно актуально и прогрессивно в современных системах с турбокодированием ).

Наиболее близким техническим решением к данному изобретению является способ формирования сигналов КАМ, в котором формирование несущей получается путем модуляции и суммирования двух квадратурных сигналов: sin(wt) и cos(wt). Способ формирования содержит два параллельно работающих канала, в каждом из которых производится фазоамплитудная манипуляция, общий задающий генератор, фазовращатели и управляемые коммутаторы с делителями напряжения для получения четырехуровневого сигнала КАМ с шестнадцатью сигнальными точками (КАМ-16)

При такой совокупности элементов и связей достигается повышение частотно-энергетической эффективности использования дискретных каналов линий многоканальной электросвязи .

Недостаток известного способа формирования сигналов квадратурной амплитудной модуляции - потери помехоустойчивости переданной информации в условиях наиболее плохой помеховой обстановки как с введением, так и без введения приоритетности в передаче сообщений нескольких пользователей.

Целью изобретения является снижение потерь помехоустойчивости в условиях плохой помеховой обстановки за счет оптимального построения сигналов шестнадцатеричной квадратурной модуляции (КАМ-16) как с разбиением, так и без разбиения общего переносимого потока бит на подпотоки по приоритетности.

Указанная цель достигается тем, что деление напряжения несущего колебания в каждом из двух квадратурных каналов формирователя сигналов квадратурной амплитудной модуляции синхронно осуществляется с переменным коэффициентом в зависимости от соотношения сигнал-шум на входе демодулятора приемника, полученного по обратному каналу.

Перечисленная новая совокупность существенных признаков (отличительный признак) за счет введения изменяемого (заранее известного и точно посчитанного) в период наиболее плохой помеховой обстановки коэффициента деления напряжения квадратурных несущих позволяет обеспечить возможность снижения потерь помехоустойчивости информации нескольких пользователей при введении приоритетности сообщений в условиях достаточно низких значений соотношения сигнал-шум (сигнал-помеха) на входе демодулятора.

Проведенный анализ уровня техники позволил установить, что аналоги, характеризующиеся совокупностью признаков, тождественных всем признакам заявленного технического решения, отсутствуют, что указывает на соответствие изобретения условию патентоспособности «новизна».

Результаты поиска известных решений в данной и смежных областях техники с целью выявления признаков, совпадающих с отличительными от прототипа признаками заявленного объекта, показали, что они не следуют явным образом из уровня техники. Из уровня техники также не выявлена известность влияния предусматриваемых существенными признаками заявленного изобретения преобразований на достижение указанного технического результата. Следовательно, заявленное изобретение соответствует условию патентоспособности «изобретательский уровень».

Заявляемый способ поясняется чертежами, графиками и таблицами, на которых показаны:

на фиг.1 - блок-схема устройства формирования сигналов квадратурной амплитудной модуляции;

на фиг.2 - пространство сигналов классической КАМ-16:

а) фиксированные относительные значения амплитуд модулированных сигналов, находящихся в квадратуре;

б) фиксированные относительные значения амплитуд и фаз несущей на выходе модулятора КАМ-16;

на фиг.3 - пространство сигналов иерархической КАМ-16 при параметре модуляции =2;

на фиг.4 - графики зависимости средней вероятности ошибки от параметра модуляции (коэффициента деления напряжения квадратурных несущих):

а) зависимость вероятности ошибки в приеме первого (второго), третьего (четвертого) битов и средней на бит вероятности ошибки при классической КАМ-16;

б) зависимость вероятности ошибки в приеме первого (второго), третьего (четвертого) битов и средней на бит вероятности ошибки при оптимальной иерархической КАМ-16;

На фиг.5 приведены точные значения параметров модуляции (коэффициентов деления напряжения) для различных значений сигнал/шум на входе приемника и энергетические выигрыши (выигрыши в помехоустойчивости) оптимальной КАМ-16 по сравнению с известными иерархическими и классически аналогичными сигналами.

Устройство формирования сигналов квадратурной амплитудной модуляции, показанное на фиг.1 работает следующим образом.

Формирователь КАМ-16 состоит из двух параллельно работающих каналов, в одном из которых производится фазоамплитудная манипуляция сигнала sinwt (канал I), во втором фазоамплитудная манипуляция сигнала coswt (канал Q). Указанные сигналы получаются от общего задающего генератора 1, причем сигнал coswt получается путем сдвига фазы сигнала sinwt на 90° с помощью фазовращателя (0°/90°) 2. Манипуляция фаз сигналов I и Q производится с помощью коммутаторов 5 и 6, на первый вход которых подается сигнал без сдвига фазы, а на второй вход - сигналы со сдвигом по фазе на 180° с выходов фазовращателей 3 и 4. Управление коммутаторами 5 и 6 производится кодовыми комбинациями Ik и Qk, подаваемыми на информационные входы фазоамплитудных манипуляторов. В результате такой модуляции векторы сигналов I и Q будут принимать фиксированные фазовые положения, показанные на фиг.2а.

Амплитудная модуляция сигналов I и Q производится с помощью коммутаторов 7 и 8 и управляемых делителей напряжения 10 и 11 с переменным коэффициентом деления . Управление коммутаторами 7 и 8 производится соответственно кодовыми комбинациями Еk и Dk, поступающими на информационные входы модулятора. Кодовые комбинации Ik, Qk, Ek и Dk поступают от формирователей импульсов источников сообщений.

После сложения промодулированных сигналов I и Q в сумматоре 9 в системе координат I и Q образуется 16 фиксированных точек - фиг.2б. Векторы, соединяющие начало координат и фиксированные точки, будут определять амплитуду и фазу КАМ-несущей на выходе модулятора для различных кодовых комбинаций.

При поступлении на вторые входы делителей напряжения 10 и 11 по обратному каналу информации об отношении сигнал-шум на входе демодулятора КАМ от 10 -11 до 0.1 на выходе устройства формируется классическая сигнальная конструкция КАМ-16. При изменении помеховой обстановки на линии связи и поступлении на вторые входы делителей напряжения 10 и 11 по обратному каналу информации об отношении сигнал-шум на входе демодулятора КАМ от 0.1 до 0.3 (область применения современных турбо-кодов) на выходе устройства формируется оптимальная сигнальная конструкция КАМ-16 (ОКАМ-16) с лучшими энергетическими характеристиками по сравнению с известными классическими и иерархическими сигналами КАМ.

Точные расчеты помехоустойчивости предлагаемой оптимальной КАМ-16 с оптимальным коэффициентом модуляции

по сравнению с помехоустойчивостью аналогичных известных классических с коэффициентом модуляции =1 (фиг.2б) и иерархических с коэффициентом модуляции =2, 4 (фиг.3) сигналов показали следующее.

1. При значениях требуемой средней вероятности ошибки на бит Р b в интервале от 0.3 до 0.1 минимальная средняя энергия на бит h 2 bc ( опт) при оптимальном построении КАМ-16 меньше h 2 bc ( =1/2) необходимой для известной классической КАМ-16 на величину порядка от 0.46 дБ до 0.17 дБ (помехоустойчивость оптимальной КАМ-16 при фиксированной мощности передатчика выше помехоустойчивости классической КАМ-16), а минимальная пиковая энергия h 2 m ( опт) не превышает h 2 m ( =1/2) В этом случае оптимальный параметр модуляции (нормированный коэффициент делителя напряжения) опт меняется от 1 до 0.39 (фиг.5, табл.5.1).

2. Выигрыш в пикфакторе П1/П2 оптимальной КАМ-16 по сравнению с классической КАМ-16 при минимизации пиковой энергии h 2 m составляет величину от 1.342 для Р b =0.4 до 1.08 для Р b =0.2 (фиг.5, табл.5.2).

3. Для достижения требуемого значения средней вероятности ошибки на бит Р тр =0.3 и Р тр =0.1 необходимое значение минимальной пиковой энергии h 2 m при опт значительно меньше, чем h 2 m при =1/2( =1), а с дальнейшим уменьшением Р тр от 10 -2 до 10 -11 величина опт постепенно приближается к 0.5, т.е. к известному классическому построению сигналов КАМ-16 (фиг.4а, б).

4. Предложенное оптимальное построение сигнальной конструкции (СК) КАМ-16 по сравнению с ранее известными классической и иерархической КАМ-16 требует меньшего h 2 m во всем диапазоне значений требуемой средней вероятности ошибки на бит Р b , что, в свою очередь, ведет к выигрышу в энергетических характеристиках первой по сравнению со вторыми, т.е. к снижению потерь помехоустойчивости (фиг.4в).

5. При значениях требуемой Р b в пределах от 0.1 и выше известная иерархическая КАМ-16 при коэффициенте модуляции =4 выигрывает по необходимому h 2 m у ИКАМ-16 с =2 и у классической КАМ-16, но все эти сигнальные конструкции, в свою очередь, проигрывают предложенной оптимальной СК КАМ-16 по энергетике, т.е. по помехоустойчивости (фиг.4г).

Таким образом, при такой совокупности существенных признаков при формировании шестнадцатеричных сигналов квадратурной амплитудной модуляции обеспечивается снижение потерь помехоустойчивости, вызванных введением оптимального коэффициента модуляции (коэффициента делителя напряжения), в зависимости от получаемого по обратному каналу соотношения сигнал-шум на входе демодулятора КАМ-16 как с разбиением, так и без разбиения общего переносимого потока бит на подпотоки по приоритетности.

2. Патент Российской Федерации № 2205518, МПК Н04L 27/20, 11.12.2001.

3. Скляр, Берн. Цифровая связь. Теоретические основы и практическое применение. Изд. 2-е, испр. [Текст] / Пер. с англ. - М.: Радио и связь, 1986. - 544 с.

4. Севальнев Л.А. Передача цифровых телевизионных программ с информационным сжатием данных по спутниковым каналам связи // Теле-Спутник, № 7, 1997. - С.64-69.

5. Севальнев Л.А. Передача сигналов цифрового телевидения с информационным сжатием данных по кабельным линиям связи // Теле-Спутник, № 1(27), 1998. - С.54-67.

6. Бураченко Д.Л. Оптимизация сигнальной конструкции иерархической 16 QAM при двух алгоритмах оптимального приема и двух манипуляционных кодах. [Текст]: статья / Д.Л.Бураченко, В.И.Бобровский, И.В.Тимошин // Материалы 8-й международной НТК. - СПб.: ГУТ им. проф. М.А.Бонч-Бруевича, 2002. - С.17-19.

7. Фриск В.В. Основы теории цепей. [Текст] - М.: ИП РадиоСофт, 2002. - С.34-36.

ФОРМУЛА ИЗОБРЕТЕНИЯ

Способ формирования сигналов квадратурной амплитудной модуляции с формированием несущей частоты путем модуляции и суммирования двух квадратурных сигналов: sin(wt) и cos(wt) по двум параллельно работающим каналам, в каждом из которых производится фазоамплитудная модуляция с помощью управляемых коммутаторов и делителей напряжения, отличающийся тем, что деление напряжения несущего колебания в каждом из двух квадратурных каналов синхронно осуществляется с переменным коэффициентом в зависимости от соотношения сигнал-шум на входе демодулятора приемника, полученного по обратному каналу при наиболее плохой помеховой обстановке.


Сигнал на выходе ПП пропорционален измеряемой величине, и его нужно сравнивать с эталонным сигналом. В качестве эталонных используются специально сформированные сигналы или, как это делается в механических и электромеханических приборах, позиционные М П, скоростные М С, ускорительные М УС моменты, т. е. моменты, пропорциональные положению, скорости и ускорению подвижной системы указателя. Эталонные сигналы могут быть созданы упругими (пружинами, мембранами), демпфирующими и инерционными элементами, а также сформированы с помощью обратной связи или функциональных устройств.

Рис. 3.5. Обобщенная функциональная схема прибора

На схеме прибора (рис. 3.5) сигнал х преобразуется в первичном преобразователе ПП в сигнал F x , который сравнивается с эталонным сигналом , где создаются соответственно пружиной П , демпфером Д, инерционными силами подвижных элементов и устройством обратной связи (преобразователь Пр, усилитель Ус и моментный двигатель МД). Выходным сигналом прибора является угол φ отклонения стрелки.

Из структуры выражения видно, что любой из моментов может быть заменен моментом обратной связи, имеющим ту же зависимость от . Так, например, если , то он может заменить М П, и тогда получаем прибор с электрической пружиной. Если , то он заменяет момент М с, и прибор имеет электрический демпфер и т. д.

Уравнение движения прибора представим в виде

Для движущего и эталонных моментов можно написать

где - коэффициенты движущего, позиционного, скоростного и инерционного моментов; - оператор, формируемый в контуре обратной связи.

Подставляя (3.14) в (3.13), получим

На рис. 3.6 представлена структурная схема, эквивалентная уравнению (3.15). Звено с бесконечно большим коэффициентом усиления соответствует точному выполнению условия компенсации F x = F y .

Рис. 3.6. Структурная схема прибора

В соответствии с уравнением (3.15) передаточная функция W(р) и чувствительность S прибора будут

Рассмотрим частные случаи. В электромеханическом приборе без обратной связи (k(p)= 0) получаем

где - чувствительность прибора; - собственная частота; - относительное затухание.



Система, имеющая передаточную функцию вида (3.17), называется колебательным звеном, параметрами которого являются

Если в выражении (3.17) k П = 0 (отсутствие пружины), то прибор становится интегрирующим

где - чувствительность; - постоянная времени.

Выражение (3.18) получено в предположении, что выходом прибора является угол φ . Если в качестве выходного сигнала взять угловую скорость φ , то передаточная функция примет вид

(3.19)

Система, имеющая передаточную функцию вида (3.19), называется инерционным звеном.

При отсутствии в приборе пружины и демпфера (k П = k С = 0) получаем дважды интегрирующий прибор

(3.20)

Оператор k(p) можно сформировать в различном виде. Если k(p)=k 0 , то, как следует из выражения (3.16), коэффициенты k 0 и k П равнозначны. Поэтому, как отмечено выше, можно считать k П = 0и получить требуемый позиционный сигнал за счет обратной связи, которая в этом случае выполняет роль электрической пружины. Если взять k(p)=k 0 + kp, то можно обойтись в приборе без пружины и без механического демпфера.

Преимущество приборов с электрическими пружиной и демпфером состоит в том, что обеспечивается высокая стабильность параметров прибора и упрощается его настройка и регулировка. Возможности приборов с электрической обратной связью этим не исчерпываются. Если в цепь обратной связи включить корректирующий контур, то можно получить требуемую частотную характеристику прибора. Можно, например, скорректировать динамические погрешности в заданном диапазоне частот. Если в приборе необходимо реализовать зависимость φ = F(x), то в цепь обратной связи следует включить функциональный элемент , где f - функция, обратная требуемой функции F x .

ИЗМЕРИТЕЛЬНЫЕ ЦЕПИ ПРЯМОГО ПРЕОБРАЗОВАНИЯ

Измерительные цепи прямого преобразования состоят из преобразователей, соединенных последовательно или параллельно согласно (см. рис. 3.4, а, б).



Приборы с этими цепями просты, надежны, имеют малые массу, габаритные размеры и стоимость, обладают хорошим быстродействием. Однако погрешности их велики. Основной путь снижения погрешностей цепей прямого преобразования - снижение погрешностей каждого преобразователя, что сложно, дорого и трудоемко. Цепи прямого преобразования применяются с генераторными, параметрическими ирадиационными первичными преобразователями.

При построении измерительных цепей используются: 1) принцип согласования сопротивлений, при котором обеспечивается передача максимальной мощности от предыдущего преобразователя к последующему; 2) принцип холостого хода, когда входное сопротивление последующего преобразователя значительно больше выходного сопротивления предыдущего преобразователя, при этом обеспечиваются минимальные потери информации.

Оба эти принципа находят применение в приборостроении. В последнее время при создании точных приборов второй принцип находит преимущественное распространение.

Каждый день люди сталкиваются с использованием электронных приборов. Без них невозможна современная жизнь. Ведь речь идет о телевизоре, радио, компьютере, телефоне, мультиварке и прочем. Раньше, еще несколько лет назад, никто не задумывался о том, какой сигнал используется в каждом работоспособном приборе. Сейчас же слова «аналоговый», «цифровой», «дискретный» уже давно на слуху. Некоторые виды сигналов из перечисленных являются качественными и надежными.

Цифровая передача стала использоваться намного позже, чем аналоговая. Это связано с тем, что такой сигнал намного проще обслуживать, да и техника на тот момент не была настолько усовершенствована.

С понятием «дискретность» сталкивается каждый человек постоянно. Если переводить это слово с латинского языка, то означать оно будет «прерывистость». Углубляясь далеко в науку, можно сказать, что дискретный сигнал представляет собой метод передачи информации, который подразумевает изменение во времени среды-переносчика. Последняя принимает любое значение из всех возможных. Сейчас дискретность уходит на второй план, после того, как было принято решение производить системы на чипе. Они являются целостными, а все компоненты тесно взаимодействуют друг с другом. В дискретности же все с точностью наоборот - каждая деталь завершена и связана с другими за счет специальных линий связи.

Сигнал

Сигнал представляет собой специальный код, который передается в пространство одной или несколькими системами. Эта формулировка является общей.

В сфере информации и связи сигналом назван специальный носитель каких-либо данных, который используется для передачи сообщений. Он может быть создан, но не принят, последнее условие не обязательно. Если же сигнал является сообщением, то его «ловля» считается необходимой.

Описываемый код задается математической функцией. Она характеризует все возможные изменения параметров. В радиотехнической теории эта модель считается базовой. В ней же аналогом сигнала был назван шум. Он представляет собой функцию времени, которая свободно взаимодействует с переданным кодом и искажает его.

В статье охарактеризованы виды сигналов: дискретный, аналоговый и цифровой. Также коротко дана основная теория по описываемой теме.

Виды сигналов

Существует несколько имеющихся сигналов. Рассмотрим, какие бывают виды.

  1. По физической среде носителя данных разделяют электрический сигнал, оптический, акустический и электромагнитный. Имеется еще несколько видов, однако они малоизвестны.
  2. По способу задания сигналы делятся на регулярные и нерегулярные. Первые представляют собой детерминированные методы передачи данных, которые задаются аналитической функцией. Случайные же формулируются за счет теории вероятности, а также они принимают любые значения в различные промежутки времени.
  3. В зависимости от функций, которые описывают все параметры сигнала, методы передачи данных могут быть аналоговыми, дискретными, цифровыми (способ, который является квантованным по уровню). Они используются для обеспечения работы многих электрических приборов.

Теперь читателю известны все виды передачи сигналов. Разобраться в них не составит труда любому человеку, главное - немного подумать и вспомнить школьный курс физики.

Для чего обрабатывается сигнал?

Сигнал обрабатывается с целью передачи и получения информации, которая в нем зашифрована. Как только она будет извлечена, ее можно использовать различными способами. В отдельных ситуациях ее переформатируют.

Существует и другая причина обработки всех сигналов. Она заключается в небольшом сжатии частот (чтобы не повредить информацию). После этого ее форматируют и передают на медленных скоростях.

В аналоговом и цифровом сигналах используются особенные методы. В частности, фильтрация, свертка, корреляция. Они необходимы для восстановления сигнала, если он поврежден или имеет шум.

Создание и формирование

Зачастую для формирования сигналов необходим аналого-цифровой (АЦП) и Чаще всего они оба используются лишь в ситуации с применением DSP-технологий. В остальных случаях подойдет только использование ЦАП.

При создании физических аналоговых кодов с дальнейшим применением цифровых методов полагаются на полученную информацию, которая передается со специальных приборов.

Динамический диапазон

Вычисляется разностью большего и меньшего уровня громкости, которые выражены в децибелах. Он полностью зависит от произведения и особенностей исполнения. Речь идет как о музыкальных треках, так и об обычных диалогах между людьми. Если брать, например, диктора, который читает новости, то его динамический диапазон колеблется в районе 25-30 дБ. А во время чтения какого-либо произведения он может вырастать до 50 дБ.

Аналоговый сигнал

Аналоговый сигнал является непрерывным во времени способом передачи данных. Недостатком его можно назвать присутствие шума, который иногда приводит к полной потере информации. Очень часто возникают такие ситуации, что невозможно определить, где в коде важные данные, а где обычные искажения.

Именно из-за этого цифровая обработка сигналов приобрела большую популярность и постепенно вытесняет аналоговую.

Цифровой сигнал

Цифровой сигнал является особым он описывается за счет дискретных функций. Его амплитуда может принять определенное значение из уже заданных. Если аналоговый сигнал способен поступать с огромным количеством шумов, то цифровой отфильтровывает большую часть полученных помех.

Помимо этого, такой вид передачи данных переносит информацию без лишней смысловой нагрузки. Через один физический канал может быть отправлено сразу несколько кодов.

Виды цифрового сигнала не существуют, так как он выделяется как отдельный и самостоятельный метод передачи данных. Он представляет собой двоичный поток. В наше время такой сигнал считается самым популярным. Это связано с простотой использования.

Применение цифрового сигнала

Чем же отличается цифровой электрический сигнал от других? Тем, что он способен совершать в ретрансляторе полную регенерацию. Когда в оборудование связи поступает сигнал, имеющий малейшие помехи, он сразу же меняет свою форму на цифровую. Это позволяет, например, телевышке снова сформировать сигнал, но уже без шумового эффекта.

В том случае, если код поступает уже с большими искажениями, то, к сожалению, восстановлению он не подлежит. Если брать в сравнении аналоговую связь, то в аналогичной ситуации ретранслятор может извлечь часть данных, затрачивая много энергии.

Обсуждая сотовую связь разных форматов, при сильном искажении на цифровой линии разговаривать практически невозможно, так как не слышны слова или целые фразы. Аналоговая связь в таком случае более действенна, ведь можно продолжать вести диалог.

Именно из-за подобных неполадок цифровой сигнал ретрансляторы формируют очень часто для того, чтобы сократить разрыв линии связи.

Дискретный сигнал

Сейчас каждый человек пользуется мобильным телефоном или какой-то «звонилкой» на своем компьютере. Одна из задач приборов или программного обеспечения - это передача сигнала, в данном случае голосового потока. Для переноса непрерывной волны необходим канал, который имел бы пропускную способность высшего уровня. Именно поэтому было предпринято решение использовать дискретный сигнал. Он создает не саму волну, а ее цифровой вид. Почему же? Потому что передача идет от техники (например, телефона или компьютера). В чем плюсы такого вида переноса информации? С его помощью уменьшается общее количество передаваемых данных, а также легче организуется пакетная отправка.

Понятие «дискретизация» уже давно стабильно используется в работе вычислительной техники. Благодаря такому сигналу передается не непрерывная информация, которая полностью закодирована специальными символами и буквами, а данные, собранные в особенные блоки. Они являются отдельными и законченными частицами. Такой метод кодировки уже давно отодвинулся на второй план, однако не исчез полностью. С помощью него можно легко передавать небольшие куски информации.

Сравнение цифрового и аналогового сигналов

Покупая технику, вряд ли кто-то думает о том, какие виды сигналов использованы в том или другом приборе, а об их среде и природе уж тем более. Но иногда все же приходится разбираться с понятиями.

Уже давно стало ясно, что аналоговые технологии теряют спрос, ведь их использование нерационально. Взамен приходит цифровая связь. Нужно понимать, о чем идет речь и от чего отказывается человечество.

Если говорить коротко, то аналоговый сигнал - способ передачи информации, который подразумевает описание данных непрерывными функциями времени. По сути, говоря конкретно, амплитуда колебаний может быть равна любому значению, находящемуся в определенных границах.

Цифровая обработка сигналов описывается дискретными функциями времени. Иначе говоря, амплитуда колебаний этого метода равна строго заданным значениям.

Переходя от теории к практике, надо сказать о том, что аналоговому сигналу характерны помехи. С цифровым же таких проблем нет, потому что он успешно их «сглаживает». За счет новых технологий такой метод передачи данных способен своими силами без вмешательства ученого восстановить всю исходную информацию.

Говоря о телевидении, можно уже с уверенностью сказать: аналоговая передача давно изжила себя. Большинство потребителей переходят на цифровой сигнал. Минус последнего заключается в том, что если аналоговую передачу способен принимать любой прибор, то более современный способ - только специальная техника. Хоть и спрос на устаревший метод уже давно упал, все же такие виды сигналов до сих пор не способны полностью уйти из повседневной жизни.

В N-канальной системе число фильтров и их типов равно Nn, где n - число ступеней преобразования. Число фильтров и их типов можно уменьшить, если дополнить многократное преобразование групповым , при котором преобразованию подвергается групповой сигнал. С этой целью N каналов разбивается на m групп по K каналов, т.е. Km=N. В каждой группе сигнал каждого канала подвергается индивидуальному преобразованию с помощью несущих частот w Н1 , w Н2 ,..., w НК (Рис.3.51). Во всех группах преобразование однотипно, поэтому на выходе каждой группы образуется один и тот же спектр частот. Полученные групповые спектры подвергаются затем групповому преобразованию с несущими w ГР1 , w ГР2 ,..., w ГРm , так что после объединения преобразованных групповых сигналов образуется спектр частот N каналов. В рассматриваемом случае общее число фильтров равно N+mn ГР, а число типов фильтров сокращается до K+mn ГР, где n ГР - число групповых ступеней преобразования.

Рис.3.51 Групповое преобразование частоты

Таким образом, применение многократного и группового преобразования позволяет унифицировать фильтровое оборудование системы, т.е. уменьшить его разнотипность. Такая унификация повышает технологичность изготовления узлов аппаратуры и, в конечном счете, удешевляет ее.

Уплотнение - это процесс объединения множества несущих информацию сигналов в подлежащий передаче групповой сигнал, сосредоточенный в одной частотной полосе. Задача решается либо бортовыми, либо земными средствами. Может быть использовано почти любое сочетание:

Методов, применяемых при модуляции в земной аппаратуре;

Уплотнении в земной аппаратуре;

Модуляции несущей на спутниковой линии;

Многостанционном доступе.

Так, в системах INTELSAT, TELESAT, DSCS-1 и ²Молния² используется однополосная амплитудная модуляция при частотном уплотнении и разделении каналов (ЧУ), частотной модуляции на спутниковой линии и различные несущие частоты для каждой ЗС.

Систему ВМДВ можно назвать ИКМ/ВУ/ЧФМ/МДВУ.

Система SPADE с одним каналом на несущую обозначается: ИКМ/ЧФМ/МДЧУ.

В земной аппаратуре наиболее распространено частотное уплотнение и разделение каналов (ЧУ). Системы ЧУ включают в себя:

а) однополосные системы с подавленной несущей (ОБП);

б) однополосные системы с передаваемой несущей (ОБП-ПН);

в) двухполосные системы с подавленной несущей (ДБП);

г) двухполосные системы с передаваемой несущей (ДБП-ПН).

В основном применяется ОБП.

В системах временным разделением применяют:

Дискретные методы;

Цифровые методы.

Обычно ВУ сочетается с МДВУ, а ЧУ - с МДЧУ, но возможны и смешанные системы.

Передача ТВ сигналов и сигналов звукового сопровождения.

Согласно плану ВАКР-77 максимальная скорость передачи в ТВ канале не превышает 20 Мбит/с. Но для передачи высококачественного цветного изображения необходима скорость передачи не менее 34 Мбит/с. Поэтому для первого поколения спутниковых систем ТВ применялись аналого-цифровые методы, когда часть информации передавалась в аналоговой форме, а часть - в цифровой.

Одна из таких систем - система МАС (Multiplexing Analogue Components -составной сигнал с аналоговыми компонентами). В этой системе аналоговый сигнал яркости передается поочередно (методом временного разделения) с сигналами цветности, преобразованными в дискретную форму, что позволяет избежать перекрестных искажений сигналов яркости и цветности, снизить шумы в канале цветности благодаря переводу его в область низких частот. Сигналы звукового сопровождения, синхронизации, данных передаются совместно с сигналами цветности в общем цифровом потоке.

В самом простом варианте сигнал яркости передается в реальном масштабе времени в течение активной части строки, а цифровой поток - в интервале строчного гасящего импульса, причем сигнал цветности предварительно сжимается во времени. На приеме суммарный цифровой поток демультиплексируется. Поток, соответствующий сигналу цветности, растягивается и сдвигается во времени для восстановления первоначальных пропорций, а затем подается на декодирующее устройство.

В более сложной системе сжимаются во времени и сигнал яркости, и сигнал цветности, а разделение производится на периоде не только строки, но и кадра. Это позволяет изменять формат кадра. В результате исследований ЕСР выбран коэффициент сжатия 3/2 для сигнала яркости и 3 для сигналов цветности. На передающей стороне сигнал яркости задерживается на период кадра по отношению к сигналу цветности, на приеме же сигнал яркости проходит без изменений, а сигнал цветности растягивается во времени и задерживается на период кадра, так что восстанавливается их первоначальное соотношение.

Одной из наиболее сложных проблем спутникового телевидения (СТВ) является способ передачи звуковых сигналов в ТВ канале. Теоретические исследования и эксперименты показали, что методом аналоговой ЧМ в диапазоне 12 ГГц удается передать совместно с сигналом изображения не более двух звуковых программ с отношением сигнал/шум порядка 50-55 дБ, причем частота второй поднесущей должна быть подобрана так, чтобы не создавать помех в канале цветности. Например, для TV-SAT были выбраны значения поднесущих 5,5 МГц и 5,746128 0,000003 МГц. Необходимо же иметь как минимум 4-6 звуковых каналов в стволе.

Способ передачи цифрового потока совместно с сигналами изображения должен удовлетворять определенным требованиям: качество передачи изображения не должно ухудшаться; вероятность ошибки при передаче звуковых сигналов не должна превышать 10 -3 при отношении C/N=8 дБ; необходима совместимость с существующими ТВ приемниками.

Можно выделит три способа передачи сигналов изображения и цифрового потока:

С разделением по частоте (система МАС-А);

С разделением по времени на видеочастоте (МАС-В);

С разделением по времени на несущей частоте (МАС-С).

Система МАС-А. Цифровой поток передается на поднесущей частоте, превышающей верхнюю частоту спектра видеосигнала. Частота поднесущей выбирается из соотношения , где F B - верхняя частота видеосигнала, R - скорость потока в Мбит/с.

Среди методов цифровой модуляции предпочтение отдано двухпозиционной фазовой манипуляции с частично подавленной боковой полосой, называемой также “ упрощенной MSK” (Minimum Shift Keying), благодаря ее простоте и применимости когерентного демодулятора на приеме.

Система МАС-В. Уплотнение видеосигнала цифровым потоком на видеочастоте основано на использовании некоторой избыточности ТВ сигнала - наличии в каждой строке интервалов обратного хода лучей, в которых передаются только сигналы синхронизации. Вводя ИКМ последовательность в указанные интервалы, можно передать от двух до четырех звуковых программ, не увеличивая общую полосу частот, занимаемую видеосигналом. Преимуществом такого способа передачи является отсутствие отдельного демодулятора для звуковых сигналов, так как цифровая последовательность получается на выходе общего частотного детектора.



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: