Схема управления сервоприводом. Подключаем сервопривод к Arduino

Квантовая механика при всех своих парадоксах все же описывает свойства объектов, существующих в неискривленном ньютоновском пространстве. Будущая теория гравитации должна распространить вероятностные квантовомеханические законы на свойства самого пространства (точнее, пространства-времени), деформированного в соответствии с уравнениями общей теории относительности. Как это сделать с помощью строгих математических выкладок, никто еще толком не знает.

Холодное рождение

Однако пути к подобному объединению можно обдумать на качественном уровне, и здесь появляются весьма интересные перспективы. Одну из них рассмотрел известный космолог, профессор Аризонского университета Лоуренс Краусс в своей недавно изданной книге «A Universe From Nothing» («Вселенная из ничего»). Его гипотеза выглядит фантастической, но отнюдь не противоречит установленным законам физики.

Считается, что наша Вселенная возникла из очень горячего начального состояния с температурой порядка 10 32 кельвинов. Однако возможно представить и холодное рождение вселенных из чистого вакуума — точнее, из его квантовых флуктуаций. Хорошо известно, что такие флуктуации порождают великое множество виртуальных частиц, буквально возникших из небытия и впоследствии бесследно исчезнувших. Согласно Крауссу, вакуумные флуктуации в принципе способны давать начало столь же эфемерным протовселенным, которые при определенных условиях переходят из виртуального состояния в реальное.

Вселенная без энергии

Что для этого нужно? Первое и главное условие — зародыш будущей вселенной должен иметь нулевую полную энергию. В этом случае он не только не обречен на практически мгновенное исчезновение, но, напротив, может просуществовать сколь угодно долго. Это связано с тем, что, согласно квантовой механике, произведение неопределенности величины энергии объекта на неопределенность его времени жизни не должно быть меньше конечной величины — постоянной Планка.


Разделение фундаментальных взаимодействий в нашей ранней Вселенной носило характер фазового перехода. При очень высоких температурах фундаментальные взаимодействия были объединены, но при остывании ниже критической температуры разделения не произошло (это можно сравнить с переохлаждением воды). В этот момент энергия скалярного поля, связанного с объединением, превысила температуру Вселенной, что наделило поле отрицательным давлением и послужило причиной космологической инфляции. Вселенная стала очень быстро расширяться, и в момент нарушения симметрии (при температуре около 10 28 К) ее размеры увеличились в 10 50 раз. В этот момент исчезло и скалярное поле, связанное с объединением взаимодействий, а его энергия трансформировалась в дальнейшее расширение Вселенной.

Коль скоро энергия объекта строго равна нулю, она известна без всяких неопределенностей, и потому время его жизни может быть бесконечно большим. Именно благодаря этому эффекту два заряженных тела, расположенных на очень больших расстояниях, притягиваются или отталкиваются друг от друга. Они взаимодействуют благодаря обмену виртуальными фотонами, которые, в силу своей нулевой массы, распространяются на любые дистанции. Напротив, калибровочные векторные бозоны, переносящие слабые взаимодействия, в силу большой массы существуют лишь около 10 -25 секунды, вследствие чего эти взаимодействия обладают очень малым радиусом.

Что же за вселенная, пусть и эмбриональная, с нулевой энергией? Как объяснил «Популярной механике» профессор Краусс, в этом нет ничего мистического: «Энергия такой вселенной складывается из положительной энергии частиц и излучений (и, возможно, также скалярных вакуумных полей) и отрицательной потенциальной энергии тяготения. Их сумма может быть равна нулю — математика это допускает. Однако очень важно, что такой энергетический баланс возможен лишь в замкнутых мирах, пространство которых имеет положительную кривизну. Плоские и тем более открытые вселенные таким свойством не обладают».


Фазовый переход происходил в эволюции Вселенной три раза: при температуре 10 28 K (распалось Великое объединение взаимодействий), 10 15 К (распад электрослабого взаимодействия) и 10 12 K (кварки стали объединяться в адроны).

Чудеса инфляции

Что произойдет, если квантовые флуктуации вакуума породят виртуальную вселенную с нулевой энергией, которая в силу квантовых случайностей получила какое-то время для жизни и эволюции? Это зависит от ее состава. Если пространство вселенной заполнено веществом и излучением, она сначала будет расширяться, достигнет максимального размера и схлопнется в гравитационном коллапсе, просуществовав лишь ничтожную долю секунды. Другое дело, если в пространстве имеются скалярные поля, способные запустить процесс инфляционного расширения. Существуют сценарии, в которых это расширение не только предотвращает гравитационный коллапс «пузырьковой» вселенной, но и превращает ее в почти плоский и безграничный мир. Тем самым неизмеримо вырастает и время ее жизни — практически до бесконечности. Таким образом, крошечная виртуальная вселенная становится вполне реальной — огромной и долгоживущей. Даже если ее возраст конечен, он вполне может намного превысить нынешний возраст нашей Вселенной. Поэтому там могут появиться звезды и звездные скопления, планеты и даже, чем черт не шутит, разумная жизнь. Полноценное мироздание, возникшее буквально из ничего — вот на какие чудеса способна инфляция!

Все три философа Милетской школы думали, что должно быть одно – и только одно – исходное вещество, из которого создано все сущее. Но как одно вещество может внезапно перейти в нечто совершенно иное? Назовем эту проблему проблемой изменений.

На рубеже VI-V веков до н. э. в греческой колонии Элее в Южной Италии жило несколько философов, ломавших голову над подобными вопросами. Самым знаменитым из них был Парменид (ок. 540-480 до н.э.).

Парменид утверждал, что все сущее существовало всегда. У греков эта идея пользовалась большой популярностью. Они были почти убеждены в вечности всего сущего на земле. Ничто не может возникнуть из ничего, говорил Парменид, и точно так же что-либо уже существующее не может обратиться в ничто.

Конечно, Парменид осознавал, что всё в природе постоянно изменяется. Чувствами он отмечал изменение вещей, однако это противоречило тому, что подсказывал ему разум. Вынужденный выбирать, опираться ли ему на чувства или на разум, он избрал разум.

Нам известно выражение: «Не поверю, пока не увижу собственными глазами». Но Парменид не верил и собственным глазам. Он считал, что чувства дают нам превратную картину мира, картину, не совпадающую с мыслимым бытием. Свою задачу как философа он видел в разоблачении всяческого «обмана чувств».

Столь крепкая вера в человеческий разум носит название рационализма. Рационалист признаёт разум единственным источником познания человеком действительности.

ВСЕ ТЕЧЕТ

Одновременно с Парменидом жил Гераклит (ок. 540-480 до н. э. ) из малоазийского города Эфеса. Он как раз утверждал, что основополагающим свойством природы являются постоянные изменения. Видимо, можно сказать, что Гераклит больше Парменида полагался на свои чувства.

«Все течет», – говорил Гераклит. Все пребывает в движении, ничто не продолжается бесконечно, поэтому «в одну реку нельзя войти дважды». Ведь, когда я вхожу в реку второй раз, и я, и река уже другие.



Гераклит указывал на то, что в мире отведено место и добру, и злу. Без непрерывного взаимодействия между противоположностями мир просто-напросто перестал бы существовать.

«Бог есть день-ночь, зима-лето, война-мир, сытость-голод», – говорил Гераклит. Он употребляет слово «бог», но, несомненно, подразумевает вовсе не тех богов, о которых шла речь в мифах. Для Гераклита бог – или божественное – есть нечто, охватывающее все бытие. Бог – это то, что проявляет себя в изменчивой и проникнутой противоречиями природе.

Вместо слова «бог» этот философ нередко пользуется греческим словом «логос», что значит «разум» или «слово», «речь». Хотя мы, люди, не всегда думаем одинаково и понятия о разуме у нас расходятся, существует некий «мировой разум», управляющий всем происходящим в природе, считал Гераклит. Этот «мировой разум», или «закон природы», универсален, и все обязаны прислушиваться к нему. Однако, по Гераклиту, большинство предпочитает опираться на собственный здравый смысл. Он вообще не слишком жаловал своих собратьев. «Воззрения большинства людей подобны детским забавам», – утверждал он.

Таким образом, посреди всех царящих в природе изменений и противоположностей Гераклит видел некое единство, некую общность. Эту общность, на которой основывается все, он называл «богом», или «логосом».

ЧЕТЫРЕ ПЕРВОВЕЩЕСТВА

Парменид и Гераклит фактически отстаивали противоположные взгляды. Из разума Парменида явствовало, что ничто не может изменяться. Из чувственного опыта Гераклита явствовало иное – что в природе постоянно происходят изменения. Кто из них был прав? Стоит-ли полагаться на то, что подсказывает нам разум, или лучше прислушиваться к чувствам?

И Парменид, и Гераклит выдвигают по два положения.

Парменид учит:

А) ничто не может изменяться

И б) поэтому чувственные впечатления ненадежны.

Гераклит, напротив, утверждает:

А) все изменяется («все течет»)

И б) чувственные впечатления вполне надежны.

Трудно представить себе более серьезные расхождения во мнениях! Однако сицилийскому философу Эмпедоклу (ок. 494-434 до н. э.) удалось найти выход из запутанного положения, в которое попали его предшественники. Он утверждал, что и Парменид, и Гераклит правы по одному из пунктов и ошибаются по второму.

Согласно Эмпедоклу, серьезное разногласие объясняется тем, что философы исходили из существования одного-единственного первовещества. Если бы их взгляды соответствовали действительности, разрыв между доводами разума и тем, что мы «видим собственными глазами», оказался бы непреодолим.

Естественно, вода не может превратиться ни в рыбу, ни в бабочку. Она вообще не в состоянии изменяться. Сама по себе вода навечно остается всего лишь водой. Таким образом, положение Парменида о том, что «ничто не изменяется», справедливо.

Одновременно Эмпедокл соглашался со вторым утверждением Гераклита: да, нам следует полагаться на чувства. Человеку нужно доверять своим глазам, а они свидетельствуют как раз о непрерывных изменениях в природе.

Эмпедокл пришел к выводу, что необходимо отказаться от тезиса о существовании одного первоначала. Ни вода, ни воздух не могут сами по себе превратиться в бабочку или в розовый куст, так что говорить об одном исходном веществе для всего на свете не приходится.

Согласно Эмпедоклу, в природе существуют четыре первовещества, или, как он их называл, «корня». Эти четыре корня суть земля, воздух, огонь и вода.

Все изменения происходят от смешения и последующего разъединения этих четырех элементов. Ведь все состоит из земли, воздуха, огня и воды, только смешанных в разных пропорциях. Когда цветок или животное погибает, четыре первовещества распадаются. Это изменение заметно невооруженным глазом. Однако земля и воздух, огонь и вода остаются неизменными, или «не затронутыми» смешением. Значит, нельзя сказать, что изменяется «все». По сути дела, не изменяется ничего. Происходит всего-навсего слияние четырех стихий и их разложение – для последующего соединения.

Здесь уместно сравнение с художником. Если у него в распоряжении всего одна краска (например, красная), он не в состоянии изобразить зеленые деревья. Если же у него есть желтый, красный и синий цвета – ему доступны сотни различных оттенков, поскольку он может смешивать краски в разных пропорциях.

То же самое легко продемонстрировать на примере с едой. Если у меня нет никаких продуктов, кроме муки, испечь торт под силу только волшебнику. Но если у меня есть вдобавок яйца, молоко и сахар, я могу испечь сколько угодно разных тортов.

Эмпедокл не случайно остановился именно на этих четырех «корнях» природы: земле, воздухе, огне и воде. Его предшественники уже пытались доказать, что первоначалом является либо вода, либо воздух, либо огонь. На воду и воздух как на важные элементы бытия указывали Фалес и Анаксимен. Греки верили и в первостепенную роль огня. Они, например, понимали значение солнца для всего живого на земле и, естественно, знали о тепле, которое поддерживается в телах людей и животных.

Эмпедокл наверняка наблюдал горение дров. При горении происходит разъединение элементов. Нам слышно, как трещит и шипит дерево. Это «вода». Что-то поднимается в виде дыма. Это «воздух». Про «огонь» и говорить нечего, он виден. А когда костер потухнет, останется горстка пепла. Это «земля».

Даже после указания Эмпедокла на то, что изменения в природе связаны с соединением и разъединением четырех корней, кое-какие вопросы остаются невыясненными. Чем вызвано сложение веществ, из которого рождается новая жизнь? И отчего «смесь», например цветок, затем опять разлагается на составные части?

– это привод, вал которого может встать в заданное положение или поддерживать заданную скорость вращения. Другими словами, валом сервопривода можно управлять, например, задавая ему положение в градусах или определенную частоту вращения.

Используются в самых разных областях, например, в робототехнике они помогают моделировать различные движения роботов. Сервоприводы эффективное решение для перемещения механизмов в пространстве.

В этом уроке мы научимся управлять сервоприводом .

Для урока нам понадобиться:

Подключение к Arduino

Для достижения самых разных целей робототехники к программируемому контроллеру Arduino может быть подключен сервопривод. Подключение осуществляется через кабели, которые выходят из сервопривода. Обычно это три кабеля: красный; коричневый или черный; желтый, оранжевый или белый.

Подключение сервопривода к плате Arduino производится через ШИМ-выводы. Что Такое PWM (ШИМ) мы уже рассматривали в уроке: Плавное включение светодиода на Arduino с помощью ШИМ (PWM)

За основу возьмем урок Подключение кнопки и светодиода плате Arduino к схеме добавим сервопривод и вот что у нас должно получиться.

Изменим код:

#include // подключаем библиотеку для работы с сервоприводом Servo servo; // объявляем переменную servo типа "servo" int led_pin=3; // пин подключения int button_pin = 4; // пин кнопки // переменные int buttonState = 0; // переменная для хранения состояния кнопки void setup() { pinMode(led_pin, OUTPUT); // Инициализируем цифровой вход/выход в режиме выхода. pinMode(button_pin, INPUT); // Инициализируем цифровой вход/выход в режиме входа. servo.attach(5); // привязываем сервопривод к аналоговому выходу 10 } void loop() { buttonState = digitalRead(button_pin);// считываем значения с входа кнопки if (buttonState == HIGH) { digitalWrite(led_pin, HIGH);// зажигаем светодиод servo.write(0); //ставим вал на 180 delay (1000); // задержка в 1 секунду } else { digitalWrite(led_pin, LOW);// выключаем светодиод servo.write(180); //ставим вал на 0 delay (1000); // задержка в 1 секунду } }

#include // подключаем библиотеку для работы с сервоприводом

Мы еще не работали с библиотеками. Библиотека это класс, содержащий функции которые мы можем использовать в нашей программе. Библиотека позволяет сократить объем написанного кода и скорость разработки приложения.

Ка вы поняли строка выше подключает нашу библиотеку Servo.h, после чего мы можем использовать все функции данной библиотеки.

Servo servo; // объявляем переменную servo типа "servo"

Объявлением переменную, она нам понадобиться для работы с библиотекой.

Servo.attach(5); // привязываем сервопривод к аналоговому выходу 5

Функция библиотеки Servo.

Servo.write(180); //ставим вал на 180

С помощью данной функции мы можем повернуть сервопривод на заданный угол.

Следующий урок: IR Пульт. Включение выключение светодиода.

В данной статье рассмотрим устройство, принцип работы, характеристики и габаритные размеры сервоприводов.

Определение понятия сервопривод

Сервопривод (следящий привод) — привод с управлением через отрицательную обратную связь, позволяющую точно управлять параметрами движения.
Сервоприводом является любой тип механического привода (устройства, рабочего органа), имеющий в составе датчик (положения, скорости, усилия и т. п.) и блок управления приводом (электронную схему или механическую систему тяг), автоматически поддерживающий необходимые параметры на датчике (и, соответственно, на устройстве) согласно заданному внешнему значению (положению ручки управления или численному значению от других систем).
Проще говоря, сервопривод является «автоматическим точным исполнителем» — получая на вход значение управляющего параметра (в режиме реального времени), он «своими силами» (основываясь на показаниях датчика) стремится создать и поддерживать это значение на выходе исполнительного элемента.

Используемые компоненты (купить в Китае):

Полезная вещь для проверки сервориводов

Разобравшись с определением перейдем к непосредственному разбору принципа работы сервопривода
Для большей наглядности сразу приведу схематичную картинку внутренностей сервопривода.

Приступим к разбору.
Для подключения к контроллеру от сервопривода тянется 3 провода обжатых чаще всего стандартным 3 пиновым разъемом с шагом 2.54мм (1). Цвета проводов могут варьироваться. Коричневый или черный - земля (минус), красный - плюс источника питания, оранжевый или белый - управляющий сигнал. Об управляющих сигналах расскажу чуть позже.
Итак, сигнал приходит на плату которая и будет данный сигнал преобразовывать в импульсы посылаемые непосредственно на двигатель (2). К ней мы вернемся чуть позже.
Наконец-то мы дошли до той детали, благодаря которой мы и можем считывать и задавать угол поворота сервопривода (3). В интернете нашел отличную GIFку демонстрирующую принцип работы потенциометра.

Принцип работы потенциометра прост. Потенциометр имеет 3 вывода. На крайние выводы подается плюс и минус питания (полярность не имеет значения), между выводами имеется резистивное вещество, по которому и движется ползунок соединенный со средним выводом. В нашем случае договоримся что на крайнем левом у нас плюс, на крайнем правом минус. Вращая крутилку из левого крайнего положения в крайнее правое положение мы увеличиваем сопротивление, а вместе с тем и уменьшаем напряжение от входного до условно минимального, которое будем снимать со среднего вывода. Значение минимального напряжения будет зависеть от величины максимального сопротивления у конкретно взятого потенциометра. В рассматриваемых нами сервоприводах чаще всего устанавливают потенциометры на 5 килоОм.
С устройством мы разобрались, теперь вернемся к сервоприводу. Крутилка сервопривода у нас состыкована с выходным валом сервопривода, следовательно при повороте выходного вала мы меняем значение на потенциометре. Условно примем входное напряжение (ручка потенциометра в крайнем правом положении) равное пяти вольтам, пускай при крайнем левом положении потенциометр погасит все напряжение и минимальное напряжение будет равным нулю, а в средней точке тогда у нас будет два с половиной вольта. Из данных условий у нас получается что при угле в 180° на выходе потенциометра у нас 5 вольт, при 90° 2,5 вольта, а при 0° 0 вольт. Для чего я это так подробно рассказываю? Возвращаемся снова к управляющей плате.
Сервопривод находится в положении 0°. На вход платы управления мы подаем управляющий сигнал который несет в себе информацию о повороте сервопривода на 90°. Электронная начинка платы считывает показания потенциометра, на потенциометре видит 0 вольт, а в программе забито что должно быть 2,5. Вот и весь смысл. Плата анализирует разницу, затем выбирает направление вращения мотора и будет вращать его до тех пор пока напряжение на выходе потенциометра не станет равным двум с половиной вольтам.
Едем дальше. Чтоб не листать страницу снова вверх, в поисках картинки, приведу её ещё раз.

Микромоторчик (4) не в состоянии развить мощное усилие на валу (момент), однако обладает высокой скоростью вращения. Для преобразования высокой угловой скорости с малым моментом в низкую с высоким, которая нам как раз и нужна, следует использовать редуктор. Редуктор представлен шестернями соединяющими вал моторчика и выходной вал (5). Шестерня с меньшим количеством зубцов ведет шестерню с большим. от этого снижается скорость но повышается момент, Более наглядно понять принцип работы редуктора можно взяв в руки сервопривод и попытаться повернуть качалку сервопривода. Сложно? Конечно, ведь с обратной стороны редуктор превращается в мультипликатор, механическое устройство которое наоборот преобразует низкооборотный мощный момент в высокооборотный слабый.


Основные характеристики сервоприводов:

. Усилие на валу

Усилие на валу, он же момент это один из самых важных показателей сервопривода и измеряется в кг/см. В характеристиках обычно указывается для двух вариантов напряжения питания, чаще всего для 4.8В и 6.0В.
Момент в 15 кг/см означает что сервопривод способен удержать неподвижно в горизонтальном положении качалку с плечом в 1 см и подвешенным к ней грузом массой 15 кг либо же удержать груз в 1 кг на качалке с плечом в 15 см.
Длина плеча качалки обратно пропорциональна массе удерживаемого груза. Для данного привода при длине в 2 см мы получим 7.5 кг, а уменьшив длину рычага до 0,5 см получим уже целых 30кг

. Скорость поворота

Скорость поворота также является одной из самых важных характеристик. Ее принято указывать во временном эквиваленте требуемом для изменения положения выводного вала сервопривода на 60°. Данную характеристику также чаще всего указывают для 4.8В и 6.0В.
Например характеристика 0.13сек/60° означает что поворот данной сервы на 60° может быть совершен минимум за 0.13 секунды.

. Тип сервоприводов

Цифровые либо аналоговые

. Напряжение питания

Для большинства хоббийных сервоприводов колеблется в диапазоне от 4.8 до 7.2В

. Угол поворота

Это максимальный угол на который может повернуть выходной вал. Сервоприводы по углам поворота в основном бывают на 180° и 360°.

. Сервопривод постоянного вращения

Выпускаются сервоприводы и постоянного вращения. Если нет возможности приобрести такой, но очень нужно, то можно переделать обычный сервопривод.

. Тип редуктора

Редукторы сервопривода выполняют из металла, карбона, пластика либо компонуют из металлических и пластиковых шестерней.

Пластиковые шестерни слабо выдерживают нагрузки и удары, зато обладают очень малым износом. Карбоновые прочнее пластиковых, но намного дороже. Металлические выдерживают большие нагрузки, удары, падения, однако износ у этого типа шестерней самый большой.
Также хочется отметить что и выходной вал на различных сервоприводах устанавливается по разному. На большинстве вал скользит на втулках скольжения, на более мощных сервоприводах уже используются шариковые подшипники.

Типоразмеры сервоприводов:

Сервоприводы делятся на 4 основных типоразмера. Далее приводятся типы сервоприводов с указанием веса и размеров. Размеры различных сервоприводов могут незначительно откланяться от приведенных ниже.

Микро: 24мм x 12мм x 24мм, вес: 8-10 г.

Мини: 30мм x 15мм x 35мм, вес 23-25 г.

Стандарт: 40мм x 20мм x 37мм, вес: 50-80 г.

Гигант: 49x25x40 мм, вес 50-90 г.

Цикл статей о сервоприводах:

Купить в России

Сервоприводом (англ. servo) называется такой привод, точное управление которым осуществляется через отрицательную обратную связь, и позволяет таким образом добиться требуемых параметров движения рабочего органа.

Механизмы этого типа имеют датчик, отслеживающий конкретный параметр, например скорость, положение или усилие, а также блок управления (механические тяги или электронную схему), задача которого - поддерживать в автоматическом режиме необходимый параметр в процессе работы устройства, в зависимости от сигнала с датчика в каждый момент времени.

Исходное значение рабочего параметра задается посредством управления, например или при помощи другой внешней системы, куда вводится численное значение. Так, сервопривод автоматически исполняет поставленную задачу, - опираясь на сигнал с датчика, он точно подстраивает заданный параметр, и поддерживает его устойчиво на исполнительном органе.

Многие усилители и регуляторы с отрицательной обратной связью могут быть отнесены к сервоприводам. Например, к сервоприводам относятся тормозная система и рулевое управление в автомобилях, где усилитель ручного привода обязательно имеет отрицательную обратную связь по положению.

Основные компоненты сервопривода:

    Привод;

    Датчик;

    Блок управления;

    Конвертер.

В качестве привода может использоваться например пневмоцилиндр со штоком или электродвигатель с редуктором. Датчиком обратной связи может быть или, например, . Блок управления - индивидуальный инвертор, преобразователь частоты, сервоусилитель (англ. Servodrive). В блок управления может сразу входить и датчик управляющего сигнала (конвертер, вход, датчик воздействия).


В самом простом виде блок управления для электрического сервопривода строится на базе схемы сравнения значений сигналов задаваемого и сигнала, идущего с датчика обратной связи, по результатам которого на электродвигатель подается напряжение соответствующей полярности.

Если требуется плавный разгон или плавное торможение, с целью избежать динамических перегрузок электродвигателя, то реализуют более сложные схемы управления на микропроцессорах, способные позиционировать рабочий орган более точно. Так к примеру устроен привод позиционирования головок в жестких дисках.

Точное управление группами или одиночными сервоприводами достигается применением контроллеров ЧПУ, которые, кстати, могут быть построены на программируемых логических контроллерах. Сервоприводы на основе таких контроллеров достигают по мощности 15 кВт, и могут развивать крутящий момент до 50 Нм.

Сервоприводы вращательного движения бывают синхронными, с возможностью исключительно точного задания скорости вращения, угла поворота и ускорения, и асинхронными, в которых скорость очень точно поддерживается даже на предельно низких оборотах.

Синхронные сервоприводы способны весьма быстро разгоняться до номинальных оборотов. Также распространены круглые и плоские сервоприводы линейного движения, позволяющие достигать ускорений вплоть до 70 м/с².

Принципиально сервоприводы подразделяются на электрогидромеханические и электромеханические. У первых движение порождается системой поршень-цилиндр, и быстродействие получается очень высоким. Вторые используют просто электромотор с редуктором, однако быстродействие получается ниже на порядок.

Область применения сервоприводов сегодня весьма широка, благодаря возможности исключительно точного позиционирования рабочего органа.

Здесь и механические задвижки, и клапаны, и рабочие органы различных инструментов и станков, особенно с ЧПУ, включая автоматы для заводского изготовления печатных плат, и различные промышленные роботы, и многие другие точные приборы. Очень популярны высокоскоростные сервоприводы в среде авиамоделистов. Конкретно у сервомоторов примечательна характерная равномерность движения и эффективность в плане энергопотребления.

Изначально в качестве приводов сервомоторов применялись моторы трехполюсные коллекторные, где ротор содержал обмотки, а статор - постоянные магниты. Мало того, имелся коллекторно-щеточный узел. Позже количество обмоток возросло до пяти, и крутящий момент стал больше, а разгон - быстрее.

Следующая стадия совершенствования - обмотки разместили снаружи магнитов, так уменьшился вес ротора, и сократилось время разгона, однако возросла стоимость. В итоге был сделан ключевой шаг совершенствования - отказались от коллектора (в частности распространение получили приводные моторы с постоянными магнитами на роторе), и двигатель получился бесщеточным, еще более эффективным, поскольку ускорение, скорость, и крутящий момент стали теперь еще выше.

В последние годы весьма популярными становятся сервомоторы , благодаря чему открываются широкие возможности как для любительского авиа и роботостроения (квадрокоптеры и т.д.), так и для создания точных станков.

В большинстве своем обычные сервоприводы для работы использует три провода. Один из них для питания, второй сигнальный, третий - общий. На сигнальный провод подается управляющий сигнал, согласно которому требуется установить положение выходного вала. Положение вала определяется схемой с потенциометром.

Контроллер по сопротивлению и значению сигнала управления определяет, в каком направлении нужно осуществить вращение, чтобы вал пришел в требуемое положение. Выше напряжение снимаемое с потенциометра - больше крутящий момент.

Благодаря высокой энергоэффективности, возможности точного управления, и отличным рабочим характеристикам, именно сервоприводы на базе бесколлекторных моторов все чаще можно встретить как в игрушках, так и в бытовой технике (сверхмощные пылесосы с фильтрами HEPA) и в промышленном оборудовании.



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: