Расширение спектра скачкообразной перестройкой частоты. Курсовая работа Модуляция с расширением спектра

Расширение спектра

Термин расширение спектра был использован многочисленных военныхи коммерческих системах связи. В системах с расширенным спектромкаждый сигнал-переносчик сообщений требует значительно более широкойполосы радиочастот по сравнению с обычным модулированным сигналом. Более широкая полоса частот позволяет получить некоторые полезные

свойства и характеристики, которые трудно достичь другими средствами.

Расширение спектра представляет собой метод формирования сигнала с расширенным спектром с помощью дополнительной ступени модуляции, обеспечивающей не только расширение спектра сигнала, но и ослабление его влияния на другие сигналы. Дополнительная модуляция никак не связана с передаваемым сообщением. Поэтому подобное расширение полосы непозволяет ослабить влияние аддитивного белого гауссовского шума (АБГШ), как это происходит при широкополосной частотной модуляции.

Преимущества систем с расширенным спектром

спектральной плотности 4) Высокая разрешающая способность при измерениях расстояния 5) Защищённость связи6) Способность противостоять воздействию преднамеренных помех

8) Постепенное снижение качества связи при увеличении числа пользователей одновременно занимающих один и тот же ВЧ канал

9) Низкая стоимость при реализации

10) Наличие современной элементнойбазы (интегральных микросхем).

Основные группы систем с расширенным спектром

В соответствии с архитектурой и используемыми видами модуляции,

системы с расширенным спектром могут быть разделены на следующие основные группы:

Системы с прямым расширением спектра на основе псевдослучайных последовательностей (ПСП), включая системы МДКРК (CDMA).

Системы с перестройкой рабочей частоты (с «прыгающей» частотой), включая системы МДКРК с медленной и быстрой перестройкой рабочей частоты.

Системы множественного доступа с расширенным спектром и контролем несущей (CSMA).

Системы с перестройкой временного положения сигналов («прыгающим» временем).

Системы с линейной частотной модуляцией сигналов (chip modulation). Системы со смешанными методами расширения спектра.

В подвижных системах радиосвязи и беспроводных локальных сетях нашли широкое применение методы прямого расширения спектра, перестройки рабочей частоты и расширения спектра с контролем несущей.

Прямое расширение спектра с помощью псевдослучайных последовательностей

Рис. 1. Структурная схема

системы с прямым

расширением спектра

сигналов с помощью

псевдослучайной

последовательности: а -

передатчик сигналов с

PSK и последующим

расширением спектра; б - эквивалентная схема передатчика, в которой

расширение спектра

осуществляется в полосе модулирующих частот; в - приемник.

Процесс формирования сигналов с расширенным спектром происходит в два этапа: модуляция и расширение спектра (или вторичная модуляции посредством псевдослучайной последовательности). Вторичная

модуляция осуществляется с помощью идеальной операции перемножения g(t)s(t) (рис.1).При таком перемножении формирует

амплитудно-модулированный двухполосный сигнал с подавленной несущей.

PSK сигнал определяется следующим выражением:

где d(t) - нефильтрованный двухуровневый сигнал, имеющий два состояния: +1 и -1; ωпч - промежуточная частота,Ps - мощность сигнала.

В качестве сигнала расширения спектра g(t) используется сигнал псевдослучайной последовательности (ПСП) с частотой следованиясимволов f= 1/Тс. В результате повторной модуляции формируется PSKсигнал с расширенным спектром:

Этот сигнал промежуточной частоты затем переносится вверх на необходимую частоту с помощью синтезатора радиочастоты (РЧ). Здесьω0 обозначает либо промежуточнуюω ПЧ либо радиочастотуωРЧ.

Таким образом, на вход приемника поступает сумма М независимых сигналов с расширенным спектром, занимающих одну и ту же полосу РЧ:

где М - число одновременно передающих (активных) пользователей; g i (t) -ПСП i-й пары передатчик-приемник; s i (t) модулированный сигнал; I(t) -помеха (преднамеренная или собственная);n(t) - АБГШ.

В приемнике пользователя, которому предназначено сообщение, имеетсясинхронизированный во времени сигналg i (t) обеспечивающий сжатия

спектра и представляющий точную копию сигнала ПСП соответствующего передатчика. Полученный после сжатия спектра узкополосный PSK сигнал демодулируется. В приведенном примере используется двоичная фазовая модуляция/демодуляция. Однако возможна реализация и других видов

модуляции, таких, как МSК, GМSК, GFS^ FВРSК и FQFSК.

Если выбран ансамбль некоррелированных сигналов ПСП, то после операции сжатия спектра сохраняется лишь модулированный полезный сигнал. Все другие сигналы, являясь некоррелированными, сохраняют широкополосность и имеют ширину спектра, превышающую граничную полосу пропускания фильтра демодулятора.

приемной частей системыизображенына рис.4. Здесь генератор двоичной ПСП управляет синтезатором частот, с помощью которого осуществляется переход(«перескок») с одной частоты на другую измножества доступных частот. Таким образом, здесь эффект расширения

спектра достигается за счет псевдослучайной перестройки частоты несущей, значение которой выбирается из имеющихся частот f j ,. . . , f N ,

где N может достигать значений несколько тысяч и более.

Если скорость перестройки сообщений (скорость смены частот)

превышает скорость передачи сообщений, то имеем систему с быстрой перестройкой частоты. Если скорость перестройки меньше скорости

передачи сообщений, так что в интервале перестройки передается несколько битов, то имеем систему с медленной перестройкой частоты.

Идея метода расширения спектра скачкообразной перестройкой частоты (Frequency Hopping Spread Spectrum, FHSS) возникла во время Второй мировой войны, когда радио широко использовалось для секретных переговоров и управления военными объектами, например торпедами. Для того чтобы радиообмен нельзя было перехватить или подавить узкополосным шумом, было предложено вести передачу с постоянной сменой несущей в пределах широкого диапазона частот. В результате мощность сигнала распределялась по всему диапазону, и прослушивание какой-то определенной частоты давало только небольшой шум. Последовательность несущих частот выбиралась псевдослучайной, известной только передатчику и приемнику. Попытка подавления сигнала в каком-то узком диапазоне также не слишком ухудшала сигнал, так как подавлялась только небольшая часть информации.

Идею этого метода иллюстрирует рис. 10.12.

Рис. 10.12. Расширение спектра скачкообразной перестройкой частоты

В течение определенного фиксированного интервала времени передача ведется на неизменной несущей частоте. На каждой несущей частоте для передачи дискретной информации применяются стандартные методы модуляции, такие как FSK или PSK. Чтобы приемник синхронизировался с передатчиком, для обозначения начала каждого периода передачи в течение некоторого времени передаются синхробиты. Так что полезная скорость этого метода кодирования оказывается меньше из-за постоянных накладных расходов на син­хронизацию.

Несущая частота меняется в соответствии с номерами частотных подканалов, вырабатываемых алгоритмом псевдослучайных чисел. Псевдослучайная последовательность зависит от некоторого параметра, который называют начальным числом . Если приемнику и передатчику известны алгоритм и значение начального числа, то они меняют частоты в одинаковой последовательности, называемой последовательностью псевдослучайной перестройки частоты.

Если частота смены подканалов ниже, чем скорость передачи данных в канале, то такой режим называют медленным расширением спектра (рис. 10.13, а); в противном случае мы имеем дело с быстрым расширением спектра (рис. 10.13, б).

Метод быстрого расширения спектра более устойчив к помехам, поскольку узкополосная помеха, которая подавляет сигнал в определенном подканале, не приводит к потере бита, так как его значение повторяется несколько раз в различных частотных подканалах. В этом режиме не проявляется эффект межсимвольной интерференции, потому что ко времени прихода задержанного вдоль одного из путей сигнала система успевает перейти на другую частоту.

Рис. 10.13. Соотношение между скоростью передачи данных и частотой смены подканалов

Метод медленного расширения спектра таким свойством не обладает, но зато он проще в реализации и имеет меньшие накладные расходы.

Методы FHSS применяют в беспроводных технологиях IEEE 802.11 и Bluetooth. В методах FHSS подход к использованию частотного диапазона не такой, как в других методах кодирования - вместо экономного расходования узкой полосы делается попытка занять весь доступный диапазон. На первый взгляд это кажется не очень эффективным - ведь в каждый момент времени в диапазоне работает только один канал. Однако последнее утверждение не всегда справедливо, поскольку коды расширенного спектра можно задействовать также и для мультиплексирования нескольких каналов в широком диапазоне. В частности, методы FHSS позволяют организовать одновременную работу нескольких каналов путем выбора для каждого канала таких псевдослучайных последовательностей, которые в каждый момент времени дают каждому каналу возможность работать на соб­ственной частоте (конечно, это можно сделать, только если число каналов не превышает числа частотных подканалов).

Изначально метод расширенного спектра создавался для разведывательных и военных целей. Основная идея метода состоит в том, чтобы распределить информационный сигнал по широкой полосе радиодиапазона, что в итоге позволит значительно усложнить подавление или перехват сигнала. Первая разработанная схема расширенного спектра известна как метод перестройки частоты. Более современной схемой расширенного спектра является метод прямого последовательного расширения. Оба метода используются в различных стандартах и продуктах беспроводной связи.

Расширение спектра скачкообразной перестройкой частоты (Frequency Hopping Spread Spectrum - FHSS)

Для того чтобы радиообмен нельзя было перехватить или подавить узкополосным шумом, было предложено вести передачу с постоянной сменой несущей в пределах широкого диапазона частот. В результате мощность сигнала распределялась по всему диапазону, и прослушивание какой-то определенной частоты давало только небольшой шум. Последовательность несущих частот была псевдослучайной, известной только передатчику и приемнику. Попытка подавления сигнала в каком-то узком диапазоне также не слишком ухудшала сигнал, так как подавлялась только небольшая часть информации.

Идею этого метода иллюстрирует рис. 1.10 .

В течение фиксированного интервала времени передача ведется на неизменной несущей частоте. На каждой несущей частоте для передачи дискретной информации применяются стандартные методы модуляции , такие как FSK или PSK . Для того чтобы приемник синхронизировался с передатчиком, для обозначения начала каждого периода передачи в течение некоторого времени передаются синхробиты. Так что полезная скорость этого метода кодирования оказывается меньше из-за постоянных накладных расходов на синхронизацию.


Рис. 1.10.

Несущая частота меняется в соответствии с номерами частотных подканалов, вырабатываемых алгоритмом псевдослучайных чисел. Псевдослучайная последовательность зависит от некоторого параметра, который называют начальным числом. Если приемнику и передатчику известны алгоритм и значение начального числа, то они меняют частоты в одинаковой последовательности, называемой последовательностью псевдослучайной перестройки частоты.

Если частота смены подканалов ниже, чем скорость передачи данных в канале, то такой режим называют медленным расширением спектра (рис. 1.11а); в противном случае мы имеем дело с быстрым расширением спектра (рис. 1.11б).

Метод быстрого расширения спектра более устойчив к помехам, поскольку узкополосная помеха, которая подавляет сигнал в определенном подканале, не приводит к потере бита, так как его значение повторяется несколько раз в различных частотных подканалах. В этом режиме не проявляется эффект межсимвольной интерференции, потому что ко времени прихода задержанного вдоль одного из путей сигнала система успевает перейти на другую частоту.

Метод медленного расширения спектра таким свойством не обладает, но зато он проще в реализации и сопряжен с меньшими накладными расходами.

Методы FHSS используются в беспроводных технологиях IEEE 802.11 и Bluetooth .

В FHSS подход к использованию частотного диапазона не такой, как в других методах кодирования - вместо экономного расходования узкой полосы делается попытка занять весь доступный диапазон. На первый взгляд это кажется не очень эффективным - ведь в каждый момент времени в диапазоне работает только один канал. Однако последнее утверждение не всегда справедливо - коды расширенного спектра можно использовать и для мультиплексирования нескольких каналов в широком диапазоне. В частности, методы FHSS позволяют организовать одновременную работу нескольких каналов путем выбора для каждого канала таких псевдослучайных последовательностей , чтобы в каждый момент времени каждый канал работал на своей частоте (конечно, это можно сделать, только если число каналов не превышает числа частотных подканалов).

Прямое последовательное расширение спектра (Direct Sequence Spread Spectrum - DSSS)

В методе прямого последовательного расширения спектра также используется весь частотный диапазон, выделенный для одной беспроводной линии связи. В отличие от метода FHSS , весь частотный диапазон занимается не за счет постоянных переключений с частоты на частоту, а за счет того, что каждый бит информации заменяется N-битами, так что тактовая скорость передачи сигналов увеличивается в N раз. А это, в свою очередь, означает, что спектр сигнала также расширяется в N раз. Достаточно соответствующим образом выбрать скорость передачи данных и значение N, чтобы спектр сигнала заполнил весь диапазон.

Цель кодирования методом DSSS та же, что и методом FHSS , - повышение устойчивости к помехам. Узкополосная помеха будет искажать только определенные частоты спектра сигнала, так что приемник с большой степенью вероятности сможет правильно распознать передаваемую информацию.

Код, которым заменяется двоичная единица исходной информации, называется расширяющей последовательностью , а каждый бит такой последовательности - чипом.

Соответственно, скорость передачи результирующего кода называют чиповой скоростью. Двоичный нуль кодируется инверсным значением расширяющей последовательности. Приемники должны знать расширяющую последовательность, которую использует передатчик, чтобы понять передаваемую информацию.

Количество битов в расширяющей последовательности определяет коэффициент расширения исходного кода. Как и в случае FHSS , для кодирования битов результирующего кода может использоваться любой вид модуляции, например BFSK .

Чем больше коэффициент расширения, тем шире спектр результирующего сигнала и выше степень подавления помех. Но при этом растет занимаемый каналом диапазон спектра. Обычно коэффициент расширения имеет значение от 10 до 100.

d irect s equence s pread s pectrum ) - широкополосная модуляция с прямым расширением спектра, является одним из трёх основных методов расширения спектра, используемых на сегодняшний день (см. методы расширения спектра). Это метод формирования широкополосного радиосигнала , при котором исходный двоичный сигнал преобразуется в псевдослучайную последовательность, используемую для модуляции несущей. Используется в сетях стандарта IEEE 802.11 и CDMA для преднамеренного расширения спектра передаваемого импульса.

Метод прямой последовательности (DSSS) можно представить себе следующим образом. Вся используемая «широкая» полоса частот делится на некоторое число подканалов - по стандарту 802.11 этих подканалов 11. Каждый передаваемый бит информации превращается, по заранее зафиксированному алгоритму, в последовательность из 11 бит, и эти 11 бит передаются как бы одновременно и параллельно (физически сигналы передаются последовательно), используя все 11 подканалов. При приёме, полученная последовательность бит декодируется с использованием того же алгоритма, что и при её кодировке. Другая пара приёмник-передатчик может использовать другой алгоритм кодировки - декодировки, и таких различных алгоритмов может быть очень много.

Первый очевидный результат применения этого метода - защита передаваемой информации от подслушивания («чужой» DSSS-приёмник использует другой алгоритм и не сможет декодировать информацию не от своего передатчика).

При этом сильно уменьшается отношение уровня передаваемого сигнала к уровню шума, (то есть случайных или преднамеренных помех), так что передаваемый сигнал уже как бы неразличим в общем шуме. Но благодаря его 11-кратной избыточности принимающее устройство все же сумеет его распознать.

Еще одно чрезвычайно полезное свойство DSSS-устройств заключается в том, что благодаря очень низкому уровню мощности своего сигнала они практически не создают помех обычным радиоустройствам (узкополосным большой мощности), так как эти последние принимают широкополосный сигнал за шум в пределах допустимого. И наоборот - обычные устройства не мешают широкополосным, так как их сигналы большой мощности «шумят» каждый только в своем узком канале и не могут целиком заглушить весь широкополосный сигнал.

Использование широкополосных технологий дает возможность использовать один и тот же участок радиоспектра дважды - обычными узкополосными устройствами и «поверх них» - широкополосными.

Энциклопедичный YouTube

    1 / 3

    ☙◈❧ Сэнсэй-3 . ͟͟И͟͟с͟͟к͟͟о͟͟н͟͟н͟͟ы͟͟й͟͟ ͟͟Ш͟͟а͟͟м͟͟б͟͟а͟͟л͟ы͟ ☙◈❧ Анастасия Новых. аудиокниги

    2012 Crossing Over A New Beginning "FIRST EDITION"

    ☙◈❧ Эзоосмос ☙◈❧ Необычная рыбалка. Скрытая реальность. Тамга Прави. Анастасия Новых.

Технология

В каждый передаваемый информационный бит (логический 0 или 1) встраивается последовательность так называемых чипов. Если информационные биты - логические нули или единицы - при потенциальном кодировании информации можно представить в виде последовательности прямоугольных импульсов, то каждый отдельный чип - это тоже прямоугольный импульс, но его длительность в несколько раз меньше длительности информационного бита. Последовательность чипов представляет собой последовательность прямоугольных импульсов, то есть нулей и единиц, однако эти нули и единицы не являются информационными. Поскольку длительность одного чипа в n раз меньше длительности информационного бита, то и ширина спектра преобразованного сигнала будет в n раз больше ширины спектра первоначального сигнала. При этом и амплитуда передаваемого сигнала уменьшится в n раз.

Чиповые последовательности, встраиваемые в информационные биты, называют шумоподобными кодами (PN-последовательности), что подчеркивает то обстоятельство, что результирующий сигнал становится шумоподобным и его трудно отличить от естественного шума.

Используемые для уширения спектра сигнала чиповые последовательности должны удовлетворять определённым требованиям автокорреляции . Под термином автокорреляции в математике подразумевают степень подобия функции самой себе в различные моменты времени. Если подобрать такую чиповую последовательность, для которой функция автокорреляции будет иметь резко выраженный пик лишь для одного момента времени, то такой информационный сигнал возможно будет выделить на уровне шума. Для этого в приёмнике полученный сигнал умножается на ту же чиповую последовательность, то есть вычисляется автокорреляционная функция сигнала. В результате сигнал становится опять узкополосным, поэтому его фильтруют в узкой полосе частот и любая помеха, попадающая в полосу исходного широкополосного сигнала, после умножения на чиповую последовательность, наоборот, становится широкополосной и обрезается фильтрами, а в узкую информационную полосу попадает лишь часть помехи, по мощности значительно меньшая, чем помеха, действующая на входе приёмника (если не используется приёмник с алгоритмом Боцмана).

Методы расширения спектра

Изначально методы расширения спектра (PC или SS – Spread-Spectrum) использовались при разработке военных систем управления и связи. Во время Второй мировой войны расширение спектра использовалось в радиолокации для борьбы с намеренными помехами. В последние годы развитие данной технологии объясняется желанием создать эффективные системы радиосвязи для обеспечения высокой помехоустойчивости при передаче узкополосных сигналов по каналам с шумами и осложнения их перехвата.

Система связи является системой с расширенным спектром в следующих случаях :

Полоса частот, которая используется при передаче, значительно шире минимально необходимой для передачи текущей информации. При этом энергия информационного сигнала расширяется на всю ширину полосы частот при низком соотношении сигнал/шум, в результате чего сигнал трудно обнаружить, перехватить или воспрепятствовать его передаче путем внесения помех. Хотя суммарная мощность сигнала может быть большой, соотношение сигнал/шум в любом диапазоне частот является малым, что делает сигнал с расширенным спектром трудно определяемым при радиосвязи и, в контексте скрытия информации стеганографическими методами, трудно различимым человеком.

Расширение спектра выполняется с помощью так называемого расширяющего (или кодового) сигнала, который не зависит от передаваемой информации. Присутствие энергии сигнала во всех частотных диапазонах делает радиосигнал с расширенным спектром стойким к внесению помех, а информацию, встроенную в контейнер методом расширения спектра, стойкой к ее устранению или извлечению из контейнера. Компрессия и другие виды атак на систему связи могут устранить энергию сигнала из некоторых участков спектра, но поскольку последняя была распространена по всему диапазону, в других полосах остается достаточное количество данных для восстановления информации. В результате, если, разумеется, не разглашать ключ, который использовался для генерации кодового сигнала, вероятность извлечения информации неавторизованными лицами существенно снижается.

Восстановление первичной информации (то есть «сужение спектра») осуществляется путем сопоставления полученного сигнала и синхронизированной копии кодового сигнала.

В радиосвязи применяют три основных способа расширения спектра:

С помощью прямой ПСП (РСПП);

С помощью скачкообразного перестраивания частот;

С помощью компрессии с использованием линейной частотной модуляции (ЛЧМ).

При расширении спектра прямой последовательностью информационный сигнал модулируется функцией, которая принимает псевдослучайные значения в установленных пределах, и умножается на временную константу – частоту (скорость) следования элементарных посылок (элементов сигнала). Данный псевдослучайный сигнал содержит составляющие на всех частотах, которые, при их расширении, модулируют энергию сигнала в широком диапазоне.

В методе расширения спектра с помощью скачкообразного перестраивания частот передатчик мгновенно изменяет одну частоту несущего сигнала на другую. Секретным ключом при этом является псевдослучайный закон изменения частот.

При компрессии с использованием ЛЧМ сигнал модулируется функцией, частота которой изменяется во времени.

Очевидно, что любой из указанных методов может быть распространен на использование в пространственной области при построении стеганографических систем.

Рассмотрим один из вариантов реализации метода РСПП, авторами которого являются Смит (J.R. Smith) и Комиски (В.О. Comiskey). Алгоритм модуляции следующий: каждый бит сообщения , представляется некоторой базисной функцией , размерностью , умноженной, в зависимости от значения бита (1 или 0), на +1 или -1:

Модулированное сообщение ,полученное при этом, попиксельно суммируется с изображением-контейнером , в качестве которого используется полутоновое изображение размером . Результатом является стеганоизображение , при .



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: