Один из создателей операционной системы unix. Различия между UNIX и Linux

UNIX зародился в лаборатории Bell Labs фирмы AT&T более 20 лет назад.

UNIX – это многопользовательская, многозадачная ОС, включает в себя достаточно мощные средства защиты программ и файлов различных пользователей. Написана на языке С и является машинно-независимой, что обеспечивает ее высокую мобильность и легкую переносимость прикладных программ на ПК различной архитектуры. Важной особенностью ОС семейства UNIX является ее модульность и обширный набор сервисных программ, которые позволяют создать благоприятную операционную обстановку для пользователей-программистов.

Поддерживает иерархическую файловую структуру, виртуальную память, многооконный интерфейс, многопроцессорные системы, многопользовательскую систему управления базами данных, неоднородные вычислительные сети.

ОС UNIX имеет следующие основные характеристики:

Переносимость;

- вытесняющая многозадачность на основе процессов, работающих в изолированных адресных пространствах в виртуальной памяти;

Поддержка одновременной работы многих пользователей;

Поддержка асинхронных процессов;

Иерархическая файловая система;

Поддержка независимых от устройств операций ввода-вывода (через специальные файлы устройств);

Стандартный интерфейс для программ (программные каналы, IPC) и пользователей (командный интерпретатор, не входящий в ядро ОС);

Встроенные средства учета использования системы.

Архитектура ОС UNIX - многоуровневая. На нижнем уровне работает ядро операционной системы. Функции ядра (управление процессами, памятью, обработка прерываний и т.д.) доступны через интерфейс системных вызовов , образующих второй уровень. Системные вызовы обеспечивают программный интерфейс для доступа к процедурам ядра. На следующем уровне работают командные интерпретаторы , команды и утилиты системного администрирования, коммуникационные драйверы и протоколы , - все то, что обычно относят к системному программному обеспечению . Внешний уровень образуют прикладные программы пользователя, сетевые и другие коммуникационные службы, СУБД и утилиты.

Операционная система выполняет две основные задачи: манипулирование данными и их хранение. Большинство программ в основном манипулирует данными, но, в конечном счете, они где-нибудь хранятся. В системе UNIX таким местом хранения является файловая система . Более того, в UNIX все устройства , с которыми работает операционная система, также представлены в виде специальных файлов в файловой системе.

Логическая файловая система в ОС UNIX (или просто файловая система ) - это иерархически организованная структура всех каталогов и файлов в системе, начинающаяся с корневого каталога. Файловая система UNIX обеспечивает унифицированный интерфейс доступа к данным, расположенным на различных носителях, и к периферийным устройствам. Логическая файловая система может состоять из одной или нескольких физических файловых (под)систем , являющихся разделами физических носителей (дисков, CD-ROM или дискет).


Файловая система контролирует права доступа к файлам, выполняет операции создания и удаления файлов, а также выполняет запись/чтение данных файла. Файловая система обеспечивает перенаправление запросов, адресованных периферийным устройствам, соответствующим модулям подсистемы ввода-вывода.

Иерархическая структура файловой системы UNIX упрощает ориентацию в ней. Каждый каталог, начиная с корневого (/ ), в свою очередь, содержит файлы и подкаталоги .

В ОС UNIX нет теоретических ограничений на количество вложенных каталогов, но есть ограничения на максимальную длину имени файла, которое указывается в командах - 1024 символов.

В UNIX существует несколько типов файлов, различающихся по функциональному назначению:

Обычный файл - наиболее общий тип файлов, содержащий данные в некотором формате. Для операционной системы такие файлы представляют собой просто последовательность байтов. К этим файлам относятся текстовые файлы, двоичные данные и выполняемые программы.

Каталог- это файл, содержащий имена находящихся в нем файлов, а также указатели на дополнительную информацию, позволяющие операционной системе производить действия с этими файлами. С помощью каталогов формируется логическое дерево файловой системы.

Специальный файл устройства - Обеспечивает доступ к физическим устройствам. Доступ к устройствам осуществляется путем открытия, чтения и записи в специальный файл устройства.

FIFO - именованный канал. Этот файл используется для связи между процессами по принципу очереди.

Сокет- позволяют представить в виде файла сетевое соединение.

Каждый файл в ОС UNIX содержит набор прав доступа, по которому определяется, как пользователь взаимодействует с данным файлом.

Каждый жесткий диск состоит из одной или нескольких логических частей - разделов. Расположение и размер раздела определяется при форматировании диска. В ОС UNIX разделы выступают в качестве независимых устройств, доступ к которым осуществляется как к различным носителям данных. В разделе может располагаться только одна физическая файловая система .

Имеется много типов физических файловых систем, например FAT16 и NTFS, с разной структурой. Более того, имеется множество типов физических файловых систем UNIX (ufs , s5fs , ext2 , vxfs , jfs , ffs и т.д.).

), третье (GNU/Linux) и многие последующие места.

UNIX-системы имеют большую историческую важность, поскольку благодаря им распространились некоторые популярные сегодня концепции и подходы в области ОС и программного обеспечения . Также, в ходе разработки Unix-систем был создан язык Си .

Среди примеров известных UNIX-подобных операционных систем: BSD , Solaris , Linux , Android , MeeGo , NeXTSTEP , Mac OS X , Apple iOS .

История

Предшественники

Первые версии UNIX были написаны на ассемблере и не имели встроенного компилятора с языком высокого уровня . Примерно в 1969 году Кен Томпсон при содействии Денниса Ритчи разработал и реализовал язык Би (B), представлявший собой упрощённый (для реализации на миникомпьютерах) вариант разработанного в языка BCPL . Би, как и BCPL, был интерпретируемым языком. В 1972 году была выпущена вторая редакция UNIX, переписанная на языке Би. В 1969-1973 годах на основе Би был разработан компилируемый язык, получивший название Си (C).

Раскол

Важной причиной раскола UNIX стала реализация в 1980 году стека протоколов TCP/IP . До этого межмашинное взаимодействие в UNIX пребывало в зачаточном состоянии - наиболее существенным способом связи был UUCP (средство копирования файлов из одной UNIX-системы в другую, изначально работавшее по телефонным сетям с помощью модемов).

Было предложено два интерфейса программирования сетевых приложений: Berkley sockets (сокет Беркли) и интерфейс транспортного уровня TLI (англ. Transport Layer Interface ).

Интерфейс Berkley sockets был разработан в университете Беркли и использовал стек протоколов TCP/IP , разработанный там же. TLI был создан AT&T в соответствии с определением транспортного уровня модели OSI и впервые появился в системе System V версии 3. Хотя эта версия содержала TLI и потоки, первоначально в ней не было реализации TCP/IP или других сетевых протоколов, но подобные реализации предоставлялись сторонними фирмами.

Реализация TCP/IP официально и окончательно была включена в базовую поставку System V версии 4. Это, как и другие соображения (по большей части, рыночные), вызвало окончательное размежевание между двумя ветвями UNIX - BSD (университета Беркли) и System V (коммерческая версия от AT&T). Впоследствии, многие компании, лицензировав System V у AT&T, разработали собственные коммерческие разновидности UNIX, такие как AIX , CLIX, HP-UX , IRIX , Solaris .

Современные реализации UNIX, как правило, не являются системами V или BSD в чистом виде. Они реализуют возможности как System V, так и BSD.

Свободные UNIX-подобные операционные системы

В настоящий момент GNU/Linux и представители семейства BSD быстро отвоёвывают рынок у коммерческих UNIX-систем и одновременно проникают как на настольные компьютеры конечных пользователей, так и на мобильные и встраиваемые системы.

Проприетарные системы

Влияние UNIX на эволюцию операционных систем

Идеи, заложенные в основу UNIX, оказали огромное влияние на развитие компьютерных операционных систем. В настоящее время UNIX-системы признаны одними из самых исторически важных ОС.

Широко используемый в системном программировании язык Си , созданный изначально для разработки UNIX, превзошёл UNIX по популярности. Язык Си был первым «веротерпимым» языком, который не пытался навязать программисту тот или иной стиль программирования. Си был первым высокоуровневым языком, предоставляющим доступ ко всем возможностям процессора , таким как ссылки , таблицы , битовые сдвиги , инкременты и т. п. С другой стороны, свобода языка Си приводила к ошибкам переполнения буфера в таких функциях стандартной библиотеки Си, как gets и scanf. Результатом стали многие печально известные уязвимости, например, та, что эксплуатировалась в знаменитом черве Морриса .

Первые разработчики UNIX способствовали внедрению принципов модульного программирования и повторного использования в инженерную практику.

UNIX предоставлял возможность использования протоколов TCP/IP на сравнительно недорогих компьютерах, что привело к быстрому росту Интернета . Это, в свою очередь, способствовало быстрому обнаружению нескольких крупных уязвимостей в системе безопасности, архитектуре и системных утилитах UNIX.

Со временем ведущие разработчики UNIX разработали культурные нормы разработки программного обеспечения, которые стали столь же важны, как и сам UNIX. ( )

Социальная роль в сообществе ИТ-профессионалов и историческая роль

Первоначальные UNIX работали на крупных многопользовательских компьютерах, к которым также предлагались и проприетарные ОС от производителя оборудования, такие как RSX-11 и ее потомок VMS . Невзирая на то, что по ряду мнений тогдашний UNIX имел недостатки по сравнению с данными ОС (например, отсутствие серьёзных движков баз данных), он был а) дешевле, а иногда и бесплатен для академических учреждений б) был портируем с оборудования на оборудование, и разработан на портируемом языке Си, что «отвязывало» разработку программ от конкретной аппаратуры. Кроме того, «отвязанным» от аппаратуры и производителя оказался и опыт пользователя - человек, работавший с UNIX на VAX, легко работал с ней же и на 68xxx, и так далее.

Производители аппаратуры в то время часто прохладно относились к UNIX, считая ее игрушечной, и предлагая свою проприетарную ОС для серьёзной работы - в первую очередь СУБД и основанных на них бизнес-приложений в коммерческих структурах. Известны комментарии по этому поводу от DEC по поводу ее VMS . К этому прислушивались корпорации, но не академическая среда, которая имела все для себя необходимое в UNIX, зачастую не требовала официальной поддержки от производителя, справляясь своими силами, и ценила дешевизну и переносимость UNIX.

Таким образом, UNIX была едва ли не первой переносимой на разную аппаратуру ОС.

Вторым резким взлетом UNIX было появление RISC -процессоров около 1989 года. Еще до того существовали т. н. workstations - персональные однопользовательские компьютеры большой мощности, имеющие достаточный объем памяти, жесткого диска и достаточно развитую ОС (многозадачность, защита памяти) для работы с серьёзными приложениями, такими, как CADы. Среди производителей таких машин выделялась компания Sun Microsystems , сделавшая себе на них имя.

До появления RISC-процессоров в этих станциях обычно использовался процессор Motorola 68xxx, тот же, что и в компьютерах фирмы Apple (хотя и под более развитой операционной системой, чем у Apple).

Около 1989 года на рынке появились коммерческие реализации процессоров RISC -архитектуры. Логичным решением ряда компаний (Sun и других) был перенос UNIX на эти архитектуры, что немедленно повлекло за собой и перенос всей экосистемы ПО для UNIX.

Проприетарные серьёзные ОС, такие как VMS , начали свой закат именно с этого момента (даже если и удалось перенести на RISC саму ОС, все было намного сложнее с приложениями под нее, которые в этих экосистемах зачастую разрабатывались на ассемблере или же на проприетарных языках типа BLISS), и UNIX стал ОС для самых мощных компьютеров в мире.

Однако в это время экосистема PC начала переходить на GUI в лице Windows 3.0. Огромные преимущества GUI, а также, например, унифицированная поддержка всех типов принтеров, были оценены и разработчиками, и пользователями. Это сильно подорвало позиции UNIX на рынке - реализации такие, как SCO и Interactive UNIX, не справлялись с поддержкой Windows-приложений. Что же касается GUI для UNIX, называемого X11 (были и иные реализации, много менее популярные), то он не мог полноценно работать на обычной пользовательской PC ввиду требований к памяти - для нормальной работы X11 требовалось 16 МБ, в то время как Windows 3.1 с достаточной производительностью исполняла и Word, и Excel одновременно в 8 МБ (это стало стандартным размером памяти PC в то время). При высоких ценах на память это было лимитирующим фактором.

Успех Windows дал импульс внутреннему проекту Microsoft под названием Windows NT, которая была совместима с Windows по API, но при этом имела все те же архитектурные особенности серьёзной ОС, что и UNIX - многозадачность, полноценную защиту памяти, поддержку многопроцессорных машин, права доступа к файлам и директориям, системный журнал. Также Windows NT представила журнальную файловую систему NTFS, которая по возможностям на тот момент превышала все стандартно поставляемые с UNIX файловые системы - аналоги под UNIX были только отдельными коммерческими продуктами от Veritas и других.

Хотя Windows NT и не была популярна первоначально из-за высоких требований к памяти (те же 16 МБ), она позволила Microsoft выйти на рынок решений для серверов, например, СУБД. Многие в то время не верили в возможность Microsoft, традиционно специализирующейся на настольном ПО, быть игроком на рынке ПО масштаба предприятия, где уже были свои громкие имена, такие как Oracle и Sun. К этому сомнению добавлялся тот факт, что СУБД Microsoft - SQL Server - начинался как упрощенная версия Sybase SQL Server, лицензированная у Sybase и на 99 % совместимая по всем аспектам работы с ним.

Во второй половине 1990-х годов Microsoft начал теснить UNIX и на рынке корпоративных серверов.

Совокупность вышеперечисленных факторов, а также огромное падение цены на 3D-видеопроцессоры, ставшими из профессионального оборудования домашним, по сути убила само понятие workstation к началу 2000-ных годов.

Кроме того, системы Microsoft проще в управлении, особенно в типовых сценариях использования.

Но в данный момент начался третий резкий взлет UNIX.

Кроме того, Столлман и его товарищи, прекрасно понимая, что для успеха не завязанного на корпорации программного обеспечения необходимы не проприетарные средства разработки, разработал набор компиляторов для различных языков программирования (gcc), что вместе с разработанными ранее утилитами GNU (замена стандартных утилит UNIX) составило необходимый и достаточно мощный пакет программ для разработчика.

Для создания полностью свободного UNIX не хватало по сути только ядра ОС. И оно было разработано финским студентом Линусом Торвалдсом. Ядро было разработано «с нуля» и не является с точки зрения исходного кода деривативом ни BSD, ни System V (хотя концепты таки заимствовались, например, Linux имел функции namei и bread), однако по ряду нюансов (системные вызовы, богатая /proc, отсутствие sysctk) - больше тяготеет к последней.

  • POSIX 1003.2-1992, определяющий поведение утилит, в том числе командного интерпретатора;
  • POSIX 1003.1b-1993, дополняющий POSIX 1003.1-1988, - определяет поддержку систем реального времени;
  • POSIX 1003.1c-1995, дополняющий POSIX 1003.1-1988, - определяет нити (threads), известные также как pthreads.

Все стандарты POSIX объединены в документе IEEE 1003.

В целях совместимости несколько создателей UNIX-систем предложили использовать ELF - формат систем SVR4 для двоичных и объектных файлов . Единый формат полностью обеспечивает соответствие двоичных файлов в рамках одной компьютерной архитектуры.

Структура каталогов некоторых систем, в частности, GNU/Linux , определена в стандарте Filesystem Hierarchy Standard . Однако, во многих отношениях этот тип стандарта является спорным, и он, даже внутри сообщества GNU/Linux, далеко не универсален.

Стандартные команды ОС UNIX

  • Создание и навигация по файлам и каталогам: touch , , , , , , pwd , , mkdir , rmdir , find , ;
  • Просмотр и редактирование файлов: more , less , , ex, , emacs ;
  • Обработка текста: echo , cat , grep , sort , uniq , sed , awk , tee , head , tail , cut , , split , printf ;
  • Сравнение файлов: comm , cmp , diff , patch ;
  • Разнообразные утилиты командного интерпретатора: yes , test , xargs , expr ;
  • Системное администрирование: chmod , chown , , , , who , , mount , umount ;
  • Коммуникации: mail , telnet, ftp , finger, rsh, ssh;
  • Командные оболочки : , bash , csh , ksh , tcsh , zsh ;
  • Работа с исходным кодом и объектным кодом: cc, gcc , ld, , yacc , bison , lex , flex , ar, ranlib, make ;
  • Сжатие и архивация: compress, uncompress, gzip , gunzip , tar
  • Работа с двоичными файлами: , strings

Ниже приведён список 60 команд из раздела 1 первой версии UNIX:

  • b, bas , bcd, boot
  • cat , chdir , check, chmod , chown , cmp ,
  • date , db, dbppt, , , dsw, dtf,
  • mail , mesg , mkdir , mkfs, mount ,
  • rew, rkd, rkf, rkl, , rmdir , roff

Примечания

См. также

Первое значение термина упирается в рассмотрение структур, в которые могут быть организованы файлы на носителях данных. Существует несколько видов таких структур: линейные, древовидные, объектные и другие, но в настоящее время широко распространены только древовидные структуры.

Каджый файл в древовидной структуре расположен в определенном хранилище файлов – каталоге , каждый каталог, в свою очередь, также расположен в некотором каталоге. Таким образом, по принципу вложения элементов файловой системы (файлов и каталогов) друг в друга строится дерево, вершинами которого являются непустые каталоги, а листьями – файлы или пустые каталоги. Корень такого дерева имеет название корневой каталог и обозначается каким-либо специальным символом или группой символов (например, «C: » в операционной системе Windows). Каждому файлу соответствует некоторое имя , отпределяющее его расположение в дереве файловой системы. Полное имя файла состоит из имен всех вершин дерева файловой системы, через которые можно пройти от корня до данного файла (каталога), записывая их слева-направо и разделяя специальными символами-разделителями.

В настоящее время существует огромное количество файловых систем, каждая из которых используется для определенной цели: для быстрого доступа к данным, для обеспечения целостности данных при сбоях системы, для простоты реализации, для компактного хранения данных, и т.д. Однако среди всего множества файловых систем можно выделить такие, которые обладают рядом схожих признаков, а именно:

Файлы и каталоги идентифицируются не по именам, а по индексным узлам (i-node) – индексам в общем массиве файлов для данной файловой системе. В этом массиве хранится информация об используемых блоках данных на носителе, а также – длина файла, владелец файла, права доступа и другая служебная информация под общим названием «метаданные о файле ». Логические же связки типа «имя–i-node » – есть ни что иное как содержимое каталогов.

Таким образом, каждый файл характеризуется одним i-node, но может быть связан с несколькими именами – в UNIX это называют жёсткими ссылками (см. Рисунок 1.22, «Пример жесткой ссылки»). При этом, удаление файла происходит тогда, когда удаляется последняя жёсткая ссылка на этот файл.

Важной особенностью таких файловых систем является то, что имена файлов зависят от регистра, другими словами файлы test.txt и TEST.txt отличаются (т.е. являются разными строками в файле директории).

В определенных (фиксированных для данной файловой системы) блоках физического носителя данных находится т.н. суперблок . Суперблок – это наиболее ответственная область файловой системы, содержащая информацию для работы файловой системы в целом, а также – для ёе идентификации. В суперблоке находится «магическое число » – идентификатор файловой системы, отличающий её от других файловых систем, список свободных блоков, список свободных i-node"ов и некоторая другая служебная информация.

  • Помимо каталогов и обычных файлов для хранения информации, ФС может содержать следующие виды файлов:

    Специальный файл устройства

    Обеспечивает доступ к физическому устройству. При создании такого устройства указывается тип устройства (блочное или символьное), старший номер – индекс драйвера в таблице драйверов операционной системы и младший номер – параметр, передаваемый драйверу, поддерживающему несколько устройств, для уточнения о каком «подустройстве » идет речь (например, о каком из нескольких IDE-устройств или COM-портов).

    Именованный канал Символическая ссылка

    Особый тип файла, содержимое которого – не данные, а имя какого-либо другого файла (см. Рисунок 1.23, «Пример символической ссылки» . Для пользователя такой файл неотличим от того, на который он ссылается.

    Символическая ссылка имеет ряд преимуществ по сравнению с жёсткой ссылкой: она может использоваться для связи файлов в разных файловых системах (ведь номера индексных узлов уникальны только в рамках одной файловой системы), а также более прозрачно удаление файлов – ссылка может удаляться совершенно независимо от отсновного файла.

    Сокет
  • Такие файловые системы наследуют особенности оригинального UNIX. К ним можно отнести, например: s5 (используемая в версиях UNIX System V), ufs (BSD UNIX), ext2, ext3, reiserfs (Linux), qnxfs (QNX). Все эти файловые системы различаются форматами внутренних структур, но совместимы с точки зрения основных концепций.

    Дерево каталогов

    Рассмотрение второго значения термина ФС приводит нас к уже обозначенной ранее совокупности процедур, осуществляющих доступ к файлам на различных носителях. Особенностью операционных систем семейства UNIX является существование единого дерева файловой системы для любого количества носителей данных с одинаковыми или разными типами файловых систем на них. Это достигается путем монтирования – временной подстановкой вместо каталога одной файловой системы дерева другой файловой системы, вследствие чего система имеет не несколько деревьев никак не связанных друг с другом, а одно большое разветвленное дерево с единым корневым каталогом.

    Файловая подсистема операционной системы UNIX имеет имеет уникальную систему обработки запросов к файлам – переключатель файловых систем или виртуальная файловая система (VFS ). VFS предоставляет пользователю стандартный набор функций (интерфейс) для работы с файлами, вне зависимости от места их расположения и принадлежности к разным файловым системам.

    В мире стандартов UNIX определено, что корневой каталог единого дерева файловой системы должен иметь имя / , как и символ-разделитель при формировании полного имени файла. Тогда полное имя файла может быть, например, /usr/share/doc/bzip2/README . Задача VFS – по полному имени файла найти его местоположение в дереве файловой системы, определить её тип в этом месте дерева и «переключить », т.е. передать файл на дальнейшую обработку драйверу конктретной файловой системы. Такой подход позволяет использовать практически неограниченое количество различных файловых систем на одном компьютере под управлением одной операционной системы, а пользователь даже не будет знать, что файлы физически находятся на разных носителях информации.

    Использование общепринятых имен основных файлов и структуры каталогов существенно облегчает работу в операционной системе, её администрирование и переносимость. Некоторые из этих структур используются при запуске системы, некоторые – во время работы, но все они имеют большое значение для ОС вцелом, а нарушение этой структуры может привести к неработоспособности системы или ее отдельных компонентов.

    Рисунок 1.24. Стандартные каталоги в файловой системе UNIX

    Приведем краткое описание основных каталогов системы, формально описываемых специальным стандартом на иерархию файловой системы (Filesystem Hierarchy Standart). Все каталоги можно разделить на две группы: для статической (редко меняющейся) информации – /bin , /usr и динамической (часто меняющейся) информации – /var , /tmp . Исходя из этого администраторы могут разместить каждый из этих каталогов на собственном носителе, обладающем соответствующими характеристиками.

    Корневой каталог

    Корневой каталог / является основой любой ФС UNIX. Все остальные каталоги и файлы располагаются в рамках струтуры (дерева), порождённой корневым каталогом, независимо от их физического местонахождения.

    /bin

    В этом каталоге находятся часто употребляемые команды и утилиты системы общего пользования. Сюда входят все базовые команды, доступные даже если была примонтирована только корневая файловая система. Примерами таких команд являются: ls , cp , sh и т.п..

    /boot

    Директория содержит всё необходимое для процесса загрузки операционной системы: программу-загрузчик, образ ядра операционной системы и т.п..

    /dev

    Каталог содержит специальные файлы устройств, являющиеся интерфейсом доступа к периферийным устройствам. Наличие такого каталога не означает, что специальные файлы устройств нельзя создавать в другом месте, просто достаточно удобно иметь один каталог для всех файлов такого типа.

    /etc

    В этом каталоге находятся системные конфигурационные файлы. В качестве примеров можно привести файлы /etc/fstab , содержащий список монтируемых файловых систем, и /etc/resolv.conf , который задаёт правила составления локальных DNS-запросов. Среди наиболее важных файлов – скрипты инифиализации и деинициализации системы. В системах, наследующих особенности UNIX System V, для них отведены каталоги с /etc/rc0.d по /etc/rc6.d и общий для всех файл описания – /etc/inittab .

    /home (необязательно)

    Директория содержит домашние директории пользователей. Её существование в корневом каталоге не обязательно и её содержимое зависит от особенностей конкретной UNIX-подобной операционной системы.

    /lib

    Каталог для статических и динамических библиотек, необходимых для запуска программ, находящихся в директориях /bin и /sbin .

    /mnt

    Стандартный каталог для временного монтирования файловых систем – например, гибких и флэш-дисков, компакт-дисков и т.п..

    /root (необязательно)

    Директория содержит домашюю директорию суперпользователя. Её существование в корневом каталоге не обязательно.

    /sbin

    В этом каталоге находятся команды и утилиты для системного администратора. Примерами таких команд являются: route , halt , init и т.п.. Для аналогичных целей применяются директории /usr/sbin и /usr/local/sbin .

    /usr

    Эта директория повторяет структуру корневой директории – содержит каталоги /usr/bin , /usr/lib , /usr/sbin , служащие для аналогичных целей.

    Каталог /usr/include содержит заголовочные файлы языка C для всевозможные библиотек, расположенных в системе.

    Каталог /usr/local является следующим уровнем повторения корневого каталога и служит для хранения программ, установленных администратором в дополнение к стандартной поставке операционной системы.

    Каталог /usr/share хранит неизменяющиеся данные для установленных программ. Особый интерес представляет каталог /usr/share/doc , в который добавляется документация ко всем установленным программам.

    /var , /tmp

    Используются для хранения временных данных процессов – системных и пользовательских соответственно.

    ), третье (GNU/Linux) и многие последующие места.

    UNIX-системы имеют большую историческую важность, поскольку благодаря им распространились некоторые популярные сегодня концепции и подходы в области ОС и программного обеспечения . Также, в ходе разработки Unix-систем был создан язык Си .

    Среди примеров известных UNIX-подобных операционных систем: BSD , Solaris , Linux , Android , MeeGo , NeXTSTEP , Mac OS X , Apple iOS .

    История

    Предшественники

    Первые версии UNIX были написаны на ассемблере и не имели встроенного компилятора с языком высокого уровня . Примерно в 1969 году Кен Томпсон при содействии Денниса Ритчи разработал и реализовал язык Би (B), представлявший собой упрощённый (для реализации на миникомпьютерах) вариант разработанного в языка BCPL . Би, как и BCPL, был интерпретируемым языком. В 1972 году была выпущена вторая редакция UNIX, переписанная на языке Би. В 1969-1973 годах на основе Би был разработан компилируемый язык, получивший название Си (C).

    Раскол

    Важной причиной раскола UNIX стала реализация в 1980 году стека протоколов TCP/IP . До этого межмашинное взаимодействие в UNIX пребывало в зачаточном состоянии - наиболее существенным способом связи был UUCP (средство копирования файлов из одной UNIX-системы в другую, изначально работавшее по телефонным сетям с помощью модемов).

    Было предложено два интерфейса программирования сетевых приложений: Berkley sockets (сокет Беркли) и интерфейс транспортного уровня TLI (англ. Transport Layer Interface ).

    Интерфейс Berkley sockets был разработан в университете Беркли и использовал стек протоколов TCP/IP , разработанный там же. TLI был создан AT&T в соответствии с определением транспортного уровня модели OSI и впервые появился в системе System V версии 3. Хотя эта версия содержала TLI и потоки, первоначально в ней не было реализации TCP/IP или других сетевых протоколов, но подобные реализации предоставлялись сторонними фирмами.

    Реализация TCP/IP официально и окончательно была включена в базовую поставку System V версии 4. Это, как и другие соображения (по большей части, рыночные), вызвало окончательное размежевание между двумя ветвями UNIX - BSD (университета Беркли) и System V (коммерческая версия от AT&T). Впоследствии, многие компании, лицензировав System V у AT&T, разработали собственные коммерческие разновидности UNIX, такие как AIX , CLIX, HP-UX , IRIX , Solaris .

    Современные реализации UNIX, как правило, не являются системами V или BSD в чистом виде. Они реализуют возможности как System V, так и BSD.

    Свободные UNIX-подобные операционные системы

    В настоящий момент GNU/Linux и представители семейства BSD быстро отвоёвывают рынок у коммерческих UNIX-систем и одновременно проникают как на настольные компьютеры конечных пользователей, так и на мобильные и встраиваемые системы.

    Проприетарные системы

    Влияние UNIX на эволюцию операционных систем

    Идеи, заложенные в основу UNIX, оказали огромное влияние на развитие компьютерных операционных систем. В настоящее время UNIX-системы признаны одними из самых исторически важных ОС.

    Широко используемый в системном программировании язык Си , созданный изначально для разработки UNIX, превзошёл UNIX по популярности. Язык Си был первым «веротерпимым» языком, который не пытался навязать программисту тот или иной стиль программирования. Си был первым высокоуровневым языком, предоставляющим доступ ко всем возможностям процессора , таким как ссылки , таблицы , битовые сдвиги , инкременты и т. п. С другой стороны, свобода языка Си приводила к ошибкам переполнения буфера в таких функциях стандартной библиотеки Си, как gets и scanf. Результатом стали многие печально известные уязвимости, например, та, что эксплуатировалась в знаменитом черве Морриса .

    Первые разработчики UNIX способствовали внедрению принципов модульного программирования и повторного использования в инженерную практику.

    UNIX предоставлял возможность использования протоколов TCP/IP на сравнительно недорогих компьютерах, что привело к быстрому росту Интернета . Это, в свою очередь, способствовало быстрому обнаружению нескольких крупных уязвимостей в системе безопасности, архитектуре и системных утилитах UNIX.

    Со временем ведущие разработчики UNIX разработали культурные нормы разработки программного обеспечения, которые стали столь же важны, как и сам UNIX. ( )

    Социальная роль в сообществе ИТ-профессионалов и историческая роль

    Первоначальные UNIX работали на крупных многопользовательских компьютерах, к которым также предлагались и проприетарные ОС от производителя оборудования, такие как RSX-11 и ее потомок VMS . Невзирая на то, что по ряду мнений тогдашний UNIX имел недостатки по сравнению с данными ОС (например, отсутствие серьёзных движков баз данных), он был а) дешевле, а иногда и бесплатен для академических учреждений б) был портируем с оборудования на оборудование, и разработан на портируемом языке Си, что «отвязывало» разработку программ от конкретной аппаратуры. Кроме того, «отвязанным» от аппаратуры и производителя оказался и опыт пользователя - человек, работавший с UNIX на VAX, легко работал с ней же и на 68xxx, и так далее.

    Производители аппаратуры в то время часто прохладно относились к UNIX, считая ее игрушечной, и предлагая свою проприетарную ОС для серьёзной работы - в первую очередь СУБД и основанных на них бизнес-приложений в коммерческих структурах. Известны комментарии по этому поводу от DEC по поводу ее VMS . К этому прислушивались корпорации, но не академическая среда, которая имела все для себя необходимое в UNIX, зачастую не требовала официальной поддержки от производителя, справляясь своими силами, и ценила дешевизну и переносимость UNIX.

    Таким образом, UNIX была едва ли не первой переносимой на разную аппаратуру ОС.

    Вторым резким взлетом UNIX было появление RISC -процессоров около 1989 года. Еще до того существовали т. н. workstations - персональные однопользовательские компьютеры большой мощности, имеющие достаточный объем памяти, жесткого диска и достаточно развитую ОС (многозадачность, защита памяти) для работы с серьёзными приложениями, такими, как CADы. Среди производителей таких машин выделялась компания Sun Microsystems , сделавшая себе на них имя.

    До появления RISC-процессоров в этих станциях обычно использовался процессор Motorola 68xxx, тот же, что и в компьютерах фирмы Apple (хотя и под более развитой операционной системой, чем у Apple).

    Около 1989 года на рынке появились коммерческие реализации процессоров RISC -архитектуры. Логичным решением ряда компаний (Sun и других) был перенос UNIX на эти архитектуры, что немедленно повлекло за собой и перенос всей экосистемы ПО для UNIX.

    Проприетарные серьёзные ОС, такие как VMS , начали свой закат именно с этого момента (даже если и удалось перенести на RISC саму ОС, все было намного сложнее с приложениями под нее, которые в этих экосистемах зачастую разрабатывались на ассемблере или же на проприетарных языках типа BLISS), и UNIX стал ОС для самых мощных компьютеров в мире.

    Однако в это время экосистема PC начала переходить на GUI в лице Windows 3.0. Огромные преимущества GUI, а также, например, унифицированная поддержка всех типов принтеров, были оценены и разработчиками, и пользователями. Это сильно подорвало позиции UNIX на рынке - реализации такие, как SCO и Interactive UNIX, не справлялись с поддержкой Windows-приложений. Что же касается GUI для UNIX, называемого X11 (были и иные реализации, много менее популярные), то он не мог полноценно работать на обычной пользовательской PC ввиду требований к памяти - для нормальной работы X11 требовалось 16 МБ, в то время как Windows 3.1 с достаточной производительностью исполняла и Word, и Excel одновременно в 8 МБ (это стало стандартным размером памяти PC в то время). При высоких ценах на память это было лимитирующим фактором.

    Успех Windows дал импульс внутреннему проекту Microsoft под названием Windows NT, которая была совместима с Windows по API, но при этом имела все те же архитектурные особенности серьёзной ОС, что и UNIX - многозадачность, полноценную защиту памяти, поддержку многопроцессорных машин, права доступа к файлам и директориям, системный журнал. Также Windows NT представила журнальную файловую систему NTFS, которая по возможностям на тот момент превышала все стандартно поставляемые с UNIX файловые системы - аналоги под UNIX были только отдельными коммерческими продуктами от Veritas и других.

    Хотя Windows NT и не была популярна первоначально из-за высоких требований к памяти (те же 16 МБ), она позволила Microsoft выйти на рынок решений для серверов, например, СУБД. Многие в то время не верили в возможность Microsoft, традиционно специализирующейся на настольном ПО, быть игроком на рынке ПО масштаба предприятия, где уже были свои громкие имена, такие как Oracle и Sun. К этому сомнению добавлялся тот факт, что СУБД Microsoft - SQL Server - начинался как упрощенная версия Sybase SQL Server, лицензированная у Sybase и на 99 % совместимая по всем аспектам работы с ним.

    Во второй половине 1990-х годов Microsoft начал теснить UNIX и на рынке корпоративных серверов.

    Совокупность вышеперечисленных факторов, а также огромное падение цены на 3D-видеопроцессоры, ставшими из профессионального оборудования домашним, по сути убила само понятие workstation к началу 2000-ных годов.

    Кроме того, системы Microsoft проще в управлении, особенно в типовых сценариях использования.

    Но в данный момент начался третий резкий взлет UNIX.

    Кроме того, Столлман и его товарищи, прекрасно понимая, что для успеха не завязанного на корпорации программного обеспечения необходимы не проприетарные средства разработки, разработал набор компиляторов для различных языков программирования (gcc), что вместе с разработанными ранее утилитами GNU (замена стандартных утилит UNIX) составило необходимый и достаточно мощный пакет программ для разработчика.

    Для создания полностью свободного UNIX не хватало по сути только ядра ОС. И оно было разработано финским студентом Линусом Торвалдсом. Ядро было разработано «с нуля» и не является с точки зрения исходного кода деривативом ни BSD, ни System V (хотя концепты таки заимствовались, например, Linux имел функции namei и bread), однако по ряду нюансов (системные вызовы, богатая /proc, отсутствие sysctk) - больше тяготеет к последней.

    • POSIX 1003.2-1992, определяющий поведение утилит, в том числе командного интерпретатора;
    • POSIX 1003.1b-1993, дополняющий POSIX 1003.1-1988, - определяет поддержку систем реального времени;
    • POSIX 1003.1c-1995, дополняющий POSIX 1003.1-1988, - определяет нити (threads), известные также как pthreads.

    Все стандарты POSIX объединены в документе IEEE 1003.

    В целях совместимости несколько создателей UNIX-систем предложили использовать ELF - формат систем SVR4 для двоичных и объектных файлов . Единый формат полностью обеспечивает соответствие двоичных файлов в рамках одной компьютерной архитектуры.

    Структура каталогов некоторых систем, в частности, GNU/Linux , определена в стандарте Filesystem Hierarchy Standard . Однако, во многих отношениях этот тип стандарта является спорным, и он, даже внутри сообщества GNU/Linux, далеко не универсален.

    Стандартные команды ОС UNIX

    • Создание и навигация по файлам и каталогам: touch , , , , , , pwd , , mkdir , rmdir , find , ;
    • Просмотр и редактирование файлов: more , less , , ex, , emacs ;
    • Обработка текста: echo , cat , grep , sort , uniq , sed , awk , tee , head , tail , cut , , split , printf ;
    • Сравнение файлов: comm , cmp , diff , patch ;
    • Разнообразные утилиты командного интерпретатора: yes , test , xargs , expr ;
    • Системное администрирование: chmod , chown , , , , who , , mount , umount ;
    • Коммуникации: mail , telnet, ftp , finger, rsh, ssh;
    • Командные оболочки : , bash , csh , ksh , tcsh , zsh ;
    • Работа с исходным кодом и объектным кодом: cc, gcc , ld, , yacc , bison , lex , flex , ar, ranlib, make ;
    • Сжатие и архивация: compress, uncompress, gzip , gunzip , tar
    • Работа с двоичными файлами: , strings

    Ниже приведён список 60 команд из раздела 1 первой версии UNIX:

    • b, bas , bcd, boot
    • cat , chdir , check, chmod , chown , cmp ,
    • date , db, dbppt, , , dsw, dtf,
    • mail , mesg , mkdir , mkfs, mount ,
    • rew, rkd, rkf, rkl, , rmdir , roff

    Примечания

    См. также

    Эта система прошла испытание временем и выжила.

    Применительно к этой системе была разработана система стандартов:

    POSIX 1003.1-1988, 1990 - описаны системные вызовы ОС UNIX (точки входа в систему)

    (Application Programming Interface - API)

    POSIX 1003.2-1992 - определяет командный интерпретатор и набор утилит ОС UNIX

    POSIX 1003.1b-1993 - дополнения, относящиеся к приложениям реального времени

    X/OPEN - группа, координирующая разработку стандартов под ОС UNIX

    Отличительные черты ос unix

      Система написана на языке высокого уровня (Си), что делает её доступной к пониманию, изменению и переносу на другие аппаратные платформы. UNIX является одной из наиболее открытых систем.

      UNIX - многозадачная, многопользовательская система с широким спектром услуг. Один сервер может обслуживать запросы большого количества пользователей. При этом необходимо администрирование только одной пользовательской системы.

      Наличие стандартов. Несмотря на многообразие версий, основой всего семейства UNIX является принципиально одинаковая архитектура и ряд стандартных интерфейсов, что упрощает переход пользователей с одной системы на другую.

      Простой, но мощный модульный пользовательский интерфейс. Имеется определенный набор утилит, каждая из которых решает узкоспециализированную задачу, и из них можно сконструировать сложные программные обрабатывающие комплексы.

      Использование единой иерархической легкообслуживаемой файловой системы, которая обеспечивает доступ к данным, хранящимся в файлах на диске, и к устройствам вычислительной машины через унифицированный интерфейс файловой системы.

      Достаточно большое количество приложений, в том числе свободно распространяемых.

    Основы архитектуры операционной системы unix Модель системы unix.

    Структура ядра ос unix.

    UNIX представляет собой двухуровневую модель системы: ядро и приложения.

    Ядро непосредственно взаимодействует с аппаратной частью компьютера, изолируя прикладные программы от аппаратных особенностей вычислительной системы.

    Ядро имеет набор услуг, предоставляемых прикладным программам. К ним относятся операции ввода/вывода, порождение и управление процессами, взаимодействие между процессами, сигналами и т.п.

    Все приложения запрашивают услуги ядра посредством системы вызовов.

    Второй уровень составляют приложения или задачи как системные, определяющие общую функциональность системы, так и прикладные, обеспечивающие пользовательский интерфейс UNIX. Схема взаимодействия всех приложений с ядром одинакова.

    Ядро обеспечивает базовую функциональность операционной системы, создает процессы и управляет ими, распределяет память и обеспечивает доступ к файлам и периферийным устройствам. Взаимодействие прикладных задач с ядром происходит посредством стандартного интерфейса системных вызовов. Интерфейс системных вызовов представляет собой набор услуг ядра и определяет формат запроса на услуги.

    Процесс запрашивает услугу определенной процедуры через стандартизированный системный вызов, внешне похожий на обычный вызов библиотечной функции языка Си. Ядро от имени процесса обрабатывает запрос и возвращает процессу необходимые данные.

    Ядро состоит из основных трех подсистем:

    1) файловая подсистема;

    2) подсистема ввода-вывода;

    3) подсистема управления процессами и памятью.

    Файловая подсистема обеспечивает унифицированный интерфейс доступа к данным, расположенным на дисковых накопителях, и к периферийным устройствам. Одни и те же функции записи/чтения могут использоваться при работе с файлами на дисках и при вводе-выводе данных на терминал, принтер и другие внешние устройства.

    Файловая подсистема контролирует права доступа к файлу, выполняет операции размещения и удаления файлов, запись и чтение данных.

    Так как большинство прикладных функций использует в своей работе интерфейс файловой системы, права доступа к файлу во многом определяют привилегии доступа пользователя к системе. Таким образом, формируются привилегии отдельных пользователей.

    С каждым файлом связаны 3 категории пользователей:

    Владелец;

    Группа-владелец;

    Остальные пользователи.

    Файловая подсистема обеспечивает перенаправление запросов, адресованных периферийным устройствам, соответствующим модулям подсистем ввода/вывода.

    Подсистема ввода/вывода обрабатывает запросы файловой подсистемы и подсистемы управления процессами для доступа к периферийным устройствам, обеспечивает необходимую буферизацию данных и взаимодействие с драйверами устройств.

    Драйверы – это специальные модули ядра, непосредственно обслуживающие внешние устройства.

    Подсистема управления процессами и памятью контролирует создание и удаление процессов, распределение системных ресурсов, памяти и процессора между процессами, синхронизацию процессов, межпроцессорное взаимодействие.

    Распределяет системные ресурсы специальная задача ядра, называемая планировщиком процессов. Планировщик запускает системные процессы и следит за тем, чтобы процесс не захватил разделяемые системные ресурсы.

    Модуль управления памятью обеспечивает размещение оперативной памяти для прикладных задач, в том числе и виртуальной. Это значит, что он предоставляет возможность размещать часть процесса во вторичной памяти (т.е. на жестком диске) и перемещать её в оперативную память по мере необходимости.

    Процесс освобождает процессор перед длительной операцией ввода/вывода или по прекращению кванта времени. В этом случае планировщик выбирает следующий процесс с наивысшим приоритетом и запускает его на выполнение.

    Модуль межпроцессорного взаимодействия отвечает за уведомление процессов о событиях с помощью сигналов и обеспечивает возможность передачи данных между различными процессами.



    Есть вопросы?

    Сообщить об опечатке

    Текст, который будет отправлен нашим редакторам: