Метод ветвей и границ время работы. Задача коммивояжера - метод ветвей и границ

Нажав на кнопку "Скачать архив", вы скачаете нужный вам файл совершенно бесплатно.
Перед скачиванием данного файла вспомните о тех хороших рефератах, контрольных, курсовых, дипломных работах, статьях и других документах, которые лежат невостребованными в вашем компьютере. Это ваш труд, он должен участвовать в развитии общества и приносить пользу людям. Найдите эти работы и отправьте в базу знаний.
Мы и все студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будем вам очень благодарны.

Чтобы скачать архив с документом, в поле, расположенное ниже, впишите пятизначное число и нажмите кнопку "Скачать архив"

Oooo. ooooooooo .ooooo. ooooooooo .ooooo.
.dP""Y88b d"""""""8" 888" `Y88. d"""""""8" d88" `8.
]8P" .8" 888 888 .8" Y88.. .8"
.d8P" .8" `Vbood888 .8" `88888b.
.dP" .8" 888" .8" .8" ``88b
.oP .o .8" .88P" .8" `8. .88P
8888888888 .8" .oP" .8" `boood8"

Введите число, изображенное выше:

Подобные документы

    Особенности метода ветвей и границ как одного из распространенных методов решения целочисленных задач. Декомпозиция задачи линейного программирования в алгоритме метода ветвей и границ. Графический, симплекс-метод решения задач линейного программирования.

    курсовая работа , добавлен 05.03.2012

    Постановка задачи о коммивояжере. Нахождение оптимального решения с применением метода ветвей и границ. Основной принцип этого метода, порядок его применения. Использование метода верхних оценок в процедуре построения дерева возможных вариантов.

    курсовая работа , добавлен 01.10.2009

    Сущность и описание симплекс-метода и улучшенного симплекс-метода (метода обратной матрицы), преимущества и недостатки их применения в линейном прогаммировании. Листинг и блок-схема программы на языке Turbo Pascal для решения математической задачи.

    курсовая работа , добавлен 30.03.2009

    Форма организации основного переменно-поточного производства. Особенности переналадки станков как задача динамического программирования. Общая характеристика алгоритма формирования метода ветвей и границ. Сущность понятия комбинаторная конфигурация.

    курсовая работа , добавлен 20.12.2008

    Постановка линейной целочисленной задачи. Метод отсекающих плоскостей. Дробный алгоритм решения полностью целочисленных задач. Эффективность отсечения Гомори. Сравнение вычислительных возможностей метода отсекающих плоскостей и метода ветвей и границ.

    курсовая работа , добавлен 25.11.2011

    Постановка и решение дискретных оптимизационных задач методом дискретного программирования и методом ветвей и границ на примере классической задачи коммивояжера. Этапы построения алгоритма ветвей и границ и его эффективность, построение дерева графов.

    курсовая работа , добавлен 08.11.2009

    Обзор задач, решаемых методом динамического программирования. Составление маршрута оптимальной длины. Перемножение цепочки матриц. Задача "Лестницы". Анализ необходимости использования специальных методов вероятностного динамического программирования.

    курсовая работа , добавлен 28.06.2015

Здравствуй, Хабр! Реализовывая различные алгоритмы для нахождения гамильтонова цикла с наименьшей стоимостью, я наткнулся на публикацию , предлагающую свой вариант. Попробовав в деле, я получил неправильный ответ:

Дальнейшие поиски в Интернете не принесли ожидаемого результата: либо сложное для не-математиков теоретическое описание, либо понятное, но с ошибками.

Под катом вас будет ждать исправленный алгоритм и онлайн-калькулятор.

Сам метод, опубликованный Литтлом, Мерти, Суини, Кэрелом в 1963 г. применим ко многим NP-полным задачам, и представляет собой очень теоритеризованный материал, который без хороших знаний английского языка и математики сразу не применишь к нашей задаче коммивояжера.

Кратко о методе - это полный перебор всех возможных вариантов с отсеиванием явно неоптимальных решений.

Исправленный алгоритм, для нахождения действительно минимального маршрута

Алгоритм состоит из двух этапов:

Первый этап
Приведение матрицы затрат и вычисление нижней оценки стоимости маршрута r.
1. Вычисляем наименьший элемент в каждой строке (константа приведения для строки)
2. Переходим к новой матрице затрат, вычитая из каждой строки ее константу приведения
3. Вычисляем наименьший элемент в каждом столбце (константа приведения для столбца)
4. Переходим к новой матрице затрат, вычитая из каждого столбца его константу приведения.
Как результат имеем матрицу затрат, в которой в каждой строчке и в каждом столбце имеется хотя бы один нулевой элемент.
5. Вычисляем границу на данном этапе как сумму констант приведения для столбцов и строк (данная граница будет являться стоимостью, меньше которой невозможно построить искомый маршрут)
Второй (основной) этап
1.Вычисление штрафа за неиспользование для каждого нулевого элемента приведенной матрицы затрат.
Штраф за неиспользование элемента с индексом (h,k) в матрице, означает, что это ребро не включается в наш маршрут, а значит минимальная стоимость «неиспользования» этого ребра равна сумме минимальных элементов в строке h и столбце k.

А) Ищем все нулевые элементы в приведенной матрице
б) Для каждого из них считаем его штраф за неиспользование.
в) Выбираем элемент, которому соответствует максимальный штраф (любой, если их несколько)

2. Теперь наше множество S разбиваем на множества - содержащие ребро с максимальным штрафом(S w) и не содержащие это ребро(S w/o).
3. Вычисление оценок затрат для маршрутов, входящих в каждое из этих множеств.
а) Для множества S w/o все просто: раз мы не берем соответствующее ребро c максимальным штрафом(h,k), то для него оценка затрат равна оценки затрат множества S + штраф за неиспользование ребра (h,k)
б) При вычислении затрат для множества S w примем во внимание, что раз ребро (h,k) входит в маршрут, то значит ребро (k,h) в маршрут входить не может, поэтому в матрице затрат пишем c(k,h)=infinity, а так как из пункта h мы «уже ушли», а в пункт k мы «уже пришли», то ни одно ребро, выходящее из h, и ни одно ребро, приходящее в k, уже использоваться не могут, поэтому вычеркиваем из матрицы затрат строку h и столбец k. После этого приводим матрицу, и тогда оценка затрат для S w равна сумме оценки затрат для S и r(h,k), где r(h,k) - сумма констант приведения для измененной матрицы затрат.
4. Из всех неразбитых множеств выбирается то, которое имеет наименьшую оценку.

Так продолжаем, пока в матрице затрат не останется одна не вычеркнутая строка и один не вычеркнутый столбец.

Небольшая оптимизация - подключаем эвристику

Да, правда, почему бы нам не ввести эвристику? Ведь в алгоритме ветвей и границ мы фактически строим дерево, в узлах которого решаем брать ребро (h,k) или нет, и вешаем двух детей - Sw(h,k) и Sw/o(h,k). Но лучший вариант для следующей итерации выбираем только по оценке. Так давайте выбирать лучший не только по оценке, но и по глубине в дереве, т.к. чем глубже выбранный элемент, тем ближе он к концу подсчета. Тем самым мы сможем наконец дождаться ответа.

Теперь, собственно, об ошибках в той публикации

Ошибка была одна единственная - следует выбирать для разбиения множество с минимальной границей из всех возможных путей, а не из двух полученных в результате последнего разбиения детей.

Доказательство

Вернемся к картинке в начале поста:


А вот решение с исправленным алгоритмом:

Ответ: путь:3=>4=>2=>1=>5=>3 длина: 41
Как видите, включая ребро 5:2 в решение будет ошибкой. Что и требовалось доказать

График сравнения метода ветвей и границ и потраченного времени для случайной таблицы от 5х5 до 10х10:


График максимального и минимального потраченного времени для матриц от 5х5 до 66х66.


Попробовать с подробным решением можно

Метод ветвей и границ -- один из комбинаторных методов. Его суть заключается в упорядоченном переборе вариантов и рассмотрении лишь тех из них, которые оказываются по определенным признакам перспективными, и отбрасывании бесперспективных вариантов.

Метод ветвей и границ состоит в следующем: множество допустимых решений (планов) некоторым способом разбивается на подмножества, каждое из которых этим же способом снова разбивается на подмножества. Процесс продолжается до тех пор, пока не получено оптимальное целочисленное решение исходной задачи.

Алгоритм решения:

Первоначально находим симплексным методом или методом искусственного базиса оптимальный план задачи без учета целочисленности переменных. Пусть им является план X 0 . Если среди компонент этого плана нет дробных чисел, то тем самым найдено искомое решение данной задачи и

Если же среди компонент плана X 0 имеются дробные числа, то X 0 не удовлетворяет условию целочисленности и необходимо осуществить упорядоченный переход к новым планам, пока не будет найдено решение задачи. Покажем, как это можно сделать, предварительно отметив, что F(X 0) F(X) для всякого последующего плана X.

Предполагая, что найденный оптимальный план X 0 не удовлетворяет условию целочисленности переменных, тем самым считаем, что среди его компонент есть дробные числа. Пусть, например, переменная приняла в плане X 0 дробное значение. Тогда в оптимальном целочисленном плане ее значение будет по крайней мере либо меньше или равно ближайшему меньшему целому числу, либо больше или равно ближайшему большему целому числу. Определяя эти числа, находим симплексным методом решение двух задач линейного программирования:

Найдем решение задач линейного программирования (I) и (II). Очевидно, здесь возможен один из следующих четырех случаев:

  • 1. Одна из задач неразрешима, а другая имеет целочисленный оптимальный план. Тогда этот план и значение целевой функции на нем и дают решение исходной задачи.
  • 2. Одна из задач неразрешима, а другая имеет оптимальный план, среди компонент которого есть дробные числа. Тогда рассматриваем вторую задачу и в ее оптимальном плане выбираем одну из компонент, значение которой равно дробному числу, и строим две задачи, аналогичные задачам (I) и (II).
  • 3. Обе задачи разрешимы. Одна из задач имеет оптимальный целочисленный план, а в оптимальном плане другой задачи есть дробные числа. Тогда вычисляем значения целевой функции на этих планах и сравниваем их между собой. Если на целочисленном оптимальном плане значение целевой функции больше или равно ее значению на плане, среди компонент которого есть дробные числа, то данный целочисленный план является оптимальным для исходной задачи и он вместе со значением целевой функции на нем дает искомое решение.

Если же значение целевой функции больше на плане, среди компонент которого есть дробные числа, то следует взять одно из таких чисел и для задачи, план которой рассматривается, необходимо построить две задачи, аналогичные (I) и (II).

4. Обе задачи разрешимы, и среди оптимальных планов обеих задач есть дробные числа. Тогда вычисляем значение целевой функции на данных оптимальных планах и рассматриваем ту из задач, для которой значение целевой функции является наибольшим. В оптимальном плане этой задачи выбираем одну из компонент, значение которой является дробным числом, и строим две задачи, аналогичные (I) и (II).

Таким образом, описанный выше итерационный процесс может быть представлен в виде некоторого дерева, на котором исходная вершина отвечает оптимальному плану Х 0 задачи (1)-(3), а каждая соединенная с ней ветвью вершина отвечает оптимальным планам задач (I) и (II). Каждая из этих вершин имеет свои ветвления. При этом на каждом шаге выбирается та вершина, для которой значение функции является наибольшим. Если на некотором шаге будет получен план, имеющий целочисленные компоненты, и значение функции на нем окажется больше или равно, чем значение функции в других возможных для ветвления вершинах, то данный план является оптимальным планом исходной задачи целочисленного программирования и значение целевой функции на нем является максимальным.

Итак, процесс нахождения решения задачи целочисленного программирования (1)-(4) методом ветвей и границ включает следующие основные этапы:

  • 1. Находят решение задачи линейного программирования (1)-(3).
  • 2. Составляют дополнительные ограничения для одной из переменных, значение которой в оптимальном плане задачи (1)-(3) является дробным числом.
  • 3. Находят решение задач (I) и (II), которые получаются из задачи (1)-(3) в результате присоединения дополнительных ограничений.
  • 4. В случае необходимости составляют дополнительные ограничения для переменной, значение которой является дробным, формулируют задачи, аналогичные задачам (I) и (II), и находят их решение. Итерационный процесс продолжают до тех пор, пока не будет найдена вершина, соответствующая целочисленному плану задачи (1)-(3) и такая, что значение функции в этой вершине больше или равно значению функции в других возможных для ветвления вершинах.

Описанный выше метод ветвей и границ имеет более простую логическую схему расчетов, чем метод Гомори. Поэтому в большинстве случаев для нахождения решения конкретных задач целочисленного программирования с использованием ЭВМ применяется именно этот метод.

целочисленный программирование задача коммивояжер ранец

В основе метода ветвей и границ лежит идея последовательного разбиения множества допустимых решений на подмножества. На каждом шаге метода для элементов разбиения выполняется проверка для выяснения, содержит данное подмножество оптимальное решение или нет. Для этого вычисляется нижняя оценка целевой функции на данном подмножестве.

Если оценка снизу не меньше рекорда (наилучшего из найденных решений), то подмножество может больше не рассматриваться. Проверяемое подмножество может быть отброшено еще и в том случае, когда в нем удается найти наилучшее решение. Если значение целевой функции на найденном решении меньше рекорда, то происходит смена рекорда. По окончанию работы алгоритма рекорд является результатом его работы. Если удается отбросить все элементы разбиения, то рекорд - оптимальное решение задачи. В противном случае, из неотброшенных подмножеств выбирается наиболее перспективное (например, с наименьшим значением нижней оценки), и подвергается разбиению. Новые подмножества вновь подвергаются проверке и т.д. Вычисление нижней границы является важнейшим элементом данной схемы.

Для каждой конкретной задачи целочисленного программирования (другими словами, дискретной оптимизации) метод ветвей и границ реализуется по-своему. Есть много модификаций этого метода.

Рассмотрим реализацию метода ветвей и границ для задачи коммивояжёра и задачи о рюкзаке.

Рассмотрим алгоритм Литтла (методом ветвей и границ) для задачи коммивояжера. Идею можно сформулировать следующим образом. В каждой строке матрицы расстояний находится минимальный элемент и вычитается из всех элементов соответствующей строки. Получается матрица, приведенная по строкам. Аналогично приводится матрица по столбцам. Получается матрица, приведенная по строкам и столбцам. Суммируя при приведении минимальные элементы, получим константу приведения, которая будет нижней границей множества всех допустимых гамильтоновых контуров. После находятся степени нулей для приведенной матрицы (сумма минимальных элементов строки и столбца, соответствующих этому нулю) и выбирается дуга , для которой степень нулевого элемента достигает максимального значения. Множество всех гамильтоновых контуров разбивается на два подмножества, одно из которых содержит дугу , второе эту дугу не содержит. После этого приводятся полученные матрицы гамильтоновых контуров и сравниваются нижние границы подмножества гамильтоновых контуров с целью выбора для дальнейшего разбиения множества с меньшей нижней границей. Процесс разбиения множеств на подмножества сопровождается построением дерева ветвлений. Сравнивая длину гамильтонова контура с нижними границами оборванных ветвей, выбирается для дальнейшего ветвления подмножество с нижней границей, меньшей полученного контура, до тех пор, пока не получен маршрут с наименьшей длиной или не становится ясно, что такого маршрута не существует.



Пример.

Пусть в задаче коммивояжера задана следующая матрица стоимостей переездов

Находим в каждой строке матрицы минимальный элемент и вычитаем его из всех элементов соответствующей строки. Получим матрицу, приведенную по строкам, с элементами

.

Если в матрице , приведенной по строкам, окажутся столбцы, не содержащие нуля, то приводим ее по столбцам. Для этого в каждом столбце матрицы выбираем минимальный элемент , и вычитаем его из всех элементов соответствующего столбца. Получим матрицу

,

каждая строка и столбец, которой содержит хотя бы один нуль. Такая матрица называется приведенной по строкам и столбцам.

Суммируя элементы и , получим константу приведения:

.

Находим степени нулей для приведенной по строкам и столбцам матрицы. Для этого мысленно нули в матице заменяем на знак и находим сумму минимальных элементов строки и столбца, соответствующих этому нулю. Записываем ее в правом верхнем углу клетки:

.

Выбираем дугу , для которой степень нулевого элемента достигает максимального значения

Разбиваем множество всех допустимых маршрутов на два подмножества:

– подмножество, содержащее дугу ;

– подмножество, не содержащее дугу

Для вычисления оценки затрат для маршрутов, включающих дугу , вычеркиваем в матрице строку и столбец и заменяем симметричный элемент на знак . Приводим полученную матрицу и вычисляем сумму констант приведения .

Впервые метод ветвей и границ был предложен в 1960 г. в работе Лэнд и Дойг применительно к задаче целочисленного линейного программирования. Однако эта работа не оказала заметного непосредственного влияния на развитие дискретного программирования. Фактически «второе рождение» метода ветвей и границ связано с работой Литтла, Мурти, Суини и Кэрел , посвященной задаче коммивояжера; в этой же работе было впервые предложено и общепринятое теперь название метода «метод ветвей и границ». Начиная с этого момента появляется весьма большое число работ, посвященных методу ветвей и границ и различным его модификациям. Столь большой успех (да еще применительно к «классически трудной» задаче о коммивояжере) объясняется тем, что Литтл, Мурти, Суини и Кэрел первыми обратили внимание на широту возможностей метода ветвей и границ, отметили важность использования специфики задачи и сами весьма удачно этой спецификой воспользовались.

В § 1 настоящей главы излагается общая идея метода ветвей и границ; в § 2 - алгоритм Лэнд и Дойг для задачи целочисленного линейного программирования, в § 3 - метод Литтла и др. авторов для задачи коммивояжера.

§ 1. Идея метода ветвей и границ

1.1. Рассмотрим задачу дискретного программирования в следующей общей форме.

Минимизировать

при условии

Здесь G - некоторое конечное множество.

1.2. В основе метода ветвей и границ лежат следующие построения, позволяющие в ряде случаев существенно уменьшить объем перебора.

I. Вычисление нижней границы (оценки).

Часто удается найти нижнюю границу (оценку) целевой функции на множестве планов (или на некотором его подмножестве т. е. такое число что для имеет место

(соответственно для имеет место Разбиение на подмножества (ветвление). Реализация метода связана с постепенным разбиением множества планов на дерево подмножеств (ветвлением). Ветвление происходит по следующей многошаговой схеме.

0-й шаг. Имеется множество Некоторым способом оно разбивается на конечное число (обычно не пересекающихся) подмножестве шаг Имеются множества , еще не подвергавгпиеся ветвлению. По некоторому правилу (указанному ниже) среди них выбирается множество и разбивается на конечное число подмножеств:

Еще не подвергавшиеся разбиению множества

заново обозначаются через

Несколько шагов такого процесса последовательного разбиения схематически изображены на рис. 10.1.1.

III. Пересчет оценок. Если множество то, очевидно,

Поэтому, разбивая в процессе решения некоторое множество на подмножества

В конкретных ситуациях часто оказывается возможным добиться улучшения оценки, т. е. получить хотя бы для некоторых строгое неравенство

IV. Вычисление планов. Для конкретных задач могут быть указаны различные способы нахождения планов в последовательно разветвляемых подмножествах. Любой такой способ существенно опирается на специфику задачи.

V. Признак оптимальности. Пусть

и план X принадлежит некоторому подмножеству Если при этом

то X - оптимальный план задачи (1.1) - (1.2).

Доказательство непосредственно следует из определения оценки.

Обычно этот признак применяется на некотором этапе ветвления (т. е., говоря формально, при ; см. п. II).

VI. Оценка точности приближенного решения. Пусть

Если X - некоторый план исходной задачи (т. е. ), то

Доказательство и здесь сразу следует из определения оценки.

Очевидно, что если разность невелика (т. е. не превышает некоторого выбранного для данной задачи числа), то X можно принять за приближенное решение, за оценку точности приближения.

1.3. Изложим формальную схему метода ветвей и границ.

0-й шаг. Вычисляем оценку . Если при этом удается найти такой план X, что

то X - оптимальный план.

Если оптимальный план не найден, то по некоторому способу разбиваем множество на конечное число подмножеств

и переходим к шагу.

1-й шаг. Вычисляем оценки Если при этом удается найти такой план X, что для некоторого и

то X - оптимальный план.

Если же оптимальный план не найден, то выбираем «наиболее перспективное» для дальнейшего разбиения множество по следующему правилу:

Разбиваем множество на несколько (обычно не пересекающихся) подмножеств.



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: