Какой протокол прикладного уровня считается наиболее безопасным. Протоколы

Протоколы прикладного уровня служат для передачи информации конкретным клиентским приложениям, запущенным на сетевом компьютере. В IP-сетях протоколы прикладного уровня опираются на стандарт TCP и выполняют ряд специализированных функций, предоставляя пользовательским программам данные строго определенного назначения. Ниже мы кратко рассмотрим несколько прикладных протоколов стека TCP/IP.

Протокол FTP

Как следует из названия, протокол FTP (File Transfer Protocol) предназначен для передачи файлов через Интернет. Именно на базе этого протокола реализованы процедуры загрузки и выгрузки файлов на удаленных узлах Всемирной Сети. FTP позволяет переносить с машины па машину не только файлы, но и целые папки, включающие поддиректории на любую глубину вложений. Осуществляется это путем обращения к системе команд FTP, описывающих ряд встроенных функций данного протокола.

Протоколы РОРЗ и SMTP

Прикладные протоколы, используемые при работе с электронной почтой, называются SMTP (Simple Mail Transfer Protocol) и РОРЗ (Post Office Protocol), первый «отвечает» за отправку исходящей корреспонденции, второй - за доставку входящей.
В функции этих протоколов входит организация доставки сообщений e-mail и передача их почтовому клиенту. Помимо этого, протокол SMTP позволяет отправлять несколько сообщений в адрес одного получателя, организовывать промежуточное хранение сообщений, копировать одно сообщение для отправки нескольким адресатам. И РОРЗ, и SMTP обладают встроенными механизмами распознавания адресов электронной почты, а также специальными модулями повышения надежности доставки сообщений.

Протокол HTTP

Протокол HTTP (Hyper Text Transfer Protocol) обеспечивает передачу с удаленных серверов на локальный компьютер документов, содержащих код разметки гипертекста, написанный на языке HTML или XML, то есть веб-страниц. Данный прикладной протокол ориентирован прежде всего на предоставление информации программам просмотра веб-страниц, веб-браузерам, наиболее известными из которых являются такие приложения, как Microsoft Internet Explorer и Netscape Communicator.
Именно с использованием протокола HTTP организуется отправка запросов удаленным http-серверам сети Интернет и обработка их откликов; помимо
этого HTTP позволяет использовать для вызова ресурсов Всемирной сети адреса стандарта доменной системы имен (DNS, Domain Name System), то есть обозначения, называемые URL (Uniform Resource Locator) вида http:/ /www.domain.zone/page (l).

Протокол TELNET

Протокол TELNET предназначен для организации терминального доступа к удаленному узлу посредством обмена командами в символьном формате ASCII. Как правило, для работы с сервером по протоколу TELNET на стороне клиента должна быть установлена специальная программа, называемая telnet-клиентом, которая, установив связь с удаленным узлом, открывает в своем окне системную консоль операционной оболочки сервера. После этого вы можете управлять серверным компьютером в режиме терминала, как своим собственным (естественно, в очерченных администратором рамках). Например, вы получите возможность изменять, удалять, создавать, редактировать файлы и папки, а также запускать на исполнение программы на диске серверной машины, сможете просматривать содержимое папок других пользователей. Какую бы операционную систему вы ни использовали, протокол Telnet позволит вам общаться с удаленной машиной «на равных». Например, вы без труда сможете открыть сеанс UNIX на компьютере, работающем под управлением MS Windows.

Протокол UDP

Прикладной протокол передачи данных UDP (User Datagram Protocol) используется на медленных линиях для трансляции информации как дейтаграмм.
Дейтаграмма содержит полный комплекс данных, необходимых для ее отсылки и получения. При передаче дейтаграмм компьютеры не занимаются обеспечением стабильности связи, поэтому следует принимать особые меры для обеспечения надежности.
Схема обработки информации протоколом UDP, в принципе, такая же, как и в случае с TCP, но с одним отличием: UDP всегда дробит информацию по одному и тому же алгоритму, строго определенным образом. Для осуществления связи с использованием протокола UDP применяется система отклика: получив UDP-пакет, компьютер отсылает отправителю заранее обусловленный сигнал. Если отправитель ожидает сигнал слишком долго, он просто повторяет передачу.
На первый взгляд может показаться, что протокол UDP состоит сплошь из одних недостатков, однако есть в нем и одно существенное достоинство: прикладные интернет-программы работают с UDP в два раза быстрее, чем с его более высокотехнологичным собратом TCP.

Ключевой термин: протокол.

Протокол (protocol) - набор правил, алгоритм обмена информацией между абонентами сети.

Второстепенные термины

    Стек протоколов (protocol stack) - это комбинация протоколов. Каждый уровень определяет различные протоколы для управления функциями связи или ее подсистемами. Каждому уровню присущ свой набор правил.

    Привязка (binding) является установкой соответствия стека протоколов плате сетевого адаптера.

    Прикладные протоколы - это протоколы, работающие на верхнем уровне модели OSI и обеспечивающие взаимодействие приложений и обмен данными между ними.

    Транспортные протоколы - это протоколы, поддерживающие сеансы связи между компьютерами и гарантирующие надежный обмен данных между ними.

    Сетевые протоколы - это протоколы, обеспечивающие услуги связи, управляющие несколькими типами данных: адресацией, маршрутизацией, проверкой ошибок и запросами на повторную передачу и определяющие правила для осуществления связи в конкретных сетевых средах.

Назначение протоколов

Протоколы (protocols) - это правила и технические процедуры, позволяющие нескольким компьютерам при объединении в сеть общаться друг с другом.

Три основных момента, касающихся протоколов.

    Существует множество протоколов. И хотя все они участвуют в реализации связи, каждый протокол имеет различные цели, выполняет различные задачи, обладает своими преимуществами и ограничениями.

    Протоколы работают на разных уровнях модели OSI. Функции протокола определяются уровнем, на котором он работает.

    Если, например, какой-то протокол работает на Физическом уровне, то это означает, что он обеспечивает прохождение пакетов через плату сетевого адаптера и их поступление в сетевой кабель.

    Несколько протоколов могут работать совместно. Это так называемый стек, или набор, протоколов.

Как сетевые функции распределены по всем уровням модели OSI, так и протоколы совместно работают на различных уровнях стека протоколов. Уровни в стеке протоколов соответствуют уровням модели OSI. В совокупности протоколы дают полную характеристику функциям и возможностям стека.

Работа протоколов

Передача данных по сети, с технической точки зрения, должна быть разбита на ряд последовательных шагов, каждому из которых соответствуют свои правила и процедуры, или протокол. Таким образом, сохраняется строгая очередность в выполнении определенных действий.

Кроме того, эти действия (шаги) должны быть выполнены в одной и той же последовательности на каждом сетевом компьютере. На компьютере-отправителе эти действия выполняются в направлении сверху вниз, а на компьютере-получателе - снизу вверх.

Компьютер-отправитель

Компьютер-отправитель в соответствии с протоколом выполняет следующие действия:

    разбивает данные на небольшие блоки, называемые пакетами, с которыми может работать протокол;

    добавляет к пакетам адресную информацию, чтобы компьютер-получатель мог определить, что эти данные предназначены именно ему;

    подготавливает данные к передаче через плату сетевого адаптера и далее - по сетевому кабелю.

Компьютер-получатель

Компьютер-получатель в соответствии с протоколом выполняет те же действия, но только в обратном порядке:

    принимает пакеты данных из сетевого кабеля;

    через плату сетевого адаптера передает пакеты в компьютер;

    удаляет из пакета всю служебную информацию, добавленную компьютером-отправителем;

    копирует данные из пакетов в буфер - для их объединения в исходный блок данных;

    передает приложению этот блок данных в том формате, который оно использует.

И компьютеру-отправителю, и компьютеру-получателю необходимо выполнять каждое действие одинаковым способом, с тем чтобы пришедшие по сети данные совпадали с отправленными. Если, например, два протокола будут по-разному разбивать данные на пакеты и добавлять информацию (о последовательности пакетов, синхронизации и для проверки ошибок), тогда компьютер, использующий один из этих протоколов, не сможет успешно связаться с компьютером, на котором работает другой протокол.

Маршрутизируемые и немаршрутизируемые протоколы

До середины 80-х годов большинство локальных сетей были изолированными. Они обслуживали один отдел или одну компанию и редко объединялись в крупные системы. Однако, когда локальные сети достигли высокого уровня развития и объем передаваемой ими коммерческой информации возрос, ЛВС стали компонентами больших сетей.

Данные, передаваемые из одной локальной сети в другую по одному из возможных маршрутов, называются маршрутизированными. Протоколы, которые поддерживают передачу данных между сетями по нескольким маршрутам, называются маршрутизируемыми (routable) протоколами. Так как маршрутизируемые протоколы могут использоваться для объединения нескольких локальных сетей в глобальную сеть, их роль постоянно возрастает.

Протоколы в многоуровневой архитектуре

Несколько протоколов, которые работают в сети одновременно, обеспечивают следующие операции с данными:

    подготовку;

    передачу;

    прием;

    последующие действия.

Работа различных протоколов должна быть скоординирована так чтобы исключить конфликты или незаконченные операции. Этого можно достичь с помощью разбиения на уровни.

Стеки протоколов

Стек протоколов (protocol stack) - это комбинация протоколов. Каждый уровень определяет различные протоколы для управления функциями связи или ее подсистемами. Каждому уровню присущ свой набор правил.

Так же как и уровни в модели OSI, нижние уровни стека описывают правила взаимодействия оборудования, изготовленного разными производителями. А верхние уровни описывают правила для проведения сеансов связи и интерпретации приложений. Чем выше уровень, тем сложнее становятся решаемые им задачи и связанные с этими задачами протоколы.

Привязка

Процесс, который называется привязка, позволяет с достаточной гибкостью настраивать сеть, т.е. сочетать протоколы и платы сетевых адаптеров, как того требует ситуация. Например, два стека протоколов, IPX/SPX и TCP/IP, могут быть привязаны к одной плате сетевого адаптера. Если на компьютере более одной платы сетевого адаптера, то стек протоколов может быть привязан как к одной, так и к нескольким платам сетевого адаптера.

Порядок привязки определяет очередность, с которой операционная система выполняет протоколы. Если с одной платой сетевого адаптера связано несколько протоколов, то порядок привязки определяет очередность, с которой будут использоваться протоколы при попытках установить соединение. Обычно привязку выполняют при установке операционной системы или протокола. Например, если TCP/IP - первый протокол в списке привязки, то именно он будет использоваться при попытке установить связь. Если попытка неудачна, компьютер попытается установить соединение, используя следующий по порядку протокол в списке привязки.

Привязка (binding) не ограничивается установкой соответствия стека протоколов плате сетевого адаптера. Стек протоколов должен быть привязан (или ассоциирован) к компонентам, уровни которых и выше, и ниже его уровня. Так, TCP/IP наверху может быть привязан к Сеансовому уровню NetBIOS, а внизу - к драйверу платы сетевого адаптера. Драйвер, в свою очередь, привязан к плате сетевого адаптера.

Стандартные стеки

В компьютерной промышленности в качестве стандартных моделей протоколов разработано несколько стеков. Вот наиболее важные из них:

Протоколы этих стеков выполняют работу, специфичную для своего уровня. Однако коммуникационные задачи, которые возложены на сеть, приводят к разделению протоколов на три типа:

    прикладной;

    транспортный;

    сетевой.

Схема расположения этих типов соответствует модели OSI.

Прикладные протоколы

Прикладные протоколы работают на верхнем уровне модели OSI. Они обеспечивают взаимодействие приложений и обмен данными между ними. К наиболее популярным прикладным протоколам относятся:

    АРРС (Advanced Program-to-Program Communication) - одноранговый SNA-протокол фирмы IBM, используемый в основном на AS/400;

    FTAM (File Transfer Access and Management) - протокол OSI доступа к файлам;

    X.400 - протокол CCITT для международного обмена электронной почтой;

    Х.500 - протокол CCITT служб файлов и каталогов на нескольких системах;

    SMTP (Simple Mail Transfer Protocol) - протокол Интернета для обмена электронной почтой;

    FTP (File Transfer Protocol) - протокол Интернета для передачи файлов;

    SNMP (Simple Network Management Protocol) - протокол Интернета для мониторинга сети и сетевых компонентов;

    Telnet - протокол Интернета для регистрации на удаленных хостах и обработки данных на них;

    Microsoft SMBs (Server Message Blocks, блоки сообщений сервера) и клиентские оболочки или редиректоры;

    NCP (Novell NetWare Core Protocol) и клиентские оболочки или редиректоры фирмы Novell;

    Apple Talk и Apple Share - набор сетевых протоколов фирмы Apple;

    AFP (AppleTalk Filling Protocol) - протокол удаленного доступа к файлам фирмы Apple;

    DAP (Data Access Protocol) - протокол доступа к файлам сетей DECnet.

Транспортные протоколы

Транспортные протоколы поддерживают сеансы связи между компьютерами и гарантируют надежный обмен данных между ними. К популярным транспортным протоколам относятся:

    TCP (Transmission Control Protocol) - TCP/IP-протокол для гарантированной доставки данных, разбитых на последовательность фрагментов;

    SPX - часть набора протоколов IPX/SPX (Internetwork Packet Exchange/Sequential Packet Exchange) для данных, разбитых на последовательность фрагментов, фирмы Novell;

    NWLink - реализация протокола IPX/SPX от фирмы Microsoft;

    NetBEUI - устанавливает сеансы связи между компьютерами (NetBIOS) и предоставляет верхним уровням транспортные услуги (NetBEUI);

    АТР (AppleTalk Transaction Protocol), NBP (Name Binding Protocol) - протоколы сеансов связи и транспортировки данных фирмы Apple.

Сетевые протоколы

Сетевые протоколы обеспечивают услуги связи. Эти протоколы управляют несколькими типами данных: адресацией, маршрутизацией, проверкой ошибок и запросами на повторную передачу. Сетевые протоколы, кроме того, определяют правила для осуществления связи в конкретных сетевых средах, например Ethernet или Token Ring. К наиболее популярным сетевым протоколам относятся:

    IP (Internet Protocol) - TCP/IP-протокол для передачи пакетов;

    IPX (Internetwork Packet Exchange) - протокол фирмы NetWare для передачи и маршрутизации пакетов;

    NWLink - реализация протокола IPX/SPX фирмой Microsoft;

    NetBEUI - транспортный протокол, обеспечивающий услуги транспортировки данных для сеансов и приложений NetBIOS;

    DDP (Datagram Delivery Protocol) - AppleTalk-протокол транспортировки данных.

Стандартные стеки коммуникационных протоколов

Важнейшим направлением стандартизации в области вычислительных сетей является стандартизация коммуникационных протоколов. В настоящее время в сетях используется большое количество стеков коммуникационных протоколов. Наиболее популярными являются стеки: TCP/IP, IPX/SPX, NetBIOS/SMB, DECnet, SNA и OSI. Все эти стеки, кроме SNA на нижних уровнях - физическом и канальном, - используют одни и те же хорошо стандартизованные протоколы Ethernet, Token Ring, FDDI и некоторые другие, которые позволяют использовать во всех сетях одну и ту же аппаратуру. Зато на верхних уровнях все стеки работают по своим собственным протоколам. Эти протоколы часто не соответствуют рекомендуемому моделью OSI разбиению на уровни. В частности, функции сеансового и представительного уровня, как правило, объединены с прикладным уровнем. Такое несоответствие связано с тем, что модель OSI появилась как результат обобщения уже существующих и реально используемых стеков, а не наоборот.

Стек OSI

Следует четко различать модель OSI и стек OSI. В то время как модель OSI является концептуальной схемой взаимодействия открытых систем, стек OSI представляет собой набор вполне конкретных спецификаций протоколов. В отличие от других стеков протоколов стек OSI полностью соответствует модели OSI, он включает спецификации протоколов для всех семи уровней взаимодействия, определенных в этой модели. На нижних уровнях стек OSI поддерживает Ethernet, Token Ring, FDDI, протоколы глобальных сетей, Х.25 и ISDN, - то есть использует разработанные вне стека протоколы нижних уровней, как и все другие стеки. Протоколы сетевого, транспортного и сеансового уровней стека OSI специфицированы и реализованы различными производителями, но распространены пока мало. Наиболее популярными протоколами стека OSI являются прикладные протоколы. К ним относятся: протокол передачи файлов FT AM, протокол эмуляции терминала VTP, протоколы справочной службы Х.500, электронной почты Х.400 и ряд других.

Протоколы стека OSI отличает большая сложность и неоднозначность спецификаций. Эти свойства явились результатом общей политики разработчиков стека, стремившихся учесть в своих протоколах все случаи жизни и все существующие и появляющиеся технологии. К этому нужно еще добавить и последствия большого количества политических компромиссов, неизбежных при принятии международных стандартов по такому злободневному вопросу, как построение открытых вычислительных сетей.

Из-за своей сложности протоколы OSI требуют больших затрат вычислительной мощности центрального процессора, что делает их наиболее подходящими для мощных машин, а не для сетей персональных компьютеров.

Стек OSI - международный, независимый от производителей стандарт. Его поддерживает правительство США в своей программе GOSIP, в соответствии с которой все компьютерные сети, устанавливаемые в правительственных учреждениях США после 1990 года, должны или непосредственно поддерживать стек OSI, или обеспечивать средства для перехода на этот стек в будущем. Тем не менее стек OSI более популярен в Европе, чем в США, так как в Европе осталось меньше старых сетей, работающих по своим собственным протоколам.

Стек TCP/IP

Стек TCP/IP был разработан по инициативе Министерства обороны США более 25 лет назад для связи экспериментальной сети ARPAnet с другими сетями как набор общих протоколов для разнородной вычислительной среды. Большой вклад в развитие стека TCP/IP, который получил свое название по популярным протоколам IP и TCP, внес университет Беркли, реализовав протоколы стека в своей версии ОС UNIX. Популярность этой операционной системы привела к широкому распространению протоколов TCP, IP и других протоколов стека. Сегодня этот стек используется для связи компьютеров всемирной информационной сети Internet, а также в огромном числе корпоративных сетей.

Стек TCP/IP на нижнем уровне поддерживает все популярные стандарты физического и канального уровней: для локальных сетей - это Ethernet, Token Ring, FDDI, для глобальных - протоколы работы на аналоговых коммутируемых и выделенных линиях SLIP, РРР, протоколы территориальных сетей Х.25 и ISDN.

Основными протоколами стека, давшими ему название, являются протоколы IP и TCP. Эти протоколы в терминологии модели OSI относятся к сетевому и транспортному уровням соответственно. IP обеспечивает продвижение пакета по составной сети, a TCP гарантирует надежность его доставки.

За долгие годы использования в сетях различных стран и организаций стек TCP/IP вобрал в себя большое количество протоколов прикладного уровня. К ним относятся такие популярные протоколы, как протокол пересылки файлов FTP, протокол эмуляции терминала telnet, почтовый протокол SMTP, используемый в электронной почте сети Internet, гипертекстовые сервисы службы WWW и многие другие.

Сегодня стек TCP/IP представляет собой один из самых распространенных стеков транспортных протоколов вычислительных сетей. Действительно, только в сети Internet объединено около 10 миллионов компьютеров по всему миру, которые взаимодействуют друг с другом с помощью стека протоколов TCP/IP.

Стремительный рост популярности Internet привел и к изменениям в расстановке сил в мире коммуникационных протоколов - протоколы TCP/IP, на которых построен Internet, стали быстро теснить бесспорного лидера прошлых лет - стек IPX/SPX компании Novell. Сегодня в мире общее количество компьютеров, на которых установлен стек TCP/IP, сравнялось с общим количеством компьютеров, на которых работает стек IPX/SPX, и это говорит о резком переломе в отношении администраторов локальных сетей к протоколам, используемым на настольных компьютерах, так как именно они составляют подавляющее число мирового компьютерного парка и именно на них раньше почти везде работали протоколы компании Novell, необходимые для доступа к файловым серверам NetWare. Процесс становления стека TCP/IP в качестве стека номер один в любых типах сетей продолжается, и сейчас любая промышленная операционная система обязательно включает программную реализацию этого стека в своем комплекте поставки.

Хотя протоколы TCP/IP неразрывно связаны с Internet и каждый из многомиллионной армады компьютеров Internet работает на основе этого стека, существует большое количество локальных, корпоративных и территориальных сетей, непосредственно не являющихся частями Internet, в которых также используют протоколы TCP/IP. Чтобы отличать их от Internet, эти сети называют сетями TCP/IP или просто IP-сетями.

Поскольку стек TCP/IP изначально создавался для глобальной сети Internet, он имеет много особенностей, дающих ему преимущество перед другими протоколами, когда речь заходит о построении сетей, включающих глобальные связи. В частности, очень полезным свойством, делающим возможным применение этого протокола в больших сетях, является его способность фрагментировать пакеты. Действительно, большая составная сеть часто состоит из сетей, построенных на совершенно разных принципах. В каждой из этих сетей может быть установлена собственная величина максимальной длины единицы передаваемых данных (кадра). В таком случае при переходе из одной сети, имеющей большую максимальную длину, в сеть с меньшей максимальной длиной может возникнуть необходимость деления передаваемого кадра на несколько частей. Протокол IP стека TCP/IP эффективно решает эту задачу.

Другой особенностью технологии TCP/IP является гибкая система адресации, позволяющая более просто по сравнению с другими протоколами аналогичного назначения включать в интерсеть сети других технологий. Это свойство также способствует применению стека TCP/IP для построения больших гетерогенных сетей.

В стеке TCP/IP очень экономно используются возможности широковещательных рассылок. Это свойство совершенно необходимо при работе на медленных каналах связи, характерных для территориальных сетей.

Однако, как и всегда, за получаемые преимущества надо платить, и платой здесь оказываются высокие требования к ресурсам и сложность администрирования IP-сетей. Мощные функциональные возможности протоколов стека TCP/IP требуют для своей реализации высоких вычислительных затрат. Гибкая система адресации и отказ от широковещательных рассылок приводят к наличию в IP-сети различных централизованных служб типа DNS, DHCP и т. п. Каждая из этих служб направлена на облегчение администрирования сети, в том числе и на облегчение конфигурирования оборудования, но в то же время сама требует пристального внимания со стороны администраторов.

Можно приводить и другие доводы за и против стека протоколов Internet, однако факт остается фактом - сегодня это самый популярный стек протоколов, широко используемый как в глобальных, так и локальных сетях.

Стек IPX/SPX

Этот стек является оригинальным стеком протоколов фирмы Novell, разработанным для сетевой операционной системы NetWare еще в начале 80-х годов. Протоколы сетевого и сеансового уровней Internetwork Packet Exchange (IPX) и Sequenced Packet Exchange (SPX), которые дали название стеку, являются прямой адаптацией протоколов XNS фирмы Xerox, распространенных в гораздо меньшей степени, чем стек IPX/SPX. Популярность стека IPX/SPX непосредственно связана с операционной системой Novell NetWare, которая еще сохраняет мировое лидерство по числу установленных систем, хотя в последнее время ее популярность несколько снизилась и по темпам роста она отстает от Microsoft Windows NT.

Многие особенности стека IPX/SPX обусловлены ориентацией ранних версий ОС NetWare (до версии 4.0) на работу в локальных сетях небольших размеров, состоящих из персональных компьютеров со скромными ресурсами. Понятно, что для таких компьютеров компании Novell нужны были протоколы, на реализацию которых требовалось бы минимальное количество оперативной памяти (ограниченной в IBM-совместимых компьютерах под управлением MS-DOS объемом 640 Кбайт) и которые бы быстро работали на процессорах небольшой вычислительной мощности. В результате протоколы стека IPX/SPX до недавнего времени хорошо работали в локальных сетях и не очень - в больших корпоративных сетях, так как они слишком перегружали медленные глобальные связи широковещательными пакетами, которые интенсивно используются несколькими протоколами этого стека (например, для установления связи между клиентами и серверами). Это обстоятельство, а также тот факт, что стек IPX/SPX является собственностью фирмы Novell и на его реализацию нужно получать лицензию (то есть открытые спецификации не поддерживались), долгое время ограничивали распространенность его только сетями NetWare. Однако с момента выпуска версии NetWare 4.0 Novell внесла и продолжает вносить в свои протоколы серьезные изменения, направленные на их адаптацию для работы в корпоративных сетях. Сейчас стек IPX/ SPX реализован не только в NetWare, но и в нескольких других популярных сетевых ОС, например SCO UNIX, Sun Solaris, Microsoft Windows NT.

Стек NetBIOS/SMB

Этот стек широко используется в продуктах компаний IBM и Microsoft. На физическом и канальном уровнях этого стека используются все наиболее распространенные протоколы Ethernet, Token Ring, FDDI и другие. На верхних уровнях работают протоколы NetBEUI и SMB.

Протокол NetBIOS (Network Basic Input/Output System) появился в 1984 году как сетевое расширение стандартных функций базовой системы ввода/вывода (BIOS) IBM PC для сетевой программы PC Network фирмы IBM. В дальнейшем этот протокол был заменен так называемым протоколом расширенного пользовательского интерфейса NetBEUI - NetBIOS Extended User Interface. Для обеспечения совместимости приложений в качестве интерфейса к протоколу NetBEUI был сохранен интерфейс NetBIOS. Протокол NetBEUI разрабатывался как эффективный протокол, потребляющий немного ресурсов и предназначенный для сетей, насчитывающих не более 200 рабочих станций. Этот протокол содержит много полезных сетевых функций, которые можно отнести к сетевому, транспортному и сеансовому уровням модели OSI, однако с его помощью невозможна маршрутизация пакетов. Это ограничивает применение протокола NetBEUI локальными сетями, не разделенными на подсети, и делает невозможным его использование в составных сетях. Некоторые ограничения NetBEUI снимаются реализацией этого протокола NBF (NetBEUI Frame), которая включена в операционную систему Microsoft Windows NT.

Протокол SMB (Server Message Block) выполняет функции сеансового, представительного и прикладного уровней. На основе SMB реализуется файловая служба, а также службы печати и передачи сообщений между приложениями.

Стеки протоколов SNA фирмы IBM, DECnet корпорации Digital Equipment и AppleTalk/AFP фирмы Apple применяются в основном в операционных системах и сетевом оборудовании этих фирм.

На рис. 3.4.3 показано соответствие некоторых, наиболее популярных протоколов уровням модели OSI. Часто это соответствие весьма условно, так как модель OSI - это только руководство к действию, причем достаточно общее, а конкретные протоколы разрабатывались для решения специфических задач, причем многие из них появились до разработки модели OSI. В большинстве случаев разработчики стеков отдавали предпочтение скорости работы сети в ущерб модульности - ни один стек, кроме стека OSI, не разбит на семь уровней. Чаще всего в стеке явно выделяются 3-4 уровня: уровень сетевых адаптеров, в котором реализуются протоколы физического и канального уровней, сетевой уровень, транспортный уровень и уровень служб, вбирающий в себя функции сеансового, представительного и прикладного уровней.

Реализация межсетевого взаимодействия средствами TCP/IP

В настоящее время стек TCP/IP является самым популярным средством организации составных сетей. На рис. 3.4.4 показана доля, которую составляет тот или иной стек протоколов в общемировой инсталляционной сетевой базе. До 1996 года бесспорным лидером был стек IPX/SPX компании Novell, но затем картина резко изменилась - стек TCP/IP по темпам роста числа установок намного стал опережать другие стеки, а с 1998 года вышел в лидеры и в абсолютном выражении. Именно поэтому дальнейшее изучение функций сетевого уровня будет проводиться на примере стека TCP/IP.

В стеке TCP/IP определены 4 уровня (рис. 3.4.5). Каждый из этих уровней несет на себе некоторую нагрузку по решению основной задачи - организации надежной и производительной работы составной сети, части которой построены на основе разных сетевых технологий.

Таблица 3.4.1. Многоуровневая архитектура стека TCP/IP

Уровень 1 Прикладной уровень
Уровень 2 Основной (транспортный) уровень
Уровень 3
Уровень 4 Уровень сетевых интерфейсов

Уровень межсетевого взаимодействия

Стержнем всей архитектуры является уровень межсетевого взаимодействгм, который реализует концепцию передачи пакетов в режиме без установления соединений, то есть дейтаграммным способом. Именно этот уровень обеспечивает возможность перемещения пакетов по сети, используя тот маршрут, который в данный момент является наиболее рациональным. Этот уровень также называют уровнем internet, указывая тем самым на основную его функцию - передачу данных через составную сеть.

Основным протоколом сетевого уровня (в терминах модели OSI) в стеке является протокол IP (Internet Protocol). Этот протокол изначально проектировался как протокол передачи пакетов в составных сетях, состоящих из большого количества локальных сетей, объединенных как локальными, так и глобальными связями. Поэтому протокол IP хорошо работает в сетях со сложной топологией, рационально используя наличие в них подсистем и экономно расходуя пропускную способность низкоскоростных линий связи. Так как протокол IP является дейтаграммным протоколом, он не гарантирует доставку пакетов до узла назначения, но старается это сделать.

К уровню межсетевого взаимодействия относятся и все протоколы, связанные с составлением и модификацией таблиц маршрутизации, такие как протоколы сбора маршрутной информации RIP (Routing Internet Protocol) и OSPF (Open Shortest Path First), а также протокол межсетевых управляющих сообщений ICMP (Internet Control Message Protocol). Последний протокол предназначен для обмена информацией об ошибках между маршрутизаторами сети и узлом-источником пакета. С помощью специальных пакетов ICMP сообщает о невозможности доставки пакета, о превышении времени жизни или продолжительности сборки пакета из фрагментов, об аномальных величинах параметров, об изменении маршрута пересылки и типа обслуживания, о состоянии системы и т. п.

Основной уровень

Поскольку на сетевом уровне не устанавливаются соединения, то нет никаких гарантий, что все пакеты будут доставлены в место назначения целыми и невредимыми или придут в том же порядке, в котором они были отправлены. Эту задачу - обеспечение надежной информационной связи между двумя конечными узлами - решает основной уровень стека TCP/IP, называемый также транспортным.

На этом уровне функционируют протокол управления передачей TCP (Transmission Control Protocol) и протокол дейтаграмм пользователя UDP (User Datagram Protocol). Протокол TCP обеспечивает надежную передачу сообщений между удаленными прикладными процессами за счет образования логических соединений. Этот протокол позволяет равноранговым объектам на компьютере-отправителе и компьютере-получателе поддерживать обмен данными в дуплексном режиме. TCP позволяет без ошибок доставить сформированный на одном из компьютеров поток байт в любой другой компьютер, входящий в составную сеть. TCP делит поток байт на части - сегменты и передает их ниже лежащему уровню межсетевого взаимодействия. После того как эти сегменты будут доставлены средствами уровня межсетевого взаимодействия в пункт назначения, протокол TCP снова соберет их в непрерывный поток байт.

Протокол UDP обеспечивает передачу прикладных пакетов дейтаграммным способом, как и главный протокол уровня межсетевого взаимодействия IP, и выполняет только функции связующего звена (мультиплексора) между сетевым протоколом и многочисленными службами прикладного уровня или пользовательскими процессами.

Прикладной уровень

Прикладной уровень объединяет все службы, предоставляемые системой пользовательским приложениям. За долгие годы использования в сетях различных стран и организаций стек TCP/IP накопил большое количество протоколов и служб прикладного уровня. Прикладной уровень реализуется программными системами, построенными в архитектуре клиент-сервер, базирующимися на протоколах нижних уровней. В отличие от протоколов остальных трех уровней, протоколы прикладного уровня занимаются деталями конкретного приложения и "не интересуются" способами передачи данных по сети. Этот уровень постоянно расширяется за счет присоединения к старым, прошедшим многолетнюю эксплуатацию сетевым службам типа Telnet, FTP, TFTP, DNS, SNMP сравнительно новых служб таких, например, как протокол передачи гипертекстовой информации HTTP.

Уровень сетевых интерфейсов

Идеологическим отличием архитектуры стека TCP/IP от многоуровневой организации других стеков является интерпретация функций самого нижнего уровня - уровня сетевых интерфейсов. Протоколы этого уровня должны обеспечивать интеграцию в составную сеть других сетей, причем задача ставится так: сеть TCP/IP должна иметь средства включения в себя любой другой сети, какую бы внутреннюю технологию передачи данных эта сеть не использовала. Отсюда следует, что этот уровень нельзя определить раз и навсегда. Для каждой технологии, включаемой в составную сеть подсети, должны быть разработаны собственные интерфейсные средства. К таким интерфейсным средствам относятся протоколы инкапсуляции IP-пакетов уровня межсетевого взаимодействия в кадры локальных технологий. Например, документ RFC 1042 определяет способы инкапсуляции IP-пакетов в кадры технологий IEEE 802. Для этих целей должен использоваться заголовок LLC/ SNAP, причем в поле Туре заголовка SNAP должен быть указан код 0x0800. Только для протокола Ethernet в RFC 1042 сделано исключение - помимо заголовка LLC/ SNAP разрешается использовать кадр Ethernet DIX, не имеющий заголовка LLC, зато имеющий поле Туре. В сетях Ethernet предпочтительным является инкапсуляция IP-пакета в кадр Ethernet DIX.

Уровень сетевых интерфейсов в протоколах TCP/IP не регламентируется, но он поддерживает все популярные стандарты физического и канального уровней: для локальных сетей это Ethernet, Token Ring, FDDI, Fast Ethernet, Gigabit Ethernet, 100VG-AnyLAN, для глобальных сетей - протоколы соединений "точка-точка" SLIP и РРР, протоколы территориальных сетей с коммутацией пакетов Х.25, frame relay. Разработана также специальная спецификация, определяющая использование технологии ATM в качестве транспорта канального уровня. Обычно при появлении новой технологии локальных или глобальных сетей она быстро включается в стек TCP/IP за счет разработки соответствующего RFC, определяющего метод инкапсуляции IP-пакетов в ее кадры (спецификация RFC 1577, определяющая работу IP через сети ATM, появилась в 1994 году вскоре после принятия основных стандартов этой технологии).

Соответствие уровней стека TCP/IP семиуровневой модели ISO/OSI

Так как стек TCP/IP был разработан до появления модели взаимодействия открытых систем ISO/OSI, то, хотя он также имеет многоуровневую структуру, соответствие уровней стека TCP/IP уровням модели OSI достаточно условно (рис. 3.4.6). Рассматривая многоуровневую архитектуру TCP/IP, можно выделить в ней, подобно архитектуре OSI, уровни, функции которых зависят от конкретной технической реализации сети, и уровни, функции которых ориентированны на работу с приложениями (рис. 3.4.7).

Протоколы прикладного уровня стека TCP/IP работают на компьютерах, выполняющих приложения пользователей. Даже полная смена сетевого оборудования в общем случае не должна влиять на работу приложений, если они получают доступ к сетевым возможностям через протоколы прикладного уровня.

Протоколы транспортного уровня уже более зависят от сети, так как они реализуют интерфейс к уровням, непосредственно организующим передачу данных по сети. Однако, подобно протоколам прикладного уровня, программные модули, реализующие протоколы транспортного уровня, устанавливаются только на конечных узлах. Протоколы двух нижних уровней являются сетезависимыми, а следовательно, программные модули протоколов межсетевого уровня и уровня сетевых интерфейсов устанавливаются как на конечных узлах составной сети, так и на маршрутизаторах.

Каждый коммуникационный протокол оперирует с некоторой единицей передаваемых данных. Названия этих единиц иногда закрепляются стандартом, а чаще просто определяются традицией. В стеке TCP/IP за многие годы его существования образовалась устоявшаяся терминология в этой области (рис. 3.4.8).

Потоком называют данные, поступающие от приложений на вход протоколов транспортного уровня TCP и UDP.

Протокол TCP нарезает из потока данных сегменты.

Единицу данных протокола UDP часто называют дейтаграммой (или датаграм-мой). Дейтаграмма - это общее название для единиц данных, которыми оперируют протоколы без установления соединений. К таким протоколам относится и протокол межсетевого взаимодействия IP.

Дейтаграмму протокола IP называют также пакетом.

В стеке TCP/IP принято называть кадрами (фреймами) единицы данных протоколов, на основе которых IP-пакеты переносятся через подсети составной сети. При этом не имеет значения, какое название используется для этой единицы данных в локальной технологии.

Выводы по теме

    Формализованные правила, определяющие последовательность и формат сообщений, которыми обмениваются сетевые компоненты, лежащие на одном уровне, но в разных узлах, называются протоколом.

    Иерархически организованный набор протоколов, достаточный для организации взаимодействия узлов в сети, называется стеком коммуникационных протоколов.

    Работа различных протоколов скоординирована так, чтобы исключить конфликты или незаконченные операции. Этого достигается с помощью разбиения на уровни стека протоколов.

    Важнейшим направлением стандартизации в области вычислительных сетей является стандартизация коммуникационных протоколов. Наиболее популярными являются стеки: TCP/IP, IPX/SPX, NetBIOS/SMB, DECnet, SNA и OSI.

    Процесс, который называется привязка, позволяет с достаточной гибкостью сочетать протоколы и платы сетевых адаптеров, как того требует ситуация. Если на компьютере более одной платы сетевого адаптера, то стек протоколов может быть привязан как к одной, так и к нескольким платам сетевого адаптера.

    Коммуникационные задачи, которые возложены на компьютерную сеть, приводят к разделению протоколов на три типа:

    а) прикладной;

    б) транспортный;

    в) сетевой.

    Наибольшее распространение для построения составных сетей в последнее время получил стек TCP/IP. Стек TCP/IP имеет 4 уровня: прикладной, основной, уровень межсетевого взаимодействия и уровень сетевых интерфейсов. Соответствие уровней стека TCP/IP уровням модели OSI достаточно условно.

    Прикладной уровень объединяет все службы, предоставляемые системой пользовательским приложениям: традиционные сетевые службы типа telnet, FTP, TFTP, DNS, SNMP, а также сравнительно новые, такие, например, как протокол передачи гипертекстовой информации HTTP.

    На основном уровне стека TCP/IP, называемом также транспортным, функционируют протоколы TCP и UDP. Протокол управления передачей TCP решает задачу обеспечения надежной информационной связи между двумя конечными узлами. Дейтаграммный протокол UDP используется как экономичное средство связи уровня межсетевого взаимодействия с прикладным уровнем.

    Уровень межсетевого взаимодействия реализует концепцию коммутации пакетов в режиме без установления соединений. Основными протоколами этого уровня являются дейтаграммный протокол IP и протоколы маршрутизации (RIP, OSPF, BGP и др.). Вспомогательную роль выполняют протокол межсетевых управляющих сообщений ICMP, протокол группового управления IGMP и протокол разрешения адресов ARP.

    Протоколы уровня сетевых интерфейсов обеспечивают интеграцию в составную сеть других сетей. Этот уровень не регламентируется, но поддерживает все популярные стандарты физического и канального уровней: для локальных сетей - Ethernet, Token Ring, FDDI и т. д., для глобальных сетей - Х.25, frame relay, PPP, ISDN и т. д.

    В стеке TCP/IP для именования единиц передаваемых данных на разных уровнях используют разные названия: поток, сегмент, дейтаграмма, пакет, кадр.


  • Стеки протоколов
  • Протоколы канального уровня
  • Протоколы межсетевого уровня
  • Транспортные протоколы
  • Прикладные протоколы

Как уже упоминалось ранее, в локальных сетях могут совместно работать компьютеры разных производителей, оснащенные различным набором устройств и обладающие несхожими техническими характеристиками. На практике это означает, что для обеспечения нормального взаимодействия этих компьютеров необходим некий единый унифицированный стандарт, строго определяющий алгоритм передачи данных в распределенной вычислительной системе. В современных локальных сетях, или, как их принято называть в англоязычных странах, LAN (Local Area Network), роль такого стандарта выполняют сетевые протоколы.
Итак, сетевым протоколом, или протоколом передачи данных, называется согласованный и утвержденный стандарт, содержащий описание правил приема и передачи между несколькими компьютерами команд, файлов, иных данных, и служащий для синхронизации работы вычислительных машин в сети.
Прежде всего следует понимать, что в локальных сетях передача информации осуществляется не только между компьютерами как физическими устройствами, но и между приложениями, обеспечивающими коммуникации на программном уровне. Причем под такими приложениями можно понимать как компоненты операционной системы, организующие взаимодействие с различными устройствами компьютера, так и клиентские приложения, обеспечивающие интерфейс с пользователем. Таким образом, мы постепенно приходим к пониманию многоуровневой структуры сетевых коммуникаций - как минимум, с одной стороны мы имеем дело с аппаратной конфигурацией сети, с другой стороны - с программной.
Вместе с тем передача информации между несколькими сетевыми компьютерами - не такая уж простая задача, как это может показаться на первый взгляд. Для того чтобы понять это, достаточно представить себе тот круг проблем, который может возникнуть в процессе приема или трансляции каких-либо данных. В числе таких «неприятностей» можно перечислить аппаратный сбой либо выход из строя одного из обеспечивающих связь устройств, например, сетевой карты или концентратора, сбой прикладного или системного программного обеспечения, возникновение ошибки в самих передаваемых данных, потерю части транслируемой информации или ее искажение. Отсюда следует, что в локальной сети необходимо обеспечить жесткий контроль для отслеживания всех этих ошибок, и более того, организовать четкую работу как аппаратных, так и программных компонентов сети. Возложить все эти задачи на один-единственный протокол практически невозможно. Как быть?
Выход нашелся в разделении протоколов на ряд концептуальных уровней, каждый из которых обеспечивает интерфейс между различными модулями программного обеспечения, установленного на работающих в сети компьютерах. Таким образом, механизм передачи какого-либо пакета информации через сеть от клиентской программы, работающей на о/щом компьютере, клиентской программе, работающей на другом компьютере, можно условно представить в виде последовательной пересылки этого пакета сверху вниз от некоего протокола верхнего уровня, обеспечивающего взаимодействие с пользовательским приложением, протоколу нижнего уровня, организующему интерфейс с сетью, его трансляции на компьютер-получатель и обратной передачи протоколу верхнего уровня уже на удаленной машине (рис. 2.1).

Рис. 2.1. Концептуальная модель многоуровневой системы протоколов

Согласно такой схеме, каждый из уровней подобной системы обеспечивает собственный набор функций при передаче информации по локальной сети.
Например, можно предположить, что протокол верхнего уровня, осуществляющий непосредственное взаимодействие с клиентскими программами, транслирует данные протоколу более низкого уровня, «отвечающему» за работу с аппаратными устройствами сети, преобразовывая их в «понятную» для него форму. Тот, в свою очередь, передает их протоколу, осуществляющему непосредственно пересылку информации на другой компьютер. На удаленном компьютере прием данных осуществляет аналогичный протокол «нижнего» уровня и контролирует корректность принятых данных, то есть определяет, следует ли транслировать их протоколу, расположенному выше в иерархической структуре, либо запросить повторную передачу. В этом случае взаимодействие осуществляется только между протоколами нижнего уровня, верхние уровни иерархии в данном процессе не задействованы. В случае если информация была передана без искажений, она транслируется вверх через соседние уровни протоколов до тех пор, пока не достигнет программы-получателя. При этом каждый из уровней не только контролирует правильность трансляции данных на основе анализа содержимого пакета информации, но и определяет дальнейшие действия исходя из сведений о его назначении. Например, один из уровней «отвечает» за выбор устройства, с которого осуществляется получение и через которое передаются данные в сеть, другой «решает», передавать ли информацию дальше по сети, или она предназначена именно этому компьютеру, третий «выбирает» программу, которой адресована принятая информация. Подобный иерархический подход позволяет не только разделить функции между различными модулями сетевого программного обеспечения, что значительно облегчает контроль работы всей системы в целом, но и дает возможность производить коррекцию ошибок на том уровне иерархии, на котором они возникли. Каждую из подобных иерархических систем, включающих определенный набор протоколов различного уровня, принято называть стеком протоколов.
Вполне очевидно, что между теорией и практикой, то есть между концептуальной моделью стека протоколов и его практической реализацией существует значительная разница. На практике принято несколько различных вариантов дробления стека протоколов на функциональные уровни, каждый из которых выполняет свой круг задач. Мы остановимся на одном из этих вариантов, который представляется наиболее универсальным. Данная схема включает четыре функциональных уровня, и так же, как и предыдущая диаграмма, описывает не конкретный механизм работы какого-либо стека протоколов, а общую модель, которая поможет лучше понять принцип действия подобных систем (рис. 2.2).
Самый верхний в иерархической системе, прикладной уровень стека протоколов обеспечивает интерфейс с программным обеспечением, организующим
работу пользователя в сети. При запуске любой программы, для функционирования которой требуется диалог с сетью, эта программа вызывает соответствующий протокол прикладного уровня. Данный протокол передает программе информацию из сети в доступном для обработки формате, то есть в виде системных сообщений либо в виде потока байтов. В точности таким же образом пользовательские приложения могут получать потоки данных и управляющие сообщения - как от самой операционной системы, так и от других запущенных на компьютере программ. То есть, обобщая, можно сказать, что протокол прикладного уровня выступает в роли своего рода посредника между сетью и программным обеспечением, преобразуя транслируемую через сеть информацию в «понятную» программе-получателю форму.

Рис. 2.2. Модель реализации стека протоколов

Основная задача протоколов транспортного уровня заключается в осуществлении контроля правильности передачи данных, а также в обеспечении взаимодействия между различными сетевыми приложениями. В частности, получая входящий поток данных, протокол транспортного уровня дробит его на отдельные фрагменты, называемые пакетами, записывает в каждый пакет некоторую дополнительную информацию, например идентификатор программы, для которой предназначены передаваемые данные, и контрольную сумму, необходимую для проверки целостности пакета, и направляет их на смежный уровень для дальнейшей обработки. Помимо этого протоколы транспортного уровня осуществляют управление передачей информации - например, могут запросить у получателя подтверждение доставки пакета и повторно выслать утерянные фрагменты транслируемой последовательности данных. Некоторое недоумение может вызвать то обстоятельство, что протоколы транспортного уровня так же, как и протоколы прикладного уровня, взаимодействуют с сетевыми программами и координируют передачу данных между ними. Эту ситуацию можно прояснить на следующем примере: предположим, на подключенном к сети компьютере запущен почтовый клиент, эксплуатирующий два различных протокола прикладного уровня - РОРЗ (Post Office Protocol) и SMTP (Simple Mail Transfer Protocol) - и программа загрузки файлов на удаленный сервер - FTP-клиент, работающий с протоколом прикладного уровня FTP (File Transfer Protocol). Все эти протоколы прикладного уровня опираются на один и тот же протокол транспортного уровня - TCP/IP (Transmission Control Protocol/Internet Protocol), который, получая поток данных от вышеуказанных программ, преобразует их в пакеты данных, где присутствует указание на конечное приложение, использующее эту информацию. Из рассмотренного нами примера следует, что данные, приходящие из сети, могут иметь различное назначение, и, соответственно, они обрабатываются различными программами, либо различными модулями одного и того же приложения. Во избежание путаницы при приеме и обработке информации каждая взаимодействующая с сетью программа имеет собственный идентификатор, который позволяет транспортному протоколу направлять данные именно тому приложению, для которого они предназначены. Такие идентификаторы носят название программных портов. В частности, протокол прикладного уровня SMTP, предназначенный для отправки сообщений электронной почты, работает обычно с портом 25, протокол входящей почты РОРЗ - с портом 110, протокол Telnet - с портом 23. Задача перенаправления потоков данных между программными портами лежит па транспортных протоколах.
На межсетевом уровне реализуется взаимодействие конкретных компьютеров распределенной вычислительной системы, другими словами, осуществляется процесс определения маршрута движения информации внутри локальной сети и выполняется отправка этой информации конкретному адресату. Данный процесс принято называть маршрутизацией. Получая пакет данных от протокола транспортного уровня вместе с запросом на его передачу и указанием получателя, протокол межсетевого уровня выясняет, на какой компьютер следует передать информацию, находится ли этот компьютер в пределах данного сегмента локальной сети или на пути к нему расположен шлюз, после чего трансформирует пакет в дейтаграмму - специальный фрагмент информации, передаваемый через сеть независимо от других аналогичных фрагментов, без образования виртуального канала (специально сконфигурированной среды для двустороннего обмена данными между несколькими устройствами) и подтверждения приема. В заголовок дейтаграммы записывается адрес компьютера-получателя пересылаемых данных и сведения о маршруте следования дейтаграммы. После чего она передается на канальный уровень.

ПРИМЕЧАНИЕ
Шлюз - это программа, при помощи которой можно передавать информацию между двумя сетевыми системами, использующими различные протоколы обмена данными.

Получая дейтаграмму, протокол межсетевого уровня определяет правильность ее приема, после чего выясняет, адресована ли она локальному компьютеру, или же ее следует направить по сети дальше. В случае, если дальнейшей пересылки не требуется, протокол межсетевого уровня удаляет заголовок дейтаграммы, вычисляет, какой из транспортных протоколов данного компьютера будет обрабатывать полученную информацию, трансформирует ее в соответствующий пакет и передает на транспортный уровень. Проиллюстрировать этот на первый взгляд сложный механизм можно простым примером. Предположим, на пеком компьютере одновременно используется два различных транспортных протокола: TCP/IP - для соединения с Интернетом и NetBEUI (NetBIOS Extended User Interface) для работы в локальной сети. В этом случае данные, обрабатываемые на транспортном уровне, будут для этих протоколов различны, однако на межсетевом уровне информация будет передаваться посредством дейтаграмм одного и того же формата.
Наконец, на канальном уровне осуществляется преобразование дейтаграмм в соответствующий сигнал, который через коммуникационное устройство транслируется по сети. В самом простом случае, когда компьютер напрямую подключен к локальной сети того или иного стандарта посредством сетевого адаптера, роль протокола канального уровня играет драйвер этого адаптера, непосредственно реализующий интерфейс с сетью. В более сложных ситуациях на канальном уровне могут работать сразу несколько специализированных протоколов, каждый из которых выполняет собственный набор функций.

Протоколы канального уровня

Протоколы, обеспечивающие взаимодействие компьютера с сетью на самом низком, аппаратном уровне, во многом определяют топологию локальной сети, а также ее внутреннюю архитектуру. В настоящее время на практике достаточно часто применяется несколько различных стандартов построения локальных сетей, наиболее распространенными среди которых являются технологии Ethernet, Token Ring, Fiber Distributed Data Interface (FDDI) и ArcNet.
На сегодняшний день локальные сети, построенные на основе стандарта Ethernet, являются наиболее популярными как в нашей стране, так и во всем мире. На долю сетей Ethernet приходится почти девяносто процентов всех малых и домашних локальных сетей, что не удивительно, поскольку именно эта технология позволяет строить простые и удобные в эксплуатации и настройке локальные сети с минимумом затрат. Именно поэтому в качестве основного рассматриваемого нами стандарта будет принята именно технология Ethernet. Протоколы канального уровня поддержки Ethernet, как правило, встроены в оборудование, обеспечивающее подключение компьютера к локальной сети на физическом уровне. Стандарт Ethernet является широковещательным, то есть каждый подключенный к сети компьютер принимает всю следующую через его сетевой сегмент информацию - как предназначенную именно для этого компьютера, так и данные, направляемые на другую машину. Во всех сетях Ethernet применяется один и тот же алгоритм разделения среды передачи информации - множественный доступ с контролем несущей и обнаружением конфликтов (Carrier Sense Multiple Access with Collision Detection, CSMA/CD).
В рамках технологии Ethernet сегодня различается несколько стандартов организации сетевых коммуникаций, определяющих пропускную способность канала связи и максимально допустимую длину одного сегмента сети, то есть расстояние между двумя подключенными к сети устройствами. Об этих стандартах мы побеседуем в следующей главе, посвященной изучению сетевого оборудования, пока же необходимо отметить, что в рамках стандарта Ethernet применяется, как правило, одна из двух различных топологий: конфигурация сети с общей шиной или звездообразная архитектура.

Протоколы межсетевого уровня

Протоколы уровня межсетевого взаимодействия, как уже упоминалось ранее, предназначены для определения маршрутов следования информации в локальной сети, приема и передачи дейтаграмм, а также для трансляции принятых данных протоколам более высокого уровня, если эти данные предназначены для обработки на локальном компьютере. К протоколам межсетевого уровня принято относить протоколы маршрутизации, такие как RIP (Routing Internet Protocol) и OSPF (Open Shortest Path First), а также протокол контроля и управления передачей данных ICMP (Internet Control Message Protocol). Но вместе с тем одним из самых известных протоколов межсетевого уровня является протокол IP.

Протокол IP

Протокол IP (Internet Protocol) используется как в глобальных распределенных системах, например в сети Интернет, так и в локальных сетях. Впервые протокол IP применялся еще в сети ArpaNet, являвшейся предтечей современного Интернета, и с тех пор он уверенно удерживает позиции в качестве одного из наиболее распространенных и популярных протоколов межсетевого уровня.
Поскольку межсетевой протокол IP является универсальным стандартом, он нередко применяется в так называемых составных сетях, то есть сетях, использующих различные технологии передачи данных и соединяемых между собой посредством шлюзов. Этот же протокол «отвечает» за адресацию при передаче информации в сети. Как осуществляется эта адресация?
Каждый человек, живущий на Земле, имеет адрес, по которому его в случае необходимости можно разыскать. Думаю, ни у кого не вызовет удивления то, что каждая работающая в Интернете или локальной сети машина также имеет свой уникальный адрес. Адреса в компьютерных сетях разительно отличаются от привычных нам почтовых. Боюсь, совершенно бесполезно писать на отправляемом вами в Сеть пакете информации нечто вроде «Компьютеру Intel Pentium III 1300 Mhz, эсквайру, Пэнии-Лэйн 114, Ливерпуль, Англия». Увидев такую надпись, ваша персоналка в лучшем случае фундаментально зависнет. Но если вы укажете компьютеру в качестве адреса нечто вроде 195.85.102.14, машина вас прекрасно поймет.
Именно стандарт IP подразумевает подобную запись адресов подключенных к сети компьютеров. Такая запись носит название IP-адрес.
Из приведенного примера видно, что IP-адрес состоит из четырех десятичных идентификаторов, или октетов, по одному байту каждый, разделенных точкой. Левый октет указывает тип локальной интрасети (под термином «интрасеть» (intranet) здесь понимается частная корпоративная или домашняя локальная сеть, имеющая подключение к Интернету), в которой находится искомый компьютер. В рамках данного стандарта различается несколько подвидов интрасетей, определяемых значением первого октета. Это значение характеризует максимально возможное количество подсетей и узлов, которые может включать такая сеть. В табл. 2.1 приведено соответствие классов сетей значению первого октета IP-адреса.

Таблица 2.1. Соответствие классов сетей значению первого октета IP-адреса

Адреса класса А используются в крупных сетях общего пользования, поскольку позволяют создавать системы с большим количеством узлов. Адреса класса В, как правило, применяют в корпоративных сетях средних размеров, адреса класса С - в локальных сетях небольших предприятий. Для обращения к группам машин предназначены широковещательные адреса класса D, адреса класса Е пока не используются: предполагается, что со временем они будут задействованы с целью расширения стандарта. Значение первого октета 127 зарезервировано для служебных целей, в основном для тестирования сетевого оборудования, поскольку IP-пакеты, направленные на такой адрес, не передаются в сеть, а ретранслируются обратно управляющей надстройке сетевого программного обеспечения как только что принятые. Кроме того, существует набор так называемых «выделенных» IP-адресов, имеющих особое значение. Эти адреса приведены в табл. 2.2.

Таблица 2.2. Значение выделенных IP-адресов

ПРИМЕЧАНИЕ
Хостом принято называть любой подключенный к Интернету компьютер независимо от его назначения.

Как уже упоминалось ранее, небольшие локальные сети могут соединяться между собой, образуя более сложные и разветвленные структуры. Например, локальная сеть предприятия может состоять из сети административного корпуса и сети производственного отдела, сеть административного корпуса, в свою очередь, может включать в себя сеть бухгалтерии, планово-экономического отдела и отдела маркетинга. В приведенном выше примере сеть более низкого уровня является подсетью системы более высокого уровня, то есть локальная сеть бухгалтерии - подсеть для сети административного корпуса, а та, в свою очередь, - подсеть для сети всего предприятия в целом.
Однако вернемся к изучению структуры IP-адреса. Последний (правый) идентификатор IP-адреса обозначает номер компьютера в данной локальной сети. Все, что расположено между правым и левым октетами в такой записи, - номера подсетей более низкого уровня. Непонятно? Давайте разберем на примере. Положим, мы имеем некий адрес в Интернете, на который хотим отправить пакет с набором свеженьких анекдотов. В качестве примера возьмем тот же IP-адрес- 195.85.102.14. Итак, мы отправляем пакет в 195-ю подсеть сети Интернет, которая, как видно из значения первого октета, относится к классу С. Допустим, 195-я сеть включает в себя еще 902 подсети, но наш пакет высылается в 85-ю. Она содержит 250 подсетей
более низкого порядка, но нам нужна 102-я. Ну и, наконец, к 102-й сети подключено 40 компьютеров. Исходя из рассматриваемого нами адреса, подборку анекдотов получит машина, имеющая в этой сетевой системе номер 14. Из всего сказанного выше становится очевидно, что IP-адрес каждого компьютера, работающего как в локальной сети, так и в глобальных вычислительных системах, должен быть уникален.
Централизованным распределением IP-адресов в локальных сетях занимается государственная организация - Стенфордский международный научно-исследовательский институт (Stanford Research Institute, SRI International), расположенный в самом сердце Силиконовой долины - городе Мэнло-Парк, штат Калифорния, США. Услуга по присвоению новой локальной сети IP-адресов бесплатная, и занимает она приблизительно неделю. Связаться с данной организацией можно по адресу SRI International, Room EJ210, 333 Ravenswood Avenue, Menlo Park, California 94025, USA, no телефону в США 1-800-235-3155 или по адресу электронной почты, который можно найти на сайте http://www.sri.com. Однако большинство администраторов небольших локальных сетей, насчитывающих 5-10 компьютеров, назначают IP-адреса подключенным к сети машинам самостоятельно, исходя из описанных выше правил адресации в IP-сетях. Тацой подход вполне имеет право на жизнь, но вместе с тем произвольное назначение IP-адресов может стать проблемой, если в будущем такая сеть будет соединена с другими локальными сетями или в ней будет организовано прямое подключение к Интернету. В данном случае случайное совпадение нескольких IP-адресов может привести к весьма неприятным последствиям, например к ошибкам в маршрутизации передаваемых по сети данных или отказу в работе всей сети в целом.
Небольшие локальные сети, насчитывающие ограниченное количество компьютеров, должны запрашивать для регистрации адреса класса С. При этом каждой из таких сетей назначаются только два первых октета IP-адреса, например 197.112.Х.Х, на практике это означает, что администратор данной сети может создавать подсети и назначать номера узлов в рамках каждой из них произвольно, исходя из собственных потребностей.
Большие локальные сети, использующие в качестве базового межсетевой протокол IP, нередко применяют чрезвычайно удобный способ структуризации всей сетевой системы путем разделения общей IP-сети на подсети. Например, если вся сеть предприятия состоит из ряда объединенных вместе локальных сетей Ethernet, то в ней может быть выделено несколько структурных составляющих, то есть подсетей, отличающихся значением третьего октета IP-адреса. Как правило, в качестве каждой из подсетей используется физическая сеть какого-либо отдела фирмы, скажем, сеть Ethernet, объединяющая все компьютеры бухгалтерии. Такой подход, во-первых, позволяет
излишне не расходовать IP-адреса, а во-вторых, предоставляет определенные удобства с точки зрения администрирования: например, администратор может открыть доступ к Интернету только для одной из вверенных ему подсетей или на время отключить одну из подсетей от локальной сети предприятия. Кроме того, в случае если сетевой администратор решит, что третий октет IP-адреса описывает номер подсети, а четвертый - номер узла в ней, то такая информация записывается в локальных таблицах маршрутизации сети вашего предприятия и не видна извне. Другими словами, данный подход обеспечивает большую безопасность.
Для того чтобы программное обеспечение могло автоматически выделять номера конкретных компьютеров из используемых в данной сетевой системе IP-адресов, применяются так называемые маски подсети. Принцип, по которому осуществляется распознавание номеров узлов в составе IP-адреса, достаточно прост: биты маски подсети, обозначающие номер самой IP-сети, должны быть равны единице, а биты, определяющие номер узла, - нулю. Именно поэтому в большинстве локальных IP-сетей класса С в качестве маски подсети принято значение 255.255.255.0: при такой конфигурации в состав общей сети может быть включено до 256 подсетей, в каждой из которых работает до 254 компьютеров. В ряде случаев это значение может изменяться, например, если возникла необходимость использовать в составе сети количество подсетей большее, чем 256, можно использовать маску подсети формата 255.255.255.195. В этой конфигурации сеть может включать до 1024 подсетей, максимальное число компьютеров в каждой из которых не должно превышать 60.
В локальных сетях, работающих под управлением межсетевого протокола IP, помимо обозначения IP-адресов входящих в сеть узлов принято также символьное обозначение компьютеров: например, компьютер с адресом 192.112.85.7 может иметь сетевое имя Localhost. Таблица соответствий IP-адресов символьным именам узлов содержится в специальном файле hosts, хранящемся в одной из системных папок; в частности, в операционной системе Microsoft Windows XP этот файл можно отыскать в папке flKCK:\Windows\system32\drivers\etc\. Синтаксис записи таблицы сопоставлений имен узлов локальной сети IP-адресам достаточно прост: каждый элемент таблицы должен быть расположен в новой строке, IP-адрес располагается в первом столбце, а за ним следует имя компьютера, при этом IP-адрес и имя должны быть разделены как минимум одним пробелом. Каждая из строк таблицы может включать произвольный комментарий, обозначаемый символом #. Пример файла hosts приведен ниже:

192.112.85.7 localhost # этот компьютер
192.112.85.1 server # сервер сети
192.112.85.2 director # компьютер приемной директора
192.112.85.5 admin # компьютер системного администратора

Как правило, файл hosts создается для какой-либо конкретной локальной сети, и его копия хранится на каждом из подключенных к ней компьютеров. В случае, если один из узлов сети имеет несколько IP-адресов, то в таблице соответствий обычно указывается лишь один из них, вне зависимости от того, какой из адресов реально используется. При получении из сети IP-пакета, предназначенного для данного компьютера, протокол IP сверится с таблицей маршрутизации и на основе анализа заголовка IP-пакета автоматически опознает любой из IP-адресов, назначенных данному узлу.
Помимо отдельных узлов сети собственные символьные имена могут иметь также входящие в локальную сеть подсети. Таблица соответствий IP-адресов именам подсетей содержится в файле networks, хранящемся в той же папке, что и файл hosts. Синтаксис записи данной таблицы сопоставлений несколько отличается от предыдущего, и в общем виде выглядит следующим образом: <сетевяе имя> <номер сети> [псевдонимы...] [#<конментарий>]
где сетевое имя - имя, назначенное каждой подсети, номер сети - часть IP-адреса подсети (за исключением номеров более мелких подсетей, входящих в данную подсеть, и номеров узлов), псевдонимы - необязательный параметр, указывающий на возможные синонимы имен подсетей: они используется в случае, если какая-либо подсеть имеет несколько различных символьных имен; и, наконец, комментарий - произвольный комментарий, поясняющий смысл каждой записи. Пример файла networks приведен ниже:

loopback 127
marketing 192.112.85 # отдел маркетинга
buhgalteria 192.112.81 # бухгалтерия
workshop 192.112.80 # сеть производственного цеха
workgroup 192.112.10 localnetwork # основная рабочая группа

Обратите внимание на то обстоятельство, что адреса, начинающиеся на 127, являются зарезервированными для протокола IP, а подсеть с адресом 192.112.10 в нашем примере имеет два символьных имени, используемых совместно.
Файлы hosts и networks не оказывают непосредственного влияния на принципиальный механизм работы протокола IP и используются в основном прикладными программами, однако они существенно облегчают настройку и администрирование локальной сети.

Протокол IPX

Протокол IPX (Internet Packet Exchange) является межсетевым протоколом, используемым в локальных сетях, узлы которых работают под управлением операционных систем семейства Nowell Netware. Данный протокол обеспечивает передачу дейтаграмм в таких сетях без организации логического соединения - постоянного двустороннего обмена данными между двумя узлами сети, которое организуется протоколом транспортного уровня. Разработанный на основе технологий Nowell, этот некогда популярный протокол в силу несовместимости с чрезвычайно распространенным стеком протоколов TCP/IP в настоящее время медленно, но верно утрачивает свои позиции.
Как и межсетевой протокол IP, IPX способен поддерживать широковещательную передачу данных посредством дейтаграмм длиной до 576 байт, 30 из которых занимает заголовок пакета. В сетях IPX используются составные адреса узлов, состоящих из номера сети, адреса узла и адреса прикладной программы, для которой предназначен передаваемый пакет информации, который также носит наименование гнезда или сокета. Для обеспечения обмена данными между несколькими сетевыми приложениями в многозадачной среде на узле, работающем под управлением протокола IPX, должно быть одновременно открыто несколько сокетов.
Поскольку в процессе трансляции данных протокол IPX не запрашивает подтверждения получения дейтаграмм, доставка данных в таких сетях не гарантируется, и потому функции контроля над передачей информации возлагаются на сетевое программное обеспечение. Фактически IPX обеспечивает только инкапсуляцию транслируемых по сети потоков данных в дейтаграммы, их маршрутизацию и передачу пакетов протоколам более высокого уровня.
Протоколам канального уровня IPX передает пакеты данных, имеющие следующую логическую структуру:

  • контрольная сумма, предназначенная для определения целостности передаваемого пакета (2 байта);
  • указание на длину пакета (2 байта);
  • данные управления транспортом (1 байт);
  • адрес сети назначения (4 байта);
  • адрес узла назначения (6 байт);
  • номер сокета назначения (2 байта);
  • адрес сети-отправителя (4 байта);
  • адрес узла-отправителя (6 байт);
  • номер сокета-отправителя (2 байта);
  • передаваемая информация (0-546 байт).

Протоколы канального уровня размещают этот пакет внутри кадра сети и передают его в распределенную вычислительную систему.

Транспортные протоколы

Как уже упоминалось ранее, протоколы транспортного уровня обеспечивают контроль над передачей данных между межсетевыми протоколами и приложениями уровня операционной системы. В настоящее время в локальных сетях наиболее распространено несколько разновидностей транспортных протоколов.

Протокол TCP

Протокол IP позволяет только транслировать данные. Для того чтобы управлять этим процессом, служит протокол TCP (Transmission Control Protocol), опирающийся на возможности протокола IP. Как же контролируется передача информации?
Положим, вы хотите переслать по почте вашему другу толстый журнал, не потратив при этом денег на отправку бандероли. Как решить эту проблему, если почта отказывается принимать письма, содержащие больше нескольких бумажных листов? Выход простой: разделить журнал на страницы и отправлять их отдельными письмами. По номерам страниц ваш друг сможет собрать журнал целиком. Приблизительно таким же способом работает протокол TCP. Он дробит информацию на несколько частей, присваивает каждой части номер, по которому данные впоследствии можно будет соединить воедино, добавляет к ней «служебную» информацию и укладывает все это в отдельный «IP-конверт». Далее этот «конверт» отправляется по сети - ведь протокол межсетевого уровня умеет обрабатывать подобную информацию. Поскольку в такой схеме протоколы TCP и IP тесно связаны, их часто объединяют в одно понятие: TCP/IP. Размер передаваемых в Интернете TCP/IP-пакетов составляет, как правило, от 1 до 1500 байт, что связано с техническими характеристиками сети.
Наверняка, пользуясь услугами обычной почтовой связи, вы сталкивались с тем, что обычные письма, посылки и иные почтовые отправления теряются и приходят совсем не туда, куда нужно. Те же проблемы характерны и для локальных сетей. На почте такие неприятные ситуации решают руководители почтовых отделений, а в сетевых системах этим занимается протокол TCP. Если какой-либо пакет данных не был доставлен получателю вовремя, TCP повторяет пересылку до тех пор, пока информация не будет принята корректно и в полном объеме.
В действительности данные, передаваемые по электронным сетям, не только теряются, но зачастую искажаются из-за помех на линиях связи. Встроенные в TCP алгоритмы контроля корректности передачи данных решают и эту проблему. Одним из самых известных механизмов контроля правильности пересылки информации является метод, согласно которому в заголовок каждого передаваемого пакета записывается некая контрольная сумма, вычисленная компьютером-отправителем. Компьютер-получатель по аналогичной системе вычисляет контрольную сумму и сравнивает ее с числом, имеющимся в заголовке пакета. Если цифры не совпадают, TCP пытается повторить передачу.
Следует отметить также, что при отправке информационных пакетов протокол TCP требует от компьютера-получателя подтверждения приема информации. Это организуется путем создания временных задержек при приеме-передаче - тайм-аутов, или ожиданий. Тем временем отправитель продолжает пересылать данные. Образуется некий объем уже переданных, но еще не подтвержденных данных. Иными словами, TCP организует двунаправленный обмен информацией, что обеспечивает более высокую скорость ее трансляции.
При соединении двух компьютеров их модули TCP следят за состоянием связи. При этом само соединение, посредством которого осуществляется обмен данными, носит название виртуального или логического канала.
Фактически протокол TCP является неотъемлемой частью стека протоколов TCP/IP, и именно с его помощью реализуются все функции контроля над передачей информации по сети, а также задачи ее распределения между клиентскими приложениями.

Протокол SPX

В точности так же, как протокол TCP для IP-сетей, для сетей, построенных на базе межсетевого протокола IPX, транспортным протоколом служит специальный протокол SPX (Sequenced Pocket eXchange). В таких локальных сетях протокол SPX выполняет следующий набор функций:

  • инициализация соединения;
  • организация виртуального канала связи (логического соединения);
  • проверка состояния канала;
  • контроль передачи данных;
  • разрыв соединения.

Поскольку транспортный протокол SPX и межсетевой протокол IPX тесно связаны между собой, их нередко объединяют в общее понятие - семейство протоколов IPX/SPX. Поддержка данного семейства протоколов реализована не только в операционных системах семейства Nowell Netware, но и в ОС Microsoft Windows 9x/Me/NT/2000/XP, Unix/Linux и OS/2.

Протоколы NetBIOS/NetBEUI

Разработанный компанией IBM транспортный протокол NetBIOS (Network Basic Input/Output System) является базовым протоколом для локальных
сетей, работающих под управлением операционных систем семейств Nowell Netware и OS/2, однако его поддержка реализована также и в ОС Microsoft Windows, и в некоторых реализациях Unix-совместимых операционных систем. Фактически можно сказать, что данный протокол работает сразу на нескольких логических уровнях стека протоколов: на транспортном уровне он организует интерфейс между сетевыми приложениями в качестве надстройки над протоколами IPX/SPX, на межсетевом - управляет маршрутизацией дейтаграмм, на канальном уровне - организует обмен сообщениями между различными узлами сети.
В отличие от других протоколов, NetBIOS осуществляет адресацию в локальных сетях на основе уникальных имен узлов и практически не требует настройки, благодаря чему остается весьма привлекательным для системных администраторов, управляющих сетями с небольшим числом компьютеров. В качестве имен хостов протоколом NetBIOS используются значащие последовательности длиной в 16 байт, то есть каждый узел сети имеет собственное уникальное имя (permanent name), которое образуется из сетевого адреса машины с добавлением десяти служебных байтов. Кроме этого, каждый компьютер в сетях NetBIOS имеет произвольное символьное имя, равно как произвольные имена могут иметь логические*рабочие группы, объединяющие несколько работающих совместно узлов - такие имена могут назначаться и удаляться по желанию системного администратора. Имена узлов служат для идентификации компьютера в сети, имена рабочих групп могут служить, в частности, для отправки данных нескольким компьютерам группы или для обращения к целому ряду сетевых узлов одновременно.
При каждом подключении к распределенной вычислительной системе протокол NetBIOS осуществляет опрос локальной сети для проверки уникальности имени узла; поскольку несколько узлов сети могут иметь идентичные групповые имена, определение уникальности группового имени не производится.
Специально для локальных сетей, работающих на базе стандарта NetBIOS, корпорацией IBM был разработан расширенный интерфейс для этого протокола, который получил название NetBEUI (NetBIOS Extended User Interface). Этот протокол рассчитан на поддержку небольших локальных сетей, включающих не более 150-200 машин, и по причине того, что данный протокол может использоваться только в отдельных сегментах локальных сетей (пакеты NetBEUI не могут транслироваться через мосты - устройства, соединяющие несколько локальных сетей, нередко использующих различную среду передачи данных или различную топологию), этот стандарт считается устаревшим и более не поддерживается операционной системой Microsoft Windows XP, хотя его поддержка имеется в ОС семейства Windows 9х/МЕ/2000.

Прикладные протоколы

Протоколы прикладного уровня служат для передачи информации конкретным клиентским приложениям, запущенным на сетевом компьютере. В IP-сетях протоколы прикладного уровня опираются на стандарт TCP и выполняют ряд специализированных функций, предоставляя пользовательским программам данные строго определенного назначения. Ниже мы кратко рассмотрим несколько прикладных протоколов стека TCP/IP.

Протокол FTP

Как следует из названия, протокол FTP (File Transfer Protocol) предназначен для передачи файлов через Интернет. Именно на базе этого протокола реализованы процедуры загрузки и выгрузки файлов на удаленных узлах Всемирной Сети. FTP позволяет переносить с машины па машину не только файлы, но и целые папки, включающие поддиректории на любую глубину вложений. Осуществляется это путем обращения к системе команд FTP, описывающих ряд встроенных функций данного протокола.

Протоколы РОРЗ и SMTP

Прикладные протоколы, используемые при работе с электронной почтой, называются SMTP (Simple Mail Transfer Protocol) и РОРЗ (Post Office Protocol), первый «отвечает» за отправку исходящей корреспонденции, второй - за доставку входящей.
В функции этих протоколов входит организация доставки сообщений e-mail и передача их почтовому клиенту. Помимо этого, протокол SMTP позволяет отправлять несколько сообщений в адрес одного получателя, организовывать промежуточное хранение сообщений, копировать одно сообщение для отправки нескольким адресатам. И РОРЗ, и SMTP обладают встроенными механизмами распознавания адресов электронной почты, а также специальными модулями повышения надежности доставки сообщений.

Протокол HTTP

Протокол HTTP (Hyper Text Transfer Protocol) обеспечивает передачу с удаленных серверов на локальный компьютер документов, содержащих код разметки гипертекста, написанный на языке HTML или XML, то есть веб-страниц. Данный прикладной протокол ориентирован прежде всего на предоставление информации программам просмотра веб-страниц, веб-браузерам, наиболее известными из которых являются такие приложения, как Microsoft Internet Explorer и Netscape Communicator.
Именно с использованием протокола HTTP организуется отправка запросов удаленным http-серверам сети Интернет и обработка их откликов; помимо
этого HTTP позволяет использовать для вызова ресурсов Всемирной сети адреса стандарта доменной системы имен (DNS, Domain Name System), то есть обозначения, называемые URL (Uniform Resource Locator) вида http:/ /www.domain.zone/page.htm (.html).

Протокол TELNET

Протокол TELNET предназначен для организации терминального доступа к удаленному узлу посредством обмена командами в символьном формате ASCII. Как правило, для работы с сервером по протоколу TELNET на стороне клиента должна быть установлена специальная программа, называемая telnet-клиентом, которая, установив связь с удаленным узлом, открывает в своем окне системную консоль операционной оболочки сервера. После этого вы можете управлять серверным компьютером в режиме терминала, как своим собственным (естественно, в очерченных администратором рамках). Например, вы получите возможность изменять, удалять, создавать, редактировать файлы и папки, а также запускать на исполнение программы на диске серверной машины, сможете просматривать содержимое папок других пользователей. Какую бы операционную систему вы ни использовали, протокол Telnet позволит вам общаться с удаленной машиной «на равных». Например, вы без труда сможете открыть сеанс UNIX на компьютере, работающем под управлением MS Windows.

Протокол UDP

Прикладной протокол передачи данных UDP (User Datagram Protocol) используется на медленных линиях для трансляции информации как дейтаграмм.
Дейтаграмма содержит полный комплекс данных, необходимых для ее отсылки и получения. При передаче дейтаграмм компьютеры не занимаются обеспечением стабильности связи, поэтому следует принимать особые меры для обеспечения надежности.
Схема обработки информации протоколом UDP, в принципе, такая же, как и в случае с TCP, но с одним отличием: UDP всегда дробит информацию по одному и тому же алгоритму, строго определенным образом. Для осуществления связи с использованием протокола UDP применяется система отклика: получив UDP-пакет, компьютер отсылает отправителю заранее обусловленный сигнал. Если отправитель ожидает сигнал слишком долго, он просто повторяет передачу.
На первый взгляд может показаться, что протокол UDP состоит сплошь из одних недостатков, однако есть в нем и одно существенное достоинство: прикладные интернет-программы работают с UDP в два раза быстрее, чем с его более высокотехнологичным собратом TCP.

Сквозные протоколы и шлюзы

Интернет - это единая глобальная структура, объединяющая на сегодня около 13 000 различных локальных сетей, не считая отдельных пользователей. Раньше все сети, входившие в состав Интернета, использовали сетевой протокол IP. Однако настал момент, когда пользователи локальных систем, не использующих IP, тоже попросились в лоно Интернета. Так появились шлюзы.
Поначалу через шлюзы транслировалась только электронная почта, но вскоре пользователям и этого стало мало. Теперь посредством шлюзов можно передавать любую информацию - и графику, и гипертекст, и музыку, и даже видео. Информация, пересылаемая через такие сети другим сетевым системам, транслируется с помощью сквозного протокола, обеспечивающего беспрепятственное прохождение IP-пакетов через не IP-сеть.

Устройство, поддерживающее протоколы, которое соединяет два или более участка сети, и может интерпретировать и модифицировать протоколы уровня приложения для обеспечения трансляций адресов передачи и выполнения других функций. ALG может… …

Протоколы передачи данных это набор соглашений, который определяет обмен данных между различными программами. Протоколы задают способы передачи сообщений и обработки ошибок в сети, а также позволяют разрабатывать стандарты, не привязанные к … Википедия

ГОСТ Р МЭК 60870-5-103-2005: Устройства и системы телемеханики. Часть 5. Протоколы передачи. Раздел 103. Обобщающий стандарт по информационному интерфейсу для аппаратуры релейной защиты - Терминология ГОСТ Р МЭК 60870 5 103 2005: Устройства и системы телемеханики. Часть 5. Протоколы передачи. Раздел 103. Обобщающий стандарт по информационному интерфейсу для аппаратуры релейной защиты оригинал документа: 3.2 архитектура повышенной… … Словарь-справочник терминов нормативно-технической документации

протокол верхнего уровня - Любой протокол в многоуровневой иерархии, использующей протокол IP или TCP, который лежит выше протокола IP или TCP. В число таких протоколов входят протоколы транспортного уровня, протоколы уровня представления и прикладного уровня. Тематики… … Справочник технического переводчика

В этой статье не хватает ссылок на источники информации. Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена. Вы можете … Википедия

Общий ресурс, или общий сетевой ресурс в информатике, это устройство или часть информации, к которой может быть осуществлён удалённый доступ с другого компьютера, обычно через локальную компьютерную сеть или посредством корпоративного… … Википедия

SMB (сокр. от англ. Server Message Block) сетевой протокол прикладного уровня для удалённого доступа к файлам, принтерам и другим сетевым ресурсам, а также для межпроцессного взаимодействия. Первая версия протокола была разработана… … Википедия

Для улучшения этой статьи желательно?: Проставить шаблон карточку, который существует для предмета статьи. Пример использования шаблона есть в статьях на похожую тематику … Википедия

Стандарт Международного союза электросвязи по передаче факсимильных сообщений в реальном времени через IP сети. Для факсов, передаваемых по протоколу T.38 зарезервирован тип image/t38. Содержание 1 История 2 Обзор 3 Операции … Википедия

Книги

  • . Net. Сетевое программирование для профессионалов / Professional . NET Network Programming , Винод Кумар,Эндрю Кровчик,Номан Лагари,Аджит Мунгале,Кристиан Нагел,Тим Паркер,Шриниваса Шивакумар. 400 стр. Сетевая организация ПО - одна из центральных задач программирования при разработке бизнес-приложений. Прочитав книгу, вы сможете уверенно программировать сетевые задачи в. NET и…
  • . NET Сетевое программирование , Кумар Винод, Кровчик Эндрю, Лагари Номан. Сетевая организация ПО - одна из центральных задач программирования при разработке бизнес-предложений. Прочитав книгу, вы сможете уверенно программировать сетевые задачи в. NET и будете…

Основные протоколы и сервисы компьютерной сети Internet

Основные протоколы сети Internet . Internet многогранен, и с технической точки зрения – это объединение транснациональных компьютерных сетей, работающих по самым разнообразным протоколам, связывающих всевозможные типы компьютеров, физически передающих данные по телефонным проводам и оптическому волокну, через спутники и радиомодемы.

Подавляющее большинство компьютеров в Internet работает по протоколам TCP/IP (Transmission Control Protocol/Internetwork Protocol – управляющий протокол пере дачи/межсетевой протокол), и именно это совместно с требованиями наличия подключения к глобальной сети является критерием присутствия в Internet.

Основой семейства протокола TCP/IP является сетевой уровень, представленный протоколом IP , а также различными протоколами маршрутизации. Этот уровень представляет адресное пространство, обеспечивающее перемещение пакетов в сети, а также управляет их маршрутизацией.

Размеры пакета, параметры передачи, контроль целостности осуществляются на транспортном уровне протоколом TCP .

Протокол UDP (User Datagram Protocol – протокол транспортного уровня) работает на том же уровне, но применяется в том случае, когда требования к надёжности передачи данных менее жёсткие (в отличие от протокола ТСР не обеспечивает безошибочной передачи пакета). Поскольку оба этих протокола в известной степени представляют собой единое целое, как правило, говорят о протоколах TCP/IP.

TCP дробит информацию на несколько частей, присваивает каждой части номер, по которому данные впоследствии соединяются воедино, добавляет к ней «служебную» информацию и укладывает всё это в отдельный «IP-конверт». Далее этот «конверт» отправляется по Сети – Internet обрабатывает IP-информацию. Размер передаваемых в Internet TCP/IP-пакетов составляет, как правило, от 1 до 1500 байт, что связано с техническими характеристиками Сети.

Данные, передаваемые по электронным сетям, могут теряться, а также зачастую искажаться из-за помех на линиях связи. Встроенные в TCP алгоритмы контроля за корректностью передачи данных решают эти проблемы. Одним из самых известных механизмов контроля за правильностью пересылки информации является циклический избыточный код, согласно которому в заголовок каждого передаваемого пакета записывается некая контрольная сумма, вычисленная компьютером-отправителем. Компьютер-получатель по аналогичной системе вычисляет контрольную сумму и сравнивает её с числом, имеющимся в заголовке пакета. Если цифры не совпадают, TCP инициирует повтор передачи.

Следует отметить также, что при отправке информационных пакетов протокол TCP требует от компьютера-получателя подтверждения приёма информации. Это организуется путём создания временных задержек при приёме-передаче – тайм-аутов, или ожиданий. Тем временем отправитель продолжает пересылать данные. Образуется некий объём уже переданных, но ещё не подтверждённых данных. Иными словами, TCP организует двунаправленный обмен информацией, что обеспечивает более высокую скорость её трансляции.

Следующий простой пример проясняет механизм работы протоколов TCP/IP. Когда человек получает телеграмму, весь текст в ней (и адрес, и сообщение) написан на ленте подряд, но есть правила позволяющие понять, где тут адрес, а где сообщение. Аналогично пакет в компьютерной сети представляет поток бит, а протокол IP определяет, где адрес и прочая служебная информация, а где сами передаваемые данные. Протокол TCP предназначен для контроля передачи и контроля целостности передаваемой информации.

Системы, использующие протоколы не TCP/IP подключаются к Internet через шлюзы.

Для того чтобы пакет с информацией не «заблудился» по дороге, узлы Internet, через которые он движется, имеют в своём распоряжении таблицы маршрутизации – электронные базы данных, в которых содержатся указания, куда именно отсылать тот или иной пакет информации, если он следует на такой-то адрес. Таблицы маршрутизации рассылаются на узлы централизованно, периодически меняются и дополняются. На серверах узлов, осуществляющие маршрутизацию, находятся маршрутизаторы, или роутеры (от англ, «router» – «маршрутизатор»). Правила маршрутизации описаны в протоколах ICMP (Internet Control Message Protocol), RIP (Routing Internet Protocol) и OSPF (Open Shortest Path First).

Протоколы TCP / IP являются протоколами нижнего уровня модели OSI. Помимо них существует целый ряд протоколов более высокого уровня, которые отвечают за передачу и обработку данных определённого назначения.

К наиболее важным прикладным протоколам относятся:

    протокол удалённого управления Telnet ;

    протокол передачи файлов FTP ;

    протокол передачи гипертекста HTTP ;

    протоколы для работы с электронной почтой:

    SMTP (Simple Mail Transfer Protocol),

    POP (Post Office Protocol),

    IMAP (Internet Message Access Protocol),

    MIME ((Multiperposal Internet Mail Exchange).

На этом уровне работает система адресации доменных имён DNS, отвечающая за преобразование числовых IP – адресов в имена.

Telnet – протокол удалённого доступа. Даёт возможность абоненту работать в полном объёме на любом компьютере сети Internet, т.е. запускать программы, менять режим работы и т.д.

FTP (File Transfer Protocol) – протокол передачи файлов. Архивы являются одним из основных информационных ресурсов Internet. Фактически, это распределённый депозитарий текстов, программ, фильмов, фотографий, аудио записей и прочей информации, хранящейся в виде файлов на различных компьютерах во всем мире. FTP даёт возможность соединять компьютеры между собой и передавать по сети файлы с одного компьютера на другой. Компьютеры, на которых находится информация для передачи по протоколу FTP, называются FTP-серверами.

Программы FTP стали частью отдельного сервиса Internet. FTP настраивается таким образом, что соединение с ним может происходить не только под именем пользователя, но и под условным именем anonymous (аноним). Тогда становится доступна не вся файловая система компьютера, а некоторый набор файлов на сервере, которые составляют содержимое сервера anonymous FTP – публичного файлового архива.

Web-документы создаются с помощью гипертекстового языка описания документов HTML (Hypertext Markup Language), построенного на базе метаязыка SGML (Structured Generalized Markup Language – структурный универсальной язык разметки, стандарт ISO-8879 1986 года), который, в свою очередь, основан на языке GML (Generalized Markup Language, стандарт ISO c 1984 г.). Для создания конкретных прикладных наборов тегов было введено понятие «SGML-приложение». Так, популярный сегодня язык HTML является SGML-приложением.

HTML-документы могут содержать несколько уровней заголовков, абзацы, списки и их пункты, графику, Web-формы и гипертекстовые ссылки. При щелчке мышью по гипертекстовой ссылке выводится пользователю другой документ. Таким образом, эта ссылка содержит «указатель» на документ, который становится доступным при нажатии кнопки мыши. Такой указатель носит название унифицированного указателя ресурса – URL (Uniform Resource Locator) – фактически это адрес документа в Internet. Указатели URL обычно описывают транспортный протокол документа (например, HTTP или FTP) и имя хост-компьютера, на котором он находится. Кроме того, указатели URL могут включать в себя маршрут доступа к документу на данном компьютере. Эти маршруты указываются в конце строки URL.

С целью специализаций по разработке и стандартизаций Web-технологий в 1994 г. изобретателем Web Тимом Бернерсом-Ли (Tim Bemers-Lee) был основан Консорциумом W3C (WWW Consortium) при Лаборатории компьютерных наук Массачусетского технологического института США (MIT Laboratory for Computer Science) с участием ЦЕРНа (CERN) при поддержке агентства министерства обороны США DARPA (Department Advanced Research Projects Agency) и Европейской комиссии.

В апреле 1995 г. французский исследовательский институт информатики и автоматики INRIA (Institute National de Recherche et en Automatique) стал европейским базовым центром (хостом) для деятельности W3C.

В 1996 г. такие же функции взял на себя японский университет Keio University Shonan Fujisawa. В настоящее время консорциум объединяет более 400 различных организаций-членов, включая изготовителей продуктов ИТ, поставщиков ИТ- услуг и информационных контентов, корпоративных пользователей, исследовательские лаборатории, организации стандартизации, госбюджетные структуры – всех, кто готов работать для достижения стабильности в развитии Web-технологии.

В частности, долгосрочными целями консорциума W3C являются:

    Обеспечение универсального доступа (Universal Access) каждому пользователю к технологиям и ресурсам Internet, учитывая различия людей в культуре, образовании, способностях, материальных возможностях, с учётом их физических ограничений.

    Разработка программного обеспечения Web , позволяющего взаимодействовать с Internet на смысловом или семантическом уровне (Semantic Web).

    Создание инфраструктуры, обеспечивающей необходимый уровень информационной защиты и приватности для решения правовых, экономических и социальных проблем информационного общества – создание доверия .

Консорциум W3C концентрирует свои усилия на решении следующих задач:

    исследование перспектив развития и использования Web-технологий, формирование требований Web-сообщества к информационному пространству и его инфраструктуре;

    реализация Web-технологий, удовлетворяющих требованиям Web-сообщества;

    стандартизация Web-технологий посредством разработки спецификаций в виде Рекомендаций («Recommendations»), описывающих строительные модули Web.

При этом, рассматривая Web как некоторое приложение, построенное над Internet, W3C в своих разработках продолжает следовать принципам этой базовой технологии, а именно, интероперабельности функциональных компонентов, совместимости спецификаций языков и протоколов, способности эволюционировать и взаимодействовать с новыми технологиями (например, с мобильными Web-устройствами и цифровым телевидением), децентрализации функций и масштабируемости.

Процесс разработки и стандартизации спецификаций Web-технологий (W3C process), организован таким образом, чтобы обеспечить:

    независимость от поставщиков (вендоров) технологий (Vendor neutrality);

    выполнение принципов общедоступности и консенсуса для спецификаций на протяжении их жизненного цикла;

    координацию усилий с другими организациями стандартизации и консорциумами (в первую очередь, с IETF (Internet Engineering Task Force), the WAP Forum (Wireless Application Protocols Forum), the Unicode Consortium, the Web3D Consortium, а также рядом комитетов ISO (International Standard Organization).

В 1996 г. Консорциумом W3C была утверждена рекомендованная спецификация CSS (Cascading Style Sheets – каскадные листы стилей), основанная на DSSSL (Document Style Semantics and Specification Language – язык для определения семантики стиля документов SGML). Каскадные листы стилей отделены от содержания Web-страниц для того, чтобы не мешать внутренней логики логической разметки документов. В основе технологии CSS лежит концепция разграничения содержания и представления. Полное разделение содержимого и его представления обеспечивает гарантированную текстуальную доступность материалов сайта, созданного с применением рекомендаций CSS, консорциумома W3C, в любых браузерах.

CSS2, утверждённый в качестве официальной рекомендации в 1998 году, обладает намного более серьёзными возможностями. В частности, в нём появилась модель визуального форматирования (блочная модель), позволяющая представить любую Web- страницу как набор прямоугольных областей с различными свойствами и тем самым избавиться от вёрстки шаблонов страниц при помощи таблиц. Кроме того, CSS2 позволяет определять индивидуальные и открытые пользователю правила представления информации для различных сред и устройств вывода – в частности, экрана настольного ПК или ноутбука, меньшего по размерам экрана КПК (карманного ПК) или смартфоны, речевых браузеров, механических строк Брайля, принтера и т.д.

    Strict – строгий, предписывающий соблюдение чёткой логической структуры и подразумевающий отказ от большинства возможностей визуального форматирования;

    Transitional – переходный, намного более «либеральный»;

    Frameset – для страниц, использующих фреймы.

Фрейм (Frame) или область – самостоятельный фрагмент HTML-страницы, обладающий всеми её свойствами.

Развитием HTML 4 стал «расширяемый» (eXtensible) язык разметки гипертекста – XHTML 1.0, реализующий концепцию модуляризации и полностью упраздняющий типы документов Transitional и Frameset, который получает всё большее распространение.

HTTP (Hypertext Transfer Protocol) – это протокол передачи гипертекста, позволяющий Web-браузерам обращаться к файлам на любом Web-сервере. В Internet применяются стандарты, позволяющие «публиковать» информацию – размещать её на хост-узлах, где с ней могут работать другие пользователи. Система компьютеров, публикующих такую информацию, называется World Wide Web, а протокол, составляющий основу Web протоколом передачи гипертекста. Если TCP/IP даёт возможность пользователям обращаться к хост-узлам Internet, то HTTP обеспечивает их доступ к документам World Wide Web.

HTTP позволяет реализовать в рамках обмена данными набор методов доступа, базирующихся на спецификации универсального идентификатора ресурсов URI (Universal Resource Identifier), применяемого в форме универсального локатора ресурсов URL (Universe Resource Locator) или универсального имени ресурса (Universal Resource Name). Сообщения по сети при использовании протокола HTTP передаются в формате, схожим с форматом сообщений MIME с поддержкой графики, аудио- и видеофайлов. HTTP используется для взаимодействия программ-клиентов с программами-шлюзами, разрешающими доступ к ресурсам электронной почты Internet (SMTP, Simple Mail Transfer Protocol), спискам новостей (NNTP, Network News Transfer Protocol), файловым архивам (FTP, File Transfer Protocol), информационно-поисковым системам Gopher и Wais. Протокол разработан для доступа к этим ресурсам посредством промежуточных программ-серверов (proxy), которые позволяют передавать информацию между различными информационными службами без потерь. Протокол реализует принцип «запрос/ответ». Запрашивающая программа- клиент инициирует взаимодействие с отвечающей программой-сервером, и посылает запрос, включающий в себя метод доступа, адрес URI, версию протокола, сообщение с модификаторами типа передаваемой информации, информацию клиента, и содержимое сообщения клиента. Сервер отвечает строкой состояния, включающей версию протокола и код возврата, за которой следует сообщение. Данное сообщение содержит информацию сервера, метаинформацию и содержимое сообщения. Понятно, что в принципе, одна и та же программа может выступать и в роли сервера и в роли клиента (так собственно и происходит при использовании proxy-серверов).

Система WWW (World Wide Web, переводится как «мировая паутина»), разработана в крупнейшем Европейском центре ядерных исследований, расположенном в Женеве, Швейцария. При разработке WWW была поставлена цель создания гипертекстовой системы сетевого взаимодействия, которая доступным для непрофессионалов образом может связывать друг с другом пользователей, компьютеры и данные. Отличительной чертой WWW является ориентация на практически произвольные сетевые протоколы и на работу с документами неограниченной сложности и произвольной природы. Информация большой компании, которая обычно рассредоточена по всему миру, может быть опутана «паутиной» WWW так, что географически разделённые пользователи без особых усилий получают её, не покидая своих рабочих мест. Цель эта была достигнута, и сейчас WWW интенсивно используется для информационного обмена. WWW работает по технологии «клиент/серверы».

Информация в WWW состоит из страниц (документов). Страницы могут содержать графику, сопровождаться анимацией и звуком, воспроизводимыми непосредственно в процессе поступления информации на экран пользователя. Посредством WWW можно смотреть видеофильмы, слушать музыку, играть в компьютерные игры, обращаться к разнообразным информационным источникам. Информация в этой системе организована в форме гипертекста.

Распределённая информационная гипертекстовая система WWW включает технологии:

    язык гипертекстовой разметки документов HTML (HyperText Markup Language);

    универсальный способ адресации ресурсов в сети URL (Universal Resource Locator);

    протокол обмена гипертекстовой информацией HTTP (HyperText Transfer Protocol);

    универсальный интерфейс шлюзов CGI (Common Gateway Interface).

Спецификация CGI (Common Gateway Interface) – составляющая технологии WWW – это стандарт интерфейса (связи) внешней прикладной программы с информационным сервером типа HTTP, Web сервер. Обычно гипертекстовые документы, извлекаемые из WWW серверов, содержат статические данные. С помощью CGI можно создавать CGI- программы, называемые шлюзами, которые во взаимодействии с такими прикладными системами, как система управления базой данных, электронная таблица, деловая графика и др., смогут выдать на экран пользователя динамическую информацию. CGI была специально разработана для расширения возможностей WWW за счёт подключения всевозможного внешнего программного обеспечения. Такой подход логично продолжал принцип публичности и простоты разработки и наращивания возможностей WWW. При реализации CGI очень важное место заняли методы доступа, описанные в HTTP.

На стандартах коммуникации и доступа информации основываются другие стандарты, такие как протокол электронной почты SMTP (Simple Mail Transfer Protocol). SMTP даёт возможность подключенным к Internet пользователям и хост-узлам обмениваться электронной почтой. Благодаря этому и другим стандартам можно передавать электронную почту из одного места в другое, причём не только сообщения, но и программы, графику, звук, видео и другие типы данных.

Стандарт MIME (Multipurpose Internet Mail Extensions, расширение почты Internet для различных целей) был разработан для того, чтобы обеспечить в Internet передачу данных, которые, кроме текста (в формате ASCII), поддерживают графику, аудио- и видеофайлы. Базовый протокол передачи электронной почты в Интернете, SMTP, допускает только 7-битные сообщения в кодировке ASCII. Это ограничивает электронную почту в Интернете сообщениями, которые при передаче содержат только символы, достаточные, чтобы писать на небольшом числе языков, в основном на английском.Другие языки, основанные на латинскомалфавите,часто включают диакритические знаки,не поддерживаемые в 7-битномASCII, а значит, текст на этих языках нельзя корректно отображать в стандартной электронной почте. MIME определяет механизмы для отправки разного рода информации с помощью электронной почты, включая текст на языках, отличных от английского, для которых используются символьные кодировки, отличные от ASCII, помимо этого, 8-битный бинарный контент, такой как картинки, музыка, фильмы и программы. MIME является также фундаментальным компонентом коммуникационных протоколов, таких как HTTP, которым нужно, чтобы данные передавались в контексте сообщений подобных e-mail, даже если данные реально не являются e-mail.

Отображение в и из MIME-формата в основном делается автоматически e-mail-клиентом или почтовыми серверами при посылке и получении электронных сообщений по Internet (SMTP/MIME).

Адресация и подключение в сети Internet . IP-адрес часто называют адресом Internet , он имеет длину 32 двоичных разряда и обычно записывается побайтно в виде четырех десятизначных идентификаторов, или октетов , разделённых точками, например, 136.203.91.0. Поскольку в десятичной форме один байт может принимать значения от 0 до 255, то все адреса Internet располагаются в диапазоне от 0.0.0.0 до 255.255.255.255, при этом в зависимости от типа (размеров) подсети используется 5 классов левого октета. Три из них: А, B, C – отражают группирование сетей по их мощности (по количеству узлов или подсетей, которые могут входить в сеть).

Четвёртый класс адресов (класс D) используется особо и не служит адресации конкретных сетей, а используется для обращения одновременно к группе адресов групповой адресации компьютеров, начиная с адреса 224.Х.Х.Х. Адреса класса Е пока не используются.

Класс определяется специальным информационным полем (идентификатором класса), занимающим в структуре адреса от одного до пяти старших бит. Значение оставшейся части адреса трактуется в зависимости от его класса (см. рисунок 1)

Рисунок 1. Определения класса

Значения поля идентификатора класса для каждого из пяти классов приведены на рисунке 2.

Адреса первых трех классов предназначены для адресации отдельных узлов (компьютеров и др. устройств). Структурно они состоят из трех частей (см. рисунок 3):

    идентификатора класса;

    номер сети;

    номер узла.

Номер сети – число, уникальным образом определяющее сеть, которой принадлежит узел с данным IP-адресом. Все узлы, относящиеся к одной сети, должны иметь одинаковые номера сетей. Разрядность номера сети и его положение внутри IP-адреса определяется классом адреса.

Номер узла – число, определяющее узел сети. Для узлов одной сети, определяемой номером сети IP-адреса, должна соблюдаться уникальность номеров узлов. Разрядность номера узла также определяется классом, которому принадлежит IP-адрес.

Рисунок 2. Значения поля идентификатора класса

Рисунок 3 - Структура адреса первых трех классов (А, D, C)

Для сетей класса A (см. таблицу 1) на адресацию собственно сети используется один байт, причём первый его бит строго фиксирован.

Таблица 1. Сета класса A

Таким образом, сетей данного класса всего может быть 127 (на самом деле их меньше за счёт особо используемых адресов), однако, количество узлов в каждой из таких сетей может быть очень большим, поскольку на их адресацию отводится 24 двоичных разряда (16 777 216 различных кодов).

Для сетей класса B (см. таблицу 2) на адресацию собственно сетей используется два байта с фиксированными двумя первыми битами так, чтобы адреса этого класса не перекрывали адреса сети класса A.

Сетей этого класса существенно больше, поскольку на их адреса выделено 14 двоичных разрядов (16 384 различных кода), однако узлов в каждой из таких сетей меньше, хотя ещё достаточно много (16 двоичных разрядов – 65 536 различных кодов).

Таблица 2. Сети класса B

Для сетей класса C (см. таблицу 3) на адресацию собственно сети используется три байта с фиксированными тремя первыми битами, чтобы адреса этого класса не перекрывали адреса сетей класса A и B.

Таблица 7.4 - Сети класса С

Сетей класса C достаточно много, поскольку на их адресацию выделен 21 двоичный разряд (2 097 152 различных кода), однако на адресацию узлов при этом остаётся всего 8 двоичных разрядов (256 различных кодов, но фактически адресов не более 254, поскольку коды нулевой и единичный не используются).

Таким образом, в рамках стандарта IP различается несколько подвидов интрасетей, определяемых значением первого октета. Это значение характеризует максимально возможное количество подсетей и узлов, которые может включать такая сеть. В таблице 4 приведено соответствие классов сетей значению первого октета IP-адреса.

Таблица 4. Соответствие классов сетей значению первого октета IP-адреса

Класс

сети

Диапазон значений первого октета

Возможное количество подсетей

Возможное количество узлов



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: