Транзисторы принцип работы. Принцип действия транзистора, внутреннее устройство и основные характеристики транзисторов

Стоит отметить, что Роб Смит занимается и моддингом очень компактных флешек. Примером такого моддинга стала стильная подвеска в стиле стимпанк. Внутри разместилась флешка объемом в 4 Гб:

Вот еще несколько работ от BasementFoundry. Общий вид моддинг флешки схож, но, тем не менее, работы довольно интересные и качественные:

Безусловно, рассказывая о моддинге флешек в стиле стимпанк мы не могли забыть про Steamworkshop, который делает стильные моды на заказ и многие свои работы выставляет на продажу через интернет магазины. Как и у многих моддеров у Steamworkshop прослеживается свой, можно сказать, уникальный стиль моддинга флешек. Многие приемы используются из проекта в проект, но не будем забегать вперед и рассмотрим проекты более детально. Основными материалами для моддинга служат медь, латунь, прочное стекло и множество дополнительных декоративных элементов - от шестеренок от механических часов, до различных пружинок, небольших винтиков и заклепок. Большинство модов моддер снабжает резиновыми прокладками, благодаря которым они становятся водонепроницаемыми. Практически в каждой флешке от Steamworkshop в корпусе вырезано окно. Через него часто можно увидеть небольшой кристаллик кварца, подсвеченный светодиодом (этот штрих был долгое время своеобразной визитной карточкой Steamworkshop), но уже в новых проектах моддер постарался менять сложившиеся традиции и экспериментировать не только с формами корпусов для флешек, но и со способами их стилизации. Итак, взглянем на фотографии:

Отдельно хотелось бы выделить запоминающийся мод флешки от Steamworkshop . Флешка в небольшой стеклянной трубе, которая заполнена осколками стекла и подсвечена несколькими светодиодами:

И самые свежие работы, отличающиеся умопомрачительным качеством и вниманием к деталям:

А вот стимпанк флешка дизайнера под ником Kaelessin:

Моддер еще только пробует свои силы в моддинге небольших и компактных предметов, поэтому получилось немного неаккуратно, но интересная задумка - достойна внимания. Над шестеренками спрятан светодиод - включающийся при передаче данных.

Как можно заметить на фото в качестве элементов для декорирования корпуса моддер использует и части старых чайных ложечек и даже тонкий браслет от наручных часов. Вместе с небольшими самодельными вставками и шестеренками из механических часов, выглядит все очень достойно и гармонично.

Среди огромнейшего количества его работ можно найти очень сложный и невероятно красивые флешки , на которые у автора ушло немало сил и времени.

Среди флешек Вилла Роквелла можно выделить работы - с весьма интересной идеей. Примером такого моддинга, можно смело назвать, проект The Hunley, за основу для которого использовался накопитель объемом в 16Гб. Корпус стилизован в виде старой подводной лодки. В 1863 году «Hunley"s New Orleans consortium» проводил эксперименты с установкой на подводные лодки электрических двигателей, но первая же созданная лодка затонула на испытаниях.

Еще один весьма интересный проект - The Memory Angel, который предназначен для девушки обожающей стимпанк. Корпус украшен необычными крыльями похожими на шестеренки от механических часов. Внутри находитсяUSB накопитель объемом в 4Гб, а входе моддинга Вилл полностью стилизовал и переделал стандартный корпус.

Многие проекта Вилла продаются на различных интернет аукционах и сайтах, поэтому в данный момент моддинг Usb накопителей даже приносит небольшую прибыль.

Моддер WWWorks изготавливает свои флешки из латуни и бука преимущественно. Используется морение и травление. Флешки отличается оригинальным и очень прочным и красивым корпусом:

Моддер Ivan Mavrovic собрал мод, который скорее можно отнести к весьма функциональным самоделкам, нежели кмоддингу флешек . Внутри мода спрятались USB флешка, нож, набор отверток, зубная щетка, фонарик и много многое другое.

Безусловно, мы не могли забыть о великолепнейшей флешке от Валеры . В отличии от большинства моддеров, Валера изготовил не просто красивый кастом корпус для USB накопителя, но и позаботился о том, что бы практически каждый элемент двигался и работал. На передней панели красуется самодельный манометр с подвижной стрелкой. Маховик, так же расположенный на корпусе приводится в движение небольшим электромоторчиком. Работа просто изумительная. Внутри этого чуда - накопитель объемом в 8Гб. Взглянем на фотографии:

Но и это еще не все! Валера решил сделать стильную коробку для своей новой флешки из красного дерева и латуни.


Для тех, кого заинтересовала эта флешка, Валера опубликовал видео на нашем форуме, где можно убедится, что все элементы подвижны и флешка сделано аккуратно и качественно.

Моддинг флешек из дерева.

Флешки из дерева пользуются особой популярностью неспроста, ведь дерево очень хорошо обрабатывается, с помощью него можно сделать практически любой корпус, а так же именно на деревянном корпусе проще всего вырезать какой-либо интересный орнамент или рисунок и он не сотрется через пару недель постоянного использования флешки. Так же этот материал очень доступен, поэтому экспериментировать с ним по корману даже новичку неуверенному в своих силах. Так же деревянный корпус на порядок лучше защищает начинку флешки от механических повреждений, чем стандартный пластиковый кейс. Как вы видели до этого в разделе о стимпанк флешках - дерево применяют многие моддеры, но если в стимпанк моддинге из него чаще всего изготавливают лишь основу, то в разделе о флешках из дерева вы увидите моды, в которых дерево является основным материалом.

Примером оригинального моддинга флешки с помощью дерева может послужить любая работа от моддера под ником WoodenGoat. Моддер изготавливает корпус из двух деревянных панелек, на которые за ранее наносит рисунок, затем склеивает их закрепляя внутри накопитель, и хорошенько обрабатывает место соединения наждачной бумагой. В итоге - при взгляде на флешку, кажется, что она сделана из цельного бруска дерева.

Стоит сказать, что работать с деревом несколько проще нежели с металлом, но и эта работа требует определенных навыков. Заготовку для флешек стоит подбирать без сучков и трещин, а обрабатывать ее исключительно вдоль волокон. Один из моддеров вырезал корпус для флешки в виде головы Чужого. Более того, USB конектор выдвижной, что защищает его от попадания внутрь грязи. Работ получилось очень впечатляющей:

Отличный мод флешки со строгим и невероятно красивым дизайном собрал моддер под именем Дмитрий. Корпус изготовлен из итальянского бриара 16-тилетней выдержки. Основой стала флешка объемом в 4ГБ. В корпусе есть небольшая вставка из оргстекла, за которой спрятан светодиод. Все панели корпуса выполнены под непрямыми углами. Корпус прошел через тщательное морение и обработку.

Моддер под ником BOSS решил так же попробовать свои силы в модинге и встроил начинку флешки в автомобильный берлок.

Если у вас произошёл сбой операционной системы или она при работе выдаёт много ошибок (глючит), то вам необходимо переустановить систему. Так как на рынке появилось огромное количество различных ноутбуков, нетбуков и прочих устройств с отсутствующим CD/DVD дисководом потребность загрузочной флешки очень сильно возрастает. Так как покупка внешнего CD/DVD привода довольно дорогая и не особо востребована. А сейчас я расскажу как создать загрузочную флешку своими руками, в домашних условиях тремя самыми распространёнными способами.

Загрузочная флешка с помощью программы Windows 7 USB/DVD Download Tool

Давайте с начала я расскажу о самом простом и быстром способе создании загрузочной флешки с программы Windows 7 USB/DVD Download Tool – это хорошая утилита от компании Microsoft, созданная для простого и удобного создания загрузочной системы на различных типах съёмных носителях. Что облегчает создание загрузочной флешки для пользователей ноутбуков, нетбуков и владельцев персональных компьютеров с неисправным дисководом. Далее рассмотрим пошаговое создание загрузочной флешки с помощью данной программы:

  1. Скачать и установить Windows 7 USB/DVD Download Tool.
  2. Запускаем нашу программу от имени администратора. Для этого нажимаем правой кнопкой мыши на ярлык программы и выбираем пункт «Запуск от имени администратора».
  3. Перед вами появится окно программы «Microsoft Store». Необходимо нажать кнопку «Browse», чтобы выбрать операционную систему для создания образа в формате ISO.
  4. После выбора нажимаем кнопку «Next».
  5. Далее перед вами появится следующее окно, в котором вам предложат возможность выбора записи на DVD-диск, либо USB-накопитель. Так как мы хотим создать загрузочную флешку, необходимо выбрать пункт «USB devise».
  6. Затем программа предложит вам выбрать USB-носитель, на который вы хотите записать образ операционной системы. Вы выбираете нужную вам флешку и нажимаете кнопку «Begin copying».
  7. Далее программа сделает форматирование и установку в автоматическом режиме.
  8. Через некоторое время полоска загрузки дойдёт до 100% и перед вами в статусе появится надпись «Backup completed», в свою очередь просигнализирует о завершении создания загрузочной флешки.
  9. Закрываем нашу программу и теперь можно использовать загрузочную флешку по назначению.

Загрузочная флешка с помощью утилиты UltraISO

А сейчас давайте рассмотрим одну из самых популярных и распростронённых программ. UltraISO – программа создана для чтения, редактирования и создания образов диска. Данная программа очень проста и удобна для обычных пользователей персонального компьютера. Данная программа пригодится вам для работы, ведь она может работать более чем с 30-ю форматами файлов. А сейчас давайте разберёмся, как создать загрузочную флешку с помощью программы UltraISO в пошаговой инструкции.

  1. Скачиваем и устанавливаем программу UltraISO.
  2. Правой кнопкой мыши нажимаем на ярлык программы UltraISO и выбираем пункт «Запуск от имени администратора».
  3. На панели инструментов нажимаем на вкладку «Файл» и выбираем пункт «Открыть». Или нажмите комбинацию Ctrl+O.
  4. После выбираем нужный нам образ операционной системы для создания загрузочной флешки. У меня, к примеру, выбран образ операционной системы Windows 7 Ultimate Ru x86-x64 Orig wBootMenu by-ovgorskiy.
  5. Левой кнопкой мыши нажимаем на название операционной системы (тем самым мы её выделяем).
  6. Открываем вкладку «Самозагрузка». Выбираем пункт «Записать образ жёсткого диска».

  7. После этого перед вами появится всплывающее окно, где необходимо проверить правильная ли флешка выбрана, та ли операционная система, а также метод записи загрузочной флешки. Он должен быть установлен в формате USB-HDD. Проверяем и нажимаем на кнопку «Запись».
  8. Далее начинается установка данных на флешку.
  9. Через некоторое время вы увидите надпись «Запись завершена». Эта надпись сообщит вам о том, что вы завершили создание своей загрузочной флешки.
  10. После завершения закройте программу и используйте свою флешку для установки операционной системы.

Загрузочная флешка с помощью командной строки Windows

Этот способ создания загрузочной флешки не требует дополнительных программ и утилит. И только благодаря этому он заслуживает чтобы о нём рассказать Вам. Он немного сложнее и займёт у Вас немного больше времени чем с программами которые мы рассмотрели выше. Далее пошагово разберём все наши действия:

  1. Вызываем окно «Выполнить». Для этого нажимаем одновременно две клавиши Win+R. Только у Вас возможно будет другое имя. В место Вячеслав будет ваше.
  2. В пустое поле вводим команду «cmd». Эта команда откроет командную строку. Далее будем работаем в ней.
  3. В командной строке вводим команду «DISKPART».
  4. Затем вводим команду «list disk». Эта команда даст нам возможность увидеть накопители, подключённые к ПК.
  5. Вводим команду «select disk 1». Этой командой мы выбираем нашу флешку.
  6. Далее очищаем нашу флешку. Для этого вводим команду «clean».
  7. Следующий пункт – создание первичного раздела. Для этого вводим команду «create partition primary».
  8. Необходимо выбрать раздел, который мы только что выбрали с помощью команды «select partition».
  9. Вводим команду «active». Эта команда сделает выбранный раздел активным.
  10. Далее необходимо отформатировать флешку в системе NTFS. Для этого набираем команду «format fs=NTFS».
  11. Ожидаем пока система отформатирует вашу флешку до 100%.
  12. Далее дадим буквенное название нашей флешке. Для этого используем команду «assign letter=О». Букву для названия флешки выбирайте сами. У меня это буква О.
  13. После этого у вас откроется папка «Съёмный диск О».
  14. В командной строке вводим команду «Exit». Эта команда закроет командную строку.
  15. В папку «Съёмный диск О» переносим все файлы операционной системы. Файлы необходимо копировать (переносить) только в распакованном виде. Не следует просто копировать образ операционной системы одним файлом, такая флешка работать не будет.
  16. Загрузочная флешка готова к использованию.

Принцип полупроводникового управления электрическим током был известен ещё в начале ХХ века. Несмотря на то, что инженеры, работающие в областях радиоэлектроники, знали как работает транзистор, они продолжали конструировать устройства на основе вакуумных ламп. Причиной такого недоверия к полупроводниковым триодам было несовершенство первых точечных транзисторов. Семейство германиевых транзисторов не отличались стабильностью характеристик и сильно зависели от температурных режимов.

Серьёзную конкуренцию электронным лампам составили монолитные кремниевые транзисторы лишь в конце 50-х годов. С этого времени электронная промышленность начала бурно развиваться, а компактные полупроводниковые триоды активно вытесняли энергоёмкие лампы со схем электронных приборов. С появлением интегральных микросхем, где количество транзисторов может достигать миллиардов штук, полупроводниковая электроника одержала убедительную победу в борьбе за миниатюризацию устройств.

Что такое транзистор?

В современном значении транзистором называют полупроводниковый радиоэлемент, предназначенный для изменения параметров электрического тока и управления им. У обычного полупроводникового триода имеется три вывода: база, на которую подаются сигналы управления, эмиттер и коллектор. Существуют также составные транзисторы большой мощности.

Поражает шкала размеров полупроводниковых устройств – от нескольких нанометров (бескорпусные элементы, используемые в микросхемах), до сантиметров в диаметре мощных транзисторов, предназначенных для энергетических установок и промышленного оборудования. Обратные напряжения промышленных триодов могут достигать до 1000 В.

Устройство

Конструктивно триод состоит из полупроводниковых слоев, заключённых в корпусе. Полупроводниками служат материалы на основе кремния, германия, арсенида галлия и других химических элементов. Сегодня проводятся исследования, готовящие на роль полупроводниковых материалов некоторые виды полимеров, и даже углеродных нанотрубок. Видимо в скором будущем мы узнаем о новых свойствах графеновых полевых транзисторов.

Раньше кристаллы полупроводника располагались в металлических корпусах в виде шляпок с тремя ножками. Такая конструкция была характерна для точечных транзисторов.

Сегодня конструкции большинства плоских, в т. ч. кремниевых полупроводниковых приборов выполнены на основе легированного в определённых частях монокристалла. Они впрессованы в пластмассовые, металлостеклянные или металлокерамические корпуса. У некоторых из них имеются выступающие металлические пластины для отвода тепла, которые крепятся на радиаторы.

Электроды современных транзисторов расположены в один ряд. Такое расположение ножек удобно для автоматической сборки плат. Выводы не маркируются на корпусах. Тип электрода определяется по справочникам или путём измерений.

Для транзисторов используют кристаллы полупроводников с разными структурами, типа p-n-p либо n-p-n. Они отличаются полярностью напряжения на электродах.

Схематически строение транзистора можно представить в виде двух полупроводниковых диодов, разделённых дополнительным слоем. (Смотри рисунок 1). Именно наличие этого слоя позволяет управлять проводимостью полупроводникового триода.

Рис. 1. Строение транзисторов

На рисунке 1 схематически изображено строение биполярных триодов. Существуют ещё класс полевых транзисторов, о которых речь пойдёт ниже.

Базовый принцип работы

В состоянии покоя между коллектором и эмиттером биполярного триода ток не протекает. Электрическому току препятствует сопротивление эмиттерного перехода, которое возникает в результате взаимодействия слоёв. Для включения транзистора требуется подать незначительное напряжение на его базу.

На рисунке 2 показана схема, объясняющая принцип работы триода.


Рис. 2. Принцип работы

Управляя токами базы можно включать и выключать устройство. Если на базу подать аналоговый сигнал, то он изменит амплитуду выходных токов. При этом выходной сигнал точно повторит частоту колебаний на базовом электроде. Другими словами, произойдёт усиление поступившего на вход электрического сигнала.

Таким образом, полупроводниковые триоды могут работать в режиме электронных ключей или в режиме усиления входных сигналов.

Работу устройства в режиме электронного ключа можно понять из рисунка 3.


Рис. 3. Триод в режиме ключа

Обозначение на схемах

Общепринятое обозначение: «VT» или «Q» , после которых указывается позиционный индекс. Например, VT 3. На более ранних схемах можно встретить вышедшие из употребления обозначения: «Т», «ПП» или «ПТ». Транзистор изображается в виде символических линий обозначающих соответствующие электроды, обведённые кружком или без такового. Направление тока в эмиттере указывает стрелка.

На рисунке 4 показана схема УНЧ, на которой транзисторы обозначены новым способом, а на рисунке 5 – схематические изображения разных типов полевых транзисторов.

Рис. 4. Пример схемы УНЧ на триодах

Виды транзисторов

По принципу действия и строению различают полупроводниковые триоды:

  • полевые;
  • биполярные;
  • комбинированные.

Эти транзисторы выполняют одинаковые функции, однако существуют различия в принципе их работы.

Полевые

Данный вид триодов ещё называют униполярным, из-за электрических свойств – у них протекает ток только одной полярности. По строению и типу управления эти устройства подразделяются на 3 вида:

  1. Транзисторы с управляющим p-n переходом (рис. 6).
  2. С изолированным затвором (бывают со встроенным либо с индуцированным каналом).
  3. МДП, со структурой: металл-диэлектрик-проводник.

Отличительная черта изолированного затвора – наличие диэлектрика между ним и каналом.

Детали очень чувствительны к статическому электричеству.

Схемы полевых триодов показано на рисунке 5.


Рис. 5. Полевые транзисторы
Рис. 6. Фото реального полевого триода

Обратите внимание на название электродов: сток, исток и затвор.

Полевые транзисторы потребляют очень мало энергии. Они могут работать больше года от небольшой батарейки или аккумулятора. Поэтому они нашли широкое применение в современных электронных устройствах, таких как пульты дистанционного управления, мобильные гаджеты и т.п.

Биполярные

Об этом виде транзисторов много сказано в подразделе «Базовый принцип работы». Отметим лишь, что название «Биполярный» устройство получило из-за способности пропускать заряды противоположных знаков через один канал. Их особенностью является низкое выходное сопротивление.

Транзисторы усиливают сигналы, работают как коммутационные устройства. В цепь коллектора можно включать достаточно мощную нагрузку. Благодаря большому току коллектора можно понизить сопротивление нагрузки.

Более детально о строении и принципе работы рассмотрим ниже.

Комбинированные

С целью достижения определённых электрических параметров от применения одного дискретного элемента разработчики транзисторов изобретают комбинированные конструкции. Среди них можно выделить:

  • с внедрёнными и их схему резисторами;
  • комбинации из двух триодов (одинаковых или разных структур) в одном корпусе;
  • лямбда-диоды – сочетание двух полевых триодов, образующих участок с отрицательным сопротивлением;
  • конструкции, в которых полевой триод с изолированным затвором управляет биполярным триодом (применяются для управления электромоторами).

Комбинированные транзисторы – это, по сути, элементарная микросхема в одном корпусе.

Как работает биполярный транзистор? Инструкция для чайников

Работа биполярных транзисторов основана на свойствах полупроводников и их сочетаний. Чтобы понять принцип действия триодов, разберёмся с поведением полупроводников в электрических цепях.

Полупроводники.

Некоторые кристаллы, такие как кремний, германий и др., являются диэлектриками. Но у них есть одна особенность – если добавить определённые примеси, то они становятся проводниками с особыми свойствами.

Одни добавки (доноры) приводят к появлению свободных электронов, а другие (акцепторы) – образуют «дырки».

Если, например, кремний легировать фосфором (донор), то получим полупроводник с избытком электронов (структура n-Si). При добавлении бора (акцептор) легированный кремний станет полупроводником с дырочной проводимостью (p-Si), то есть в его структуре будут преобладать положительно заряженные ионы.

Односторонняя проводимость.

Проведём мысленный эксперимент: соединим два разнотипных полупроводника с источником питания и подведём ток к нашей конструкции. Произойдёт нечто неожиданное. Если соединить отрицательный провод с кристаллом n-типа, то цепь замкнётся. Однако, когда мы поменяем полярность, то электричества в цепи не будет. Почему так происходит?

В результате соединения кристаллов с разными типами проводимости, между ними образуется область с p-n переходом. Часть электронов (носителей зарядов) из кристалла n-типа перетечёт в кристалл с дырочной проводимостью и рекомбинирует дырки в зоне контакта.

В результате возникают некомпенсированные заряды: в области n-типа – из отрицательных ионов, а в области p-типа из положительных. Разница потенциалов достигает величины от 0,3 до 0,6 В.

Связь между напряжением и концентрацией примесей можно выразить формулой:

φ= V T * ln (N n * N p )/n 2 i , где

V T величина термодинамического напряжения, N n и N p концентрация соответственно электронов и дырок, а n i обозначает собственную концентрацию.

При подсоединении плюса к p-проводнику, а минуса к полупроводнику n-типа, электрические заряды преодолеют барьер, так как их движение будет направлено против электрического поля внутри p-n перехода. В данном случае переход открыт. Но если полюса поменять местами, то переход будет закрыт. Отсюда вывод: p-n переход образует одностороннюю проводимость. Это свойство используется в конструкции диодов.

От диода к транзистору.

Усложним эксперимент. Добавим ещё одну прослойку между двумя полупроводниками с одноименными структурами. Например, между кремниевыми пластинами p-типа вставим прослойку проводимости (n-Si). Не трудно догадаться, что произойдёт в зонах соприкосновения. По аналогии с вышеописанным процессом образуются области с p-n переходами, которые заблокируют движение электрических зарядов между эмиттером и коллектором, причём независимо от полярности тока.

Самое интересное произойдёт тогда, когда мы приложим незначительное напряжение к прослойке (базе). В нашем случае, подадим ток с отрицательным знаком. Как и в случае с диодом, образуется цепь эмиттер-база, по которой потечёт ток. Одновременно прослойка начнёт насыщаться дырками, что приведёт к дырочной проводимости между эмиттером и коллектором.

Посмотрите на рисунок 7. На нём видно, что положительные ионы заполнили всё пространство нашей условной конструкции и теперь ничто не мешает проводимости тока. Мы получили наглядную модель биполярного транзистора структуры p-n-p.


Рис. 7. Принцип работы триода

При обесточивании базы транзистор очень быстро приходит в первоначальное состояние и коллекторный переход закрывается.

Устройство может работать и в усилительном режиме.

Ток коллектора связан прямой пропорциональностью с током базы: I к = ß* I Б , где ß коэффициент усиления по току, I Б ток базы.

Если изменить величину управляющего тока, то изменится интенсивность образования дырок на базе, что повлечёт за собой пропорциональное изменение амплитуды выходного напряжения, с сохранением частоты сигнала. Этот принцип используют для усиления сигналов.

Подавая на базу слабые импульсы, на выходе мы получаем такую же частоту усиления, но со значительно большей амплитудой (задаётся величиной напряжения, приложенного к цепочке коллектор эмиттер).

Аналогичным образом работают npn транзисторы. Меняется только полярность напряжений. Устройства со структурой n-p-n обладают прямой проводимостью. Обратную проводимость имеют транзисторы p-n-p типа.

Остаётся добавить, что полупроводниковый кристалл подобным образом реагирует на ультрафиолетовый спектр света. Включая и отключая поток фотонов, или регулируя его интенсивность, можно управлять работой триода или менять сопротивление полупроводникового резистора.

Схемы включения биполярного транзистора

Схемотехники используют следующие схемы подключения: с общей базой, общими электродами эмиттера и включение с общим коллектором (Рис. 8).


Рис. 8. Схемы подключения биполярных транзисторов

Для усилителей с общей базой характерно:

  • низкое входное сопротивление, которое не превышает 100 Ом;
  • хорошие температурные свойства и частотные показатели триода;
  • высокое допустимое напряжение;
  • требуется два разных источника для питания.

Схемы с общим эмиттером обладают:

  • высокими коэффициентами усиления по току и напряжению;
  • низкие показатели усиления по мощности;
  • инверсией выходного напряжения относительно входного.

При таком подключении достаточно одного источника питания.

Схема подключения по принципу «общий коллектор» обеспечивает:

  • большое входное и незначительное выходное сопротивление;
  • низкий коэффициент напряжения по усилению (< 1).

Как работает полевой транзистор? Пояснение для чайников

Строение полевого транзистора отличается от биполярного тем, что ток в нём не пересекает зоны p-n перехода. Заряды движутся по регулируемому участку, называемому затвором. Пропускная способность затвора регулируется напряжением.

Пространство p-n зоны уменьшается или увеличивается под действием электрического поля (см. Рис. 9). Соответственно меняется количество свободных носителей зарядов – от полного разрушения до предельного насыщения. В результате такого воздействия на затвор, регулируется ток на электродах стока (контактах, выводящих обработанный ток). Входящий ток поступает через контакты истока.


Рисунок 9. Полевой транзистор с p-n переходом

По аналогичному принципу работают полевые триоды со встроенным и индуцированным каналом. Их схемы вы видели на рисунке 5.

Схемы включения полевого транзистора

На практике применяют схемы подключений по аналогии с биполярным триодом:

  • с общим истоком – выдаёт большое усиление тока и мощности;
  • схемы с общим затвором обеспечивающие низкое входное сопротивление, и незначительное усиление (имеет ограниченное применение);
  • с общим стоком, работающие так же, как и схемы с общим эмиттером.

На рисунке 10 показаны различные схемы включения.


Рис. 10. Изображение схем подключения полевых триодов

Практически каждая схема способна работать при очень низких входных напряжениях.

Видео, поясняющие принцип работы транзистора простым языком



Первое, что приходит в голову, когда слышишь подобный вопрос, это рассказать об устройстве транзистора: p-n переходах, их объединении в трехслойную конструкцию и т.д. Физика полупроводников, если подходить к вопросу серьезно, достаточно сложна и требует хотя бы начальных знаний о квантовой физике. И это касается только вопроса методичности изложения, тогда как и сама квантовая физика, как, впрочем, и классическая теория электричества, порою не в состоянии ответить на все возникающие вопросы. В итоге, чаще приходится просить принять что-то на веру после обширных математических выкладок и многочисленных поясняющих рисунков, а это никак не способствует пониманию существа вопроса.

Но действительно ли спрашивающего интересует физика полупроводников? Кого-то, может быть, и интересует, но большая часть вопрошающих, как мне кажется, больше склонна получить ответ на другой вопрос: как осмысленно использовать транзистор в схемах?

Транзистор - один из наиболее употребительных активных элементов электронных схем. В последнее время схемы часто строятся с использованием микросхем, а подход к их созданию требует только знания свойств и функциональных возможностей микросхемы, но следует забывать, что и свойства и функциональные возможности микросхемы обусловлены свойствами скрытых в ней компонент, где транзисторы продолжают играть значительную роль. Так что вопрос о работе транзистора не утратил актуальности. Но с учетом «микросхемного» подхода к созданию устройств рассмотрение свойств и функциональных возможностей транзисторов мне кажется более актуальным, чем физических принципов, лежащих в основе их работы, особенно для любителей.

Чаще всего транзистор используется для усиления сигнала. И хотя сигналы бывают разные, наиболее простые эксперименты можно осуществить с усилением синусоидального сигнала. А Proteus предоставляет все необходимое для этого.

В одном из весьма аргументированных сообщений, встреченных мною на форуме, где обсуждалась работа с Proteus, говорилось, что эта среда разработки предназначена для работы с цифровой техникой и микроконтроллерами, поэтому аналоговые схемы в ней исследовать нет резона. Меня заинтересовало, можно ли рассказать о применении транзисторов с помощью программы Proteus? Попробую это сделать.

Итак. Усиление сигнала можно рассматривать как усиление сигнала по току, усиление по напряжению и усиление по мощности. Усиление сигнала по току у транзистора обусловлено его свойством - ток коллектора и ток базы связаны соотношением Iк = К*Iб . При этом, если ток базы изменяется по какому-то закону, то ток коллектора изменяется по тому же закону, то есть, соотношение выше можно рассматривать для каждого момента времени. Вот, собственно, что я посчитал бы необходимым ответить на вопрос о том, как работает транзистор.

При работе с симметричными сигналами транзистор, как правило, включают так, чтобы напряжение на коллекторе было равно половине напряжения питания. В простейшем случае это достигается подбором резистора в цепи базы.

Рис. 3.1. Задание рабочего режима транзистора

Если в такой схеме менять величину сопротивления R1, что в Proteus достигается щелчком правой клавиши мышки по этому компоненту с последующим выбором из выпадающего меню пункта Edit Properties , открывающего, в свою очередь, диалоговое окно свойств резистора, где и задается величина сопротивления, так вот, если менять R1 то можно получить разное напряжение на коллекторе транзистора.

Однако гораздо полезнее подключить к схеме предыдущего рисунка генератор синусоидального напряжения, используя клавишу Generator Mode (иконка на левой инструментальной панели в виде кружка с синусоидой). Если теперь с помощью клавишиGraph Mode нарисовать график, можно выбратьANALOGUE из представленных возможностей, добавить пробник напряжения, обозначив его метку какoutput , то после настройки графика, в его свойствах я задаю время 10 мС (10m), так как я задал для генератора синусоиды 10 мВ (10m RMS) и частоту 1 кГц (1k), добавить кривую для графика, используя пункт выпадающего менюAdd Traces... , то теперь можно наблюдать выходной сигнал после запуска симуляции в пункте выпадающего менюSimulate Graph при разных значениях сопротивления, чтобы оценить, как влияет выбор рабочей точки на получающийся результат.

Рис. 3.2. Наблюдение синусоидального сигнала на коллекторе транзистора

Зачем на входе транзистора конденсатор? Чтобы сопротивление генератора, а генератор имеет некоторое внутреннее сопротивление, не меняло заданный режим. Конденсатор не пропускает постоянный ток, значит не изменит наших настроек. Можно включать разные источники сигнала, можно менять сопротивление в цепи коллектора, можно наблюдать многое в программе Proteus, и можно проверить, действительно ли между током базы и током коллектора есть соотношение, о котором было сказано в самом начале, и можно проверить, действительно ли ток (ток, а не напряжение, как у меня) коллектора повторяет закон изменения тока базы. Кстати, можно проверить и фазовые соотношения между напряжениями на базе транзистора и напряжением на его коллекторе. Это удобно сделать добавив второй график для сигнала input на рис.3.2.

Я же хочу проделать другие испытания. Если верить рассказам о Proteus, которые я нашел

в Интернете, то работа усилителя не зависит от того, какой транзистор вы используете. Выбирая разные транзисторы из библиотеки компонентов, я хочу посмотреть на амплитудночастотные характеристики получающихся усилителей. Для этой цели я использую ту же схему, добавлю в свой набор некоторое количество транзисторов, затем, меняя транзисторы, посмотрю, действительно ли их АЧХ одинаковы?

Рис. 3.3. Испытания разных транзисторов в Proteus

Для транзистора AC127, как это видно из графика, частота среза примерно 5 МГц. Похоже ли это на правду? Не хочу заниматься расчетами, но если современные транзисторы малой мощности имеют граничную частоту при включении с общей базой порядка 300 МГц, а усиление около 100, то граничная частота должна получиться около 3 МГц.

Когда рассказывают о строении биполярного транзистора, то обязательно упоминают о том, что он имеет две пограничные области на стыке полупроводников разных типов проводимости, очень напоминающие по свойствам заряженные конденсаторы. Этому свойству транзистор обязан своим поведением при усилении сигналов разных частот. Его поведение можно моделировать используя RC цепь. Амплитудно-частотная характеристика интегрирующей RC цепи и однокаскадного усилителя на транзисторе будут обладать одинаковыми свойствами. Можно сравнить графики рис. 1.14 и предыдущего, чтобы увидеть наличие верхней граничной частоты в обоих случаях и спада амплитудно-частотной характеристики со скоростью 20 дБ на декаду. Величина эквивалентного конденсатора зависит от конкретной модели транзистора. Если заменить одну модель транзистора другой, то можно ожидать, что амплитудно-частотная характеристика каскада изменится, если, конечно, у них различается такой параметр, как граничная частота усиления.

Поэтому я хочу заменить транзистор на TIP31.

Рис. 3.4. Амплитудно-частотная характеристика после замены транзистора

Не знаю, как у вас, а у меня верхняя граничная частота «улетела» за 10 МГц. Не уверен я теперь, что Proteus не годится для аналогового симулирования схем. Чтобы развеять свои сомнения я верну транзистор AC127, а в цепь эмиттера включу резистор. Этот резистор, удобнее рассмотреть его работу в схеме рис.3.1, приведет к тому, что напряжение базаэмиттер транзистора изменится. На нем будет падать напряжение, которое нужно вычесть из напряжения между базой и общим проводом, чтобы получить напряжение база-эмиттер. Входным напряжением для транзистора служит именно напряжение база-эмиттер. Таким образом, резистор в цепи эмиттера уменьшает входной сигнал для транзистора. Он, резистор, является резистором обратной связи - мы часть выходного сигнала (а на резисторе в цепи эмиттера в значительной мере сказывается именно выходной сигнал) сложили с учетом фазы со входным сигналом, дополнение «с учетом фазы» в данном случае указывает на то, что обратная связь будет отрицательной. А, насколько я знаю, отрицательная обратная связь должна расширить диапазон рабочих частот каскада усиления, то есть, верхняя граничная частота должна увеличится. Проверим, так ли это?

Рис. 3.5. Амплитудно-частотная характеристика с отрицательной обратной связью

Нисколько я не развеял сомнения, верхняя частота среза каскада вновь оказывается за 10 МГц, как и предписывает ей теория и практика. Видимо профессионалов не устраивает точность моделирования сравнительно с расчетами или практическим выполнением схем, но в любительской практике, если проверять результаты моделирования на макетной плате, программа окажется достойным помощником.

Проведем еще один эксперимент, который отчасти отвечает на вопрос о применимости Proteus к аналоговым схемам, отчасти на вопрос о том, как работает транзистор?

В самом начале я говорил, что ток базы и ток коллектора связаны соотношением, но никак не назвал это соотношение. Коэффициент «К» - это статический коэффициент усиления по току. Можно встретить его в виде Вст и в виде h21 . Это связь между постоянным током базы и коллектора. Но при работе транзистора в схеме нас больше может заинтересовать динамическая связь этих токов. Посмотрим, может ли Proteus помочь нам в этом.

Но предварительно, поскольку мы этого не сделали, найдем этот самый статический коэффициент усиления по току, как отношение постоянного тока коллектора к току базы в выбранном режиме. В схеме рис.3.1 я добавлю два измерителя тока, амперметра, один в цепь базы, другой в цепь коллектора. В свойствах этих амперметров (правый щелчок, в выпадающем меню свойства, затем окошко Display Range ) я заменю тот, что в цепи базы на микроамперметр, а в цепи коллектора на миллиамперметр.

Рис. 3.6. Измерение статического коэффициента усиления по току

Теперь можно разделить 5.67 мА на 22.6 мкА, что даст значение коэффициента, примерно, 250.

Мне хотелось бы проделать нечто подобное со входным и выходным током схемы на рис. 3.4. Токовый пробник к входной цепи добавляется и графика работает, а вот графика, если добавить токовый пробник в коллекторную цепь, работать не хочет. Но это не слишком огорчает меня, поскольку токовый пробник в общей цепи вполне меня устроит, ток в общей цепи - сумма токов базы и коллектора, но ток базы много меньше тока коллектора, так что для ориентировочных расчетов можно взять их сумму.

Можно, конечно, попытаться разобраться, отчего не хочет симулироваться график, если токовый пробник устанавливать в цепь коллектора. К этой проблеме можно вернуться позже, либо не рассматривать это в качестве проблемы до того момента, когда в таком измерении возникнет жестокая необходимость. Пока можно обойтись тем, что есть.

В общем рабочем поле графики немного маловаты, и если это, как мне в данном случае, мешает определить величины, можно выбрать из выпадающего меню после щелчка правой клавиши мышки по графику пункт Maximize (Show Window) , что приведет к появлению окна просмотра с большим графиком.

Рис. 3.7. Токи во входной и выходной цепях усилителя

Самый верхний график показывает напряжение сигнала на коллекторе транзистора. В окне просмотра легко выясняется, что двойная амплитуда сигнала около 8.5 - 3.5 = 5 В. Соответственно амплитуда должна быть 2.5 В. Прав я или нет, но при сопротивлении нагрузки равном 1 кОм ток через это сопротивление должен быть 2.5 мА.

Следующий график показывает токовый сигнал базы транзистора, двойная амплитуда которого 24 мкА, а амплитуда 12 мкА.

Последний график - это общий токовый сигнал, как алгебраическая сумма базового и коллекторного токов, который я, ничтоже сумняшеся, принимаю за выходной ток с амплитудой 2.5 мА. В этом случае усиление по току, как простое отношение выходного тока ко входному, будет около 208. Это близко к статическому коэффициенту усиления по току. Кроме того, зная, что входной сигнал равен 10 мВ (RSM) эффективного значения или 14 мВ амплитудного, а выходной сигнал 2.5 В, можно получить усиление по напряжению около 178. Это значение, выраженное в децибелах, дает величину 45 дБ. Это же значение присутствует на амплитудно-частотной характеристике этой схемы. Расчетное значение усиления по напряжению получается около 200. Пока похоже.

В одном из справочников приводится расчетное значение усиления по напряжению как отношение величины сопротивления в коллекторной и эмиттерной цепи для рис. 3.5. В данном случае это будет 1000/300 = 3.3 или в децибелах 20log(3.3) = 10.4. Это значение присутствует на амплитудно-частотной характеристике.

Что ж, был бы рад сказать, что убедился, с аналоговыми схемами работать нельзя, но не убедился пока. Увы!

Так работает диод

Это такая хитрая фиговина, пропускающая ток только в одну сторону. Его можно сравнить с ниппелем. Применяется, например, в выпрямителях, когда из переменного тока делают постоянный. Или когда надо отделить обратное напряжение от прямого. Погляди в схему программатора (там где был пример с делителем). Видишь стоят диоды, как думаешь, зачем? А все просто. У микроконтроллера логические уровни это 0 и 5 вольт, а у СОМ порта единица это минус 12 вольт, а ноль плюс 12 вольт. Вот диод и отрезает этот минус 12, образуя 0 вольт. А поскольку у диода в прямом направлении проводимость не идеальная (она вообще зависит от приложенного прямого напряжения, чем оно больше, тем лучше диод проводит ток), то на его сопротивлении упадет примерно 0.5-0.7 вольта, остаток, будучи поделенным резисторами надвое, окажется примерно 5.5 вольт, что не выходит за пределы нормы контроллера.
Выводы диода называют анодом и катодом. Ток течет от анода к катоду. Запомнить где какой вывод очень просто: на условном обозначнеии стрелочка и палочка со стороны к атода как бы рисуют букву К вот, смотри —К |—. К= Катод! А на детали катод обозначается полоской или точкой.

Есть еще один интересный тип диода – стабилитрон . Его я юзал в одной из прошлых статей. Особенностью его является то, что в прямом направлении он работает как обычный диод, а вот в обратном его срывает на каком либо напряжении, например на 3.3 вольта. Подобно ограничительному клапану парового котла, открывающемуся при превышении давления и стравливающему излишки пара. Стабилитроны используют когда хотят получить напряжение заданной величины, вне зависимости от входных напряжений. Это может быть, например, опорная величина, относительно которой происходит сравнение входного сигнала. Им можно обрезать входящий сигнал до нужной величины или используют его как защиту. В своих схемах я часто ставлю на питание контроллера стабилитрон на 5.5 вольт, чтобы в случае чего, если напряжение резко скакнет, этот стабилитрон стравил через себя излишки. Также есть такой зверь как супрессор. Тот же стабилитрон, только куда более мощный и часто двунаправленный. Используется для защиты по питанию.

Транзистор.

Жуткая вещь, в детстве все не мог понять как он работает, а оказалось все просто.
В общем, транзистор можно сравнить с управляемым вентилем, где крохотным усилием мы управляем мощнейшим потоком. Чуть повернул рукоятку и тонны дерьма умчались по трубам, открыл посильней и вот уже все вокруг захлебнулось в нечистотах. Т.е. выход пропорционален входу умноженному на какую то величину. Этой величиной является коэффициент усиления .
Делятся эти девайсы на полевые и биполярные.
В биполярном транзисторе есть эмиттер , коллектор и база (смотри рисунок условного обозначения). Эмиттер он со стрелочкой, база обозначается как прямая площадка между эмиттером и коллектором. Между эмиттером и коллектором идет большой ток полезной нагрузки, направление тока определяется стрелочкой на эмиттере . А вот между базой и эмиттером идет маленький управляющий ток. Грубо говоря, величина управляющего тока влияет на сопротивление между коллектором и эмиттером. Биполярные транзисторы бывают двух типов: p-n-p и n-p-n принципиальная разница только лишь в направлении тока через них.

Полевой транзистор отличается от биполярного тем, что в нем сопротивление канала между истоком и стоком определяется уже не током, а напряжением на затворе. Последнее время полевые транзисторы получили громадную популярность (на них построены все микропроцессоры), т.к. токи в них протекают микроскопические, решающую роль играет напряжение, а значит потери и тепловыделение минимальны.

Короче, транзистор позволит тебе слабеньким сигналом, например с ноги микроконтроллера, . Если не хватит усиления одного транзистора, то их можно соединять каскадами – один за другим, все мощней и мощней. А порой хватает и одного могучего полевого MOSFET транзистора. Посмотри, например, как в схемах сотовых телефонов управляется виброзвонок. Там выход с процессора идет на затвор силового MOSFET ключа.



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: