Тактовая частота процессора: что это такое, в чем измеряется и на что влияет. Что такое тактовая частота процессора

Как известно, тактовая частота процессора что это количество выполняемых операций таковым за единицу времени, в данном случае, за секунду.

Но этого определения недостаточно для того, чтобы полностью понять, что же на самом деле означает данное понятие и какое значение оно имеет для нас, рядовых пользователей.

В интернете можно найти множество статей по этому поводу, но во всех из них чего-то не хватает.

Чаще всего это «что-то» является тем самым ключиком, который может открыть дверь к пониманию. Поэтому мы постарались собрать все основные сведения, будто это пазлы, и составить из них единую целостную картину.

Детальное определение

Итак, тактовая частота – это количество операций, которые процессор может выполнять за секунду. Измеряется эта величина в Герцах.

Эта единица измерения названа в честь известного ученого, который проводил эксперименты, направленные на изучение периодических, то есть повторяющихся процессов.

А причем Герц к операциям за секунду?

Такой вопрос возникает при чтении большинства статей в интернете у людей, которые не очень хорошо изучали физику в школе (может быть, не по своей вине). Дело в том, что эта единица как раз и обозначает частоту, то есть количество повторений, этих самых периодических процессов за секунду.

Она позволяет измерять не только число операций, а и другие всевозможные показатели. К примеру, если вы делаете 3 входа в секунду, значит, частота дыхания составляет 3 Герца.

Что же касается процессоров, то здесь могут выполняться самые разные операции, которые сводятся к вычислению тех или иных параметров. Собственно, количество вычислений этих самых параметров за секунду и называется тактовой частотой.

Как все просто!

На практике понятие «Герц» используется крайне редко, чаще мы слышим о мегаГерцах, килоГерцах и так далее. В таблице 1 приведены «расшифровки» этих величин.

Таблица 1. Обозначения

Первое и последнее в настоящее время используется крайне редко.

То есть, если вы слышите, что в нем 4 ГГц, значит, он может выполнять 4 миллиарда операций каждую секунду.

Отнюдь! На сегодняшний день это средний показатель. Наверняка, очень скоро мы услышим о моделях с частотой в тераГерц или даже больше.

Как образовывается

Итак, в нем есть следующие устройства:

  • тактовый резонатор – представляет собой обычный кристалл кварца, заключен в специальный защитный контейнер;
  • тактовый генератор – устройство, которое преобразовывает один вид колебаний в другие;
  • металлическая крышка;
  • шина данных;
  • текстолитовая подложка, к которой крепятся все остальные устройства.

Так вот, кристалл кварца, то есть тактовый резонатор образуют колебания вследствие подачи напряжения. В результате образовываются колебания электрического тока.

К подложке крепится тактовый генератор, который преобразовывает электрические колебания в импульсы. Они передаются на шины данных, и таким образом результат вычислений попадает к пользователю.

Вот именно таким путем и получается тактовая частота. Интересно, что в отношении данного понятия существует огромное количество заблуждений, в частности, относительно связи ядер и частоты. Поэтому об этом тоже стоит поговорить.

Как частота связана с ядрами

Ядро – это, фактически, и есть процессор. Под ядром подразумевается тот самый кристалл, который и заставляет все устройство выполнять определенные операции. То есть если в той или иной модели два ядра, это значит, что в нем два кристалла, которые соединяются между собой при помощи специальной шины.

Согласно распространенному заблуждению, чем больше ядер, тем больше частота. Не зря ведь сейчас разработчики стараются вместить все больше ядер в них. Но это не так. Если она равна 1 ГГц, даже если в нем 10 ядер, она так и останется 1 ГГц, и не станет 10 ГГц.

Принципиальная схема процессора

Управляющий блок - управляет работой всех блоков процессора.

Арифметико-логический блок - выполняет арифметические и логические вычисления.

Регистры - блок хранения данных и промежуточных результатов вычислений - внутренняя оперативная память процессора.

Блок декодировки - преобразует данные в двоичную систему.

Блок предварительной выборки - получает команду от устройства (клавиатура и т.д.) и запрашивает инструкции в системной памяти.

Кэш-память (или просто кэш) 1-го уровня - хранит часто использующиеся инструкции и данные.

Кэш-память 2-го уровня - хранит часто использующиеся данные.

Блок шины - служит для ввода и вывода информации.

Эта схема соответствует процессорам архитектуры P6. По этой архитектуре создавались процессоры с Pentium Pro до Pentium III. Процессоры Pentium 4 изготавливаются по новой архитектуре Intel® NetBurst. В процессорах Pentium 4 кэш 1-го уровня поделен на две части - кэш данных и кэш команд.

Характеристики процессора

Основными характеристиками процессора являются его тактовая частота, разрядность и размеры кэша 1-го и 2-го уровня.

Частота - это количество колебаний в секунду. Тактовая частота - это количество тактов в секунду. В применении к процессору:

Тактовая частота - это количество операций, которое процессор может выполнить в секунду.

Т.е. чем больше операций в секунду может выполнять процессор, тем быстрее он работает. Например, процессор с тактовой частотой 40 МГц выполняет 40 миллионов операций в секунду, с частотой 300 Мг - 300 миллионов операций в секунду, с частотой 1 ГГц - 1 миллиард операций в секунду.

К 2003 году тактовая частота процессоров достигла 3 ГГц.

Существует два типа тактовой частоты - внутренняя и внешняя.

Внутренняя тактовая частота - это тактовая частота, с которой происходит работа внутри процессора.

Внешняя тактовая частота или частота системной шины - это тактовая частота, с которой происходит обмен данными между процессором и оперативной памятью компьютера.

До 1992 года в процессорах внутренняя и внешняя частоты совпадали, а в 1992 году компания Intel представила процессор 80486DX2, в котором внутренняя и внешняя частоты были различны - внутренняя частота была в 2 раза больше внешней. Было выпущено два типа таких процессоров с частотами 25/50 МГц и 33/66 МГц, затем Intel выпустила процессор 80486DX4 с утроенной внутренней частотой (33/100 МГц).

С этого времени остальные компании-производители также стали выпускать процессоры с удвоенной внутренней частотой, а компания IBM стала выпускать процессоры с утроенной внутренней частотой (25/75 МГц, 33/100 МГц и 40/120 МГц).

В современных процессорах, например, при тактовой частоте процессора 3 ГГц, частота системной шины 800 МГц.

Разрядность процессора определяется разрядностью его регистров.

Компьютер может оперировать одновременно ограниченным набором единиц информации. Этот набор зависит от разрядности внутренних регистров. Разряд - это хранилище единицы информации. За один рабочий такт компьютер может обработать количество информации, которое может поместиться в регистрах. Если регистры могут хранить 8 единиц информации, то они 8-разрядне, и процессор 8-разрядный, если регистры 16-разрядные, то и процессор 16-разрядный и т.д. Чем большая разрядность процессора, тем большее количество информации он может обработать за один такт, а значит, тем быстрее работает процессор.

Процессор Pentium 4 является 32-разрядным.

Объем кэш-памяти 1-го и 2-го уровня также влияет на производительность процессора.

В процессоре Pentium III кэш-память 1-го уровня составляет 16 Кб, кэш-память 2-го уровня 256 Кб.

В процессорах Pentium 4 кэш-память 1-го уровня для данных имеет объем 8 Кб, кэш-память 1-го уровня для команд рассчитан на 12000 инструкций в порядке их исполнения, а объем кэш-памяти 2-го уровня составляет 512 Кб.

Процессор является пожалуй наиболее важной комплектующей частью компьютера, ведь именно он выполняет обработку данных. К одной из наиболее важных характеристик является тактовая частота процессора , которая указывает на количество выполняемых операций за одну секунду. Однако подобное определение для этого параметра довольно скудное, чтобы понять на самом деле его важность, поэтому постараемся более подробно разобраться в этом вопросе.


Научное определение тактовой частоты звучит следующим образом: это количество операций, которые могут обрабатываться в течение одной секунды и измеряется в Герцах. Но почему, скажут многие, за основу была принята именно эта единица измерения? В физике эта величина отображает количество колебаний за определенный промежуток времени, здесь же по сути все идентично, только вместо колебаний рассчитывается количество операций, то есть повторяющаяся величина за определенный интервал времени.

Если говорить конкретно о процессорах, то в нем производятся не идентичные операции, здесь рассчитываются всевозможные параметры. Ну а соответственно их суммарное количество и является тактовой частотой.

Сейчас технические возможности процессора находятся на высочайшем уровне, поэтому величина Герц не используется, а здесь более приемлемо использовать мегагерцы или гигагерцы. Этот шаг предпринят потому, чтобы не дописывать огромное количество нулей, тем самым упрощая восприятие человеком величины (см. таблицу).

Каким образом рассчитывается тактовая частота?

Для того, чтобы это понять, необходимо хоть чуть-чуть разбираться в физике, однако постараемся раскрыть тему «человеческим» языком, чтобы этот вопрос был понятен любому пользователю. Для понимания этого сложного вычислительного процесса, необходимо привести список комплектующих процессора, которые так или иначе влияют на этот параметр:

  • тактовый резонатор – изготовлен из кристалла кварца, который размещается в специальной защитной оболочке;
  • тактовый генератор – деталь, которая совершает преобразование колебаний в импульсы;
  • шина данных.

Вследствие подачи напряжения на тактовый резонатор, он образует колебания электрического тока.

Далее эти колебания передаются на тактовый генератор, который преобразовывает их в импульсы. Посредством шины данных, производится их передача, а результат вычислений уже подается непосредственно пользователю.

По такой методике и выполняется расчет тактовой частоты. И хоть все вроде бы предельно понятно, множество людей неправильно воспринимают эти вычисления, а соответственно и интерпретация ошибочна. Прежде всего это связано с тем, если процессор имеет не одно ядро, а несколько.

Каким образом тактовая частота связана с ядрами?

По сути, многоядерный процессор ничем не отличается от одноядерного, кроме того, что в нем содержится не один тактовый резонатор, а два и более. Для совместной работы они соединяются дополнительной шиной данных.

И именно здесь происходит заблуждение людей: тактовая частота нескольких ядер не суммируется. Просто при обработке данных производится перераспределение нагрузки на каждое из ядер, но это совершенно не обозначает, что это будет выполняться строго пропорционально, да и скорость обработки от этого не увеличивается. Для примера, существуют некоторые игры, в которых разработчики вовсе не допускают возможность перераспределения нагрузки по ядрам и игрушка работает лишь на одном.

Для примера рассмотрим случай с четырьмя пешеходами. Они идут максимально возможным шагом, рядом друг с другом и кто-то из них несет тяжелую ношу. Если он начинает уставать, другой может взять эту поклажу, чтобы не терять скорость, но при этом они не станут в целом идти быстрее и раньше достичь конечной точки, ведь все и так передвигаются на пределе своих возможностей.

Кстати говоря, при , количество ядер конечно же играет роль. Да и производители стали устанавливать все большее их количество, но при этом следует помнить, что шина данных может банально не справляться и производительность может не то, что увеличиться, а и значительно уступать процессорам с меньшим количеством ядер. Например, в данный момент компания Intel выпускает процессоры I7, в которых может быть размещено всего два ядра, при этом он будет обрабатывать данные гораздо быстрее, чем даже восьми ядерными (как правило данная компания и не выпускала моделей с таким количеством ядер, процессоры AMD действительно бывают и десяти ядерными). Разработчики просто делают упор не только на увеличении тактовой частоты, но и на архитектуре процессора в целом. Это может касаться, как увеличения шины данных между тактовыми резонаторами, так и других аспектов.

Наверное, каждый пользователь мало знакомый с компьютером сталкивался с кучей непонятных ему характеристик при выборе центрального процессора: техпроцесс, кэш, сокет; обращался за советом к друзьям и знакомым, компетентным в вопросе компьютерного железа. Давайте разберемся в многообразии всевозможных параметров, потому как процессор – это важнейшая часть вашего ПК, а понимание его характеристик подарит вам уверенность при покупке и дальнейшем использовании.

Центральный процессор

Процессор персонального компьютера представляет собой микросхему, которая отвечает за выполнение любых операций с данными и управляет периферийными устройствами. Он содержится в специальном кремниевом корпусе, называемом кристаллом. Для краткого обозначения используют аббревиатуру — ЦП (центральный процессор) или CPU (от англ. Central Processing Unit – центральное обрабатывающее устройство). На современном рынке компьютерных комплектующих присутствуют две конкурирующие корпорации, Intel и AMD , которые беспрестанно участвуют в гонке за производительность новых процессоров, постоянно совершенствуя технологический процесс.

Техпроцесс

Техпроцесс — это размер, используемый при производстве процессоров. Он определяет величину транзистора, единицей измерения которого является нм (нанометр). Транзисторы, в свою очередь, составляют внутреннюю основу ЦП. Суть заключается в том, что постоянное совершенствование методики изготовления позволяет уменьшать размер этих компонентов. В результате на кристалле процессора их размещается гораздо больше. Это способствует улучшению характеристик CPU, поэтому в его параметрах всегда указывают используемый техпроцесс. Например, Intel Core i5-760 выполнен по техпроцессу 45 нм, а Intel Core i5-2500K по 32 нм, исходя из этой информации, можно судить о том, насколько процессор современен и превосходит по производительности своего предшественника, но при выборе необходимо учитывать и ряд других параметров.

Архитектура

Также процессорам свойственно такая характеристика, как архитектура - набор свойств, присущий целому семейству процессоров, как правило, выпускаемому в течение многих лет. Говоря другими словами, архитектура – это их организация или внутренняя конструкция ЦП.

Количество ядер

Ядро – самый главный элемент центрального процессора. Оно представляет собой часть процессора, способное выполнять один поток команд. Ядра отличаются по размеру кэш памяти, частоте шины, технологии изготовления и т. д. Производители с каждым последующим техпроцессом присваивают им новые имена (к примеру, ядро процессора AMD – Zambezi, а Intel – Lynnfield). С развитием технологий производства процессоров появилась возможность размещать в одном корпусе более одного ядра, что значительно увеличивает производительность CPU и помогает выполнять несколько задач одновременно, а также использовать несколько ядер в работе программ. Многоядерные процессоры смогут быстрее справиться с архивацией, декодированием видео, работой современных видеоигр и т.д. Например, линейки процессоров Core 2 Duo и Core 2 Quad от Intel, в которых используются двухъядерные и четырехъядерные ЦП, соответственно. На данный момент массово доступны процессоры с 2, 3, 4 и 6 ядрами. Их большее количество используется в серверных решениях и не требуется рядовому пользователю ПК.

Частота

Помимо количества ядер на производительность влияет тактовая частота . Значение этой характеристики отражает производительность CPU в количестве тактов (операций) в секунду. Еще одной немаловажной характеристикой является частота шины (FSB – Front Side Bus) демонстрирующая скорость, с которой происходит обмен данных между процессором и периферией компьютера. Тактовая частота пропорциональна частоте шины.

Сокет

Чтобы будущий процессор при апгрейде был совместим с имеющейся материнской платой, необходимо знать его сокет. Сокетом называют разъем , в который устанавливается ЦП на материнскую плату компьютера. Тип сокета характеризуется количеством ножек и производителем процессора. Различные сокеты соответствуют определенным типам CPU, таким образом, каждый разъём допускает установку процессора определённого типа. Компания Intel использует сокет LGA1156, LGA1366 и LGA1155, а AMD — AM2+ и AM3.

Кэш

Кэш - объем памяти с очень большой скоростью доступа, необходимый для ускорения обращения к данным, постоянно находящимся в памяти с меньшей скоростью доступа (оперативной памяти). При выборе процессора, помните, что увеличение размера кэш-памяти положительно влияет на производительность большинства приложений. Кэш центрального процессора различается тремя уровнями (L1, L2 и L3 ), располагаясь непосредственно на ядре процессора. В него попадают данные из оперативной памяти для более высокой скорости обработки. Стоит также учесть, что для многоядерных CPU указывается объем кэш-памяти первого уровня для одного ядра. Кэш второго уровня выполняет аналогичные функции, отличаясь более низкой скоростью и большим объемом. Если вы предполагаете использовать процессор для ресурсоемких задач, то модель с большим объемом кэша второго уровня будет предпочтительнее, учитывая что для многоядерных процессоров указывается суммарный объем кэша L2. Кэшем L3 комплектуются самые производительные процессоры, такие как AMD Phenom, AMD Phenom II, Intel Core i3, Intel Core i5, Intel Core i7, Intel Xeon. Кэш третьего уровня наименее быстродействующий, но он может достигать 30 Мб.

Энергопотребление

Энергопотребление процессора тесно связано с технологией его производства. С уменьшением нанометров техпроцесса, увеличением количества транзисторов и повышением тактовой частоты процессоров происходит рост потребления электроэнергии CPU. Например, процессоры линейки Core i7 от Intel требуют до 130 и более ватт. Напряжение подающееся на ядро ярко характеризует энергопотребление процессора. Этот параметр особенно важен при выборе ЦП для использования в качестве мультимедиа центра. В современных моделях процессоров используются различные технологии, которые помогают бороться с излишним энергопотреблением: встраиваемые температурные датчики, системы автоматического контроля напряжения и частоты ядер процессора, энергосберегающие режимы при слабой нагрузке на ЦП.

Дополнительные возможности

Современные процессоры приобрели возможности работы в 2-х и 3-х канальных режимах с оперативной памятью, что значительно сказывается на ее производительности, а также поддерживают больший набор инструкций, поднимающий их функциональность на новый уровень. Графические процессоры обрабатывают видео своими силами, тем самым разгружая ЦП, благодаря технологии DXVA (от англ. DirectX Video Acceleration – ускорение видео компонентом DirectX). Компания Intel использует вышеупомянутую технологию Turbo Boost для динамического изменения тактовой частоты центрального процессора. Технология Speed Step управляет энергопотреблением CPU в зависимости от активности процессора, а Intel Virtualization Technology аппаратно создает виртуальную среду для использования нескольких операционных систем. Также современные процессоры могут делиться на виртуальные ядра с помощью технологии Hyper Threading . Например, двухъядерный процессор способен делить тактовую частоту одного ядра на два, что способствует высокой производительности обработки данных с помощью четырех виртуальных ядер.

Размышляя о конфигурации вашего будущего ПК, не забывайте про видеокарту и ее GPU (от англ. Graphics Processing Unit – графическое обрабатывающее устройство) – процессор вашей видеокарты, который отвечает за рендеринг (арифметические операции с геометрическими, физическими объектами и т.п.). Чем больше частота его ядра и частота памяти, тем меньше будет нагрузки на центральный процессор. Особенное внимание к графическому процессору должны проявить геймеры.

Работа любого цифрового компьютера зависит от тактовой частоты, которую определяет кварцевый резонатор. Он представляет собой оловянный контейнер в который помещен кристалл кварца. Под воздействием электрического напряжения в кристалле возникают колебания электрического тока. Вот эта самая частота колебания и называется тактовой частотой. Все изменения логических сигналов в любой микросхеме компьютера происходят через определенные интервалы, которые называются тактами. Отсюда сделаем вывод, что наименьшей единицей измерения времени для большинства логических устройств компьютера есть такт или еще по другому – период тактовой частоты. Проще говоря – на каждую операцию требуется минимум один такт (хотя некоторые современные устройства успевают выполнить несколько операций за один такт). Тактовая частота, применительно к персональным компьютерам, измеряется в МГц, где Герц – это одно колебание в секунду, соответственно 1 МГц – миллион колебаний в секунду. Теоретически, если системная шина Вашего компьютера работает на частоте в 100 МГц, то значит она может выполнять до 100 000 000 операций в секунду. К слову сказать, совсем не обязательно, что бы каждый компонент системы обязательно что-либо выполнял с каждым тактом. Существуют так называемые пустые такты (циклы ожидания), когда устройство находится в процессе ожидания ответа от какого либо другого устройства. Так, например, организована работа оперативной памяти и процессора (СPU), тактовая частота которого значительно выше тактовой частоты ОЗУ.

Разрядность

Шина состоит из нескольких каналов для передачи электрических сигналов. Если говорят, что шина тридцатидвухразрядная, то это означает, что она способна передавать электрические сигналы по тридцати двум каналам одновременно. Здесь есть одна фишка. Дело в том, что шина любой заявленной разрядности (8, 16, 32, 64) имеет, на самом деле, большее количество каналов. То есть, если взять ту же тридцатидвухразрядную шину, то для передачи собственно данных выделено 32 канала, а дополнительные каналы предназначены для передачи специфической информации.

Скорость передачи данных

Название этого параметра говорит само за себя. Он высчитывается по формуле:

тактовая частота * разрядность = скорость передачи данных

Сделаем расчет скорости передачи данных для 64 разрядной системной шины, работающей на тактовой частоте в 100 МГц.

100 * 64 = 6400 Мбит/сек6400 / 8 = 800 Мбайт/сек

Но полученное число не является реальным. В жизни на шины влияет куча всевозможных факторов: неэффективная проводимость материалов, помехи, недостатки конструкции и сборки а также многое другое. По некоторым данным, разность между теоретической скоростью передачи данных и практической может составлять до 25%.

За работой каждой шины следят специально для этого предназначенные контроллеры. Они входят в состав набора системной логики (чипсет ).

Шина isa

Системная шина ISA (Industry Standard Architecture) применяется начиная с процессора i80286. Гнездо для плат расширения включает основной 64-контактный и дополнительный 36-контактный разъемы. Шина 16-разрядная, имеет 24 адресные линии, обеспечивает прямое обращение к 16 Мбайт оперативной памяти. Количество аппаратных прерываний - 16, каналов DMA - 7. Допускается возможность синхронизации работы шины и процессора разными тактовыми частотами. Тактовая частота - 8 МГц. Максимальная скорость передачи данных - 16 Мбайт/с.

PCI. (Peripheral Component Interconnect bus – шина соединения периферийных компонентов)

В июне 1992 года на сцене появился новый стандарт – PCI, родителем которого была фирма Intel, а точнее организованная ею группа Special Interest Group. К началу 1993 года появился модернизированный вариант PCI. По сути дела эта шина не является локальной. Напомню, что локальной шиной называется та шина, которая подключена к системной шине напрямую. PCI же для подключения к оной использует Host Bridge (главный мост), а так же еще и Peer-to-Peer Bridge (одноранговый мост) который предназначен для соединения двух шин PCI. Кроме всего прочего, PCI является сама по себе мостом между ISA и шиной процессора.

Тактовая частота PCI может быть равна или 33 МГц или 66 МГц. Разрядность – 32 или 64. Скорость передачи данных – 132 Мбайт/сек или 264 Мбайт/сек.

Стандартом PCI предусмотрены три типа плат в зависимости от питания:

1. 5 Вольт – для стационарных компьютеров

2. 3,3 Вольт – для портативных компьютеров

3. Универсальные платы могущие работать в обоих типах компьютеров.

Большим плюсом шины PCI является удовлетворение спецификации Plug and Play –. Кроме этого, в шине PCI любая передача сигналов происходит пакетным образом где каждый пакет разбит на фазы. Начинается пакет с фазы адреса, за которой, как правило, следует один или несколько фаз данных. Количество фаз данных в пакете может быть неопределенно, но ограничено таймером, который определяет максимальное время, в течение которого устройство может использоваться шиной. Такой вот таймер имеет каждое подключенное устройство, а его значение может быть задано при конфигурировании. Для организации работы по передачи данных используется арбитр. Дело в том, что на шине могут находиться два типа устройств – мастер (инициатор, хозяин, ведущий) шины и подчиненный. Мастер берет на себя контроль за шиной и инициирует передачу данных к адресату, т. е. подчиненному устройству. Мастером или подчиненным может быть любое подключенное к шине устройство и иерархия эта постоянно меняется в зависимости от того, какое устройство запросило у арбитра шины разрешения на передачу данных и кому. За бесконфликтную работу шины PCI отвечает чипсет, а точнее North Bridge. Но на PCI жизнь не остановила своего течения. Постоянное усовершенствование видеокарт привело к тому, что физических параметров шины PCI стало не хватать, что и привело к появлению AGP.



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: