Синтаксис оператора new в c. Динамические объекты с отношением родитель-ребёнок

Автоматические объекты удаляются неявно в соответствии с чёткими правилами, которые реализованы в компиляторе. Локальные переменные функции удаляются, когда поток управления покидает область видимости, в которой они объявлены. Члены класса удаляются после выполнения деструктора этого класса.

А вот для динамических объектов таких правил нет. Их нужно всегда удалять явно (явное удаление может быть скрыто в недрах утилитарных классов и функций). Вот небольшая иллюстрация для лучшего понимания:
struct A { std::string str; // Автоматический объект, неявно удаляется в деструкторе A (который сгенерирован // автоматически). Сам строковый буфер - динамический объект (*), будет явно // удалён в деструкторе std::string, который будет неявно вызван в деструкторе A. // (*) Если только строка не слишком короткая, тогда сработает Small String Optimization и динамический // буфер вообще не будет выделен. }; void foo() { std::vector v; // Автоматический объект, неявно удаляется при выходе из функции. v.push_back(10); // Содержимое вектора - динамический объект (массив), будет явно удалён в деструкторе // вектора, который будет неявно вызван при выходе из функции. A a; // Автоматический объект класса А, неявно удаляется при выходе из функции. A* pa = new A; // Указатель pa - автоматический объект, неявно удаляется при выходе из функции, // но он указывает на динамический объект класса А, который нужно удалить в явном виде. delete pa; // Явное удаление динамического объекта. auto upa = // Умный указатель upa - автоматический объект, неявно удаляется при выходе из функции, std::make_unique(); // но он указывает на динамический объект класса А, который будет явно удалён // в деструкторе умного указателя. }
Обычно динамические объекты находятся в куче, хотя в общем случае это не так. Автоматические объекты могут находиться как на стеке, так и в куче. В примере выше автоматический объект upa->str находится в куче, т.к. он - часть динамического объекта *upa . Т.е. свойства динамический/автоматический определяют время жизни, но не место жизни объекта.

Свойство динамический/автоматический принадлежит именно объекту, а не типу, т.к. объекты одного и того же типа могут быть как динамическими, так и автоматическими ). В примере выше объекты a и *pa оба имеют тип А, но первый является автоматическим, а второй - динамическим.

Динамические объекты в С++ создаются с помощью new , а удаляются с помощью delete . Вот отсюда и все проблемы: никто не говорил, что эти конструкции следует использовать напрямую! Это низкоуровневые вызовы, они как бы под капотом. И не нужно лезть под капот без необходимости.

О том, зачем вообще могут понадобиться динамические объекты, мы поговорим чуть позже.

* Существуют техники, чтобы ограничить свойство динамический/автоматический на уровне типа. Например, закрытые конструкторы.

В чём проблема с new и delete ?

С самого момента своего изобретения операторы new и delete используются неоправданно часто. Самые большие проблемы относятся к оператору delete:
  • Можно вообще забыть вызвать delete (утечка памяти, memory leak).
  • Можно забыть вызвать delete в случае исключения или досрочного возврата из функции (тоже утечка памяти).
  • Можно вызвать delete дважды (двойное удаление, double delete).
  • Можно вызвать не ту форму оператора: delete вместо delete или наоборот (неопределённое поведение, undefined behavior).
  • Можно использовать объект после вызова delete (dangling pointer).
Все эти ситуации приводят в лучшем случае к падениям программы, а в худшем к утечкам памяти и назальным демонам .

Поэтому люди давно сообразили прятать оператор delete в недрах контейнеров и умных указателей, убрав тем самым его из клиентского кода. Однако с оператором new тоже связаны проблемы, но для них решения появились не сразу, и, по факту, многие разработчики до сих пор стесняются этими решениями пользоваться. Об этом мы подробнее поговорим, когда дойдём до make -функций.

Теперь перейдём к сценариям использования new и delete . Напомню, что мы рассмотрим несколько сценариев и планомерно покажем, что в большинстве из них код станет лучше, если отказаться от использования new и delete .

Начнём с простого - с динамических массивов.

Динамические массивы

Динамический массив - это массив с элементами, выделенными в динамической памяти. Он необходим в случае, если размер неизвестен на этапе компиляции, или если размер достаточно большой, и мы не хотим выделять массив на стеке, размер которого обычно сильно ограничен.

Для выделения динамических массивов С++ на низком уровне предоставляет векторную форму операторов new и delete: new и delete . В качестве примера рассмотрим некоторую функцию, которая работает с внешним буфером:
void DoWork(int* buffer, size_t bufSize);
Подобные функции часто встречаются в библиотеках с API на чистом С . Ниже приведён пример, как может выглядеть использующий её код. Это плохой код, т.к. он в явном виде использует delete , а связанные с ним проблемы мы уже описали выше.
void Call(size_t n) { int* p = new int[n]; DoWork(p, n); delete p; // Плохо! }
Тут всё просто и большинству известно, что для подобных целей в С++ следует использовать стандартный контейнер std::vector . Он сам выделит память в конструкторе и освободит её в деструкторе. К тому же, он ещё может менять свой размер во время жизни, но для нас это сейчас значения не имеет. С использованием вектора код будет выглядеть так:
void Call(size_t n) { std::vector v(n); // Лучше. DoWork(v.data(), v.size()); }
Тем самым мы решаем все проблемы, связанные с вызовом delete , и к тому же вместо безликой пары указатель+число, имеем явный контейнер с удобным интерфейсом.

При этом никаких new и delete . Не буду более подробно останавливаться на этом сценарии. По моему опыту большинство разработчиков и так знает, что следует делать в данном случае и почему.

* На С++ подобный интерфейс следовало бы реализовать с использованием типа span . Он предоставляет унифицированный STL-совместимый интерфейс для доступа к непрерывным последовательностям элементов, при этом никак не влияя на их время жизни (невладеющая семантика).

** Поскольку эту статью читают программисты на С++, я почти уверен, что кто-то подумает: «Ха! std::vector хранит в себе целых три (!) указателя, когда старый добрый int* - это по определению всего один указатель. Налицо перерасход памяти и нескольких машинных инструкций на их инициализацию! Это неприемлемо!». Майерс отлично прокомментировал это свойство программистов на С++ в своём докладе Why C++ Sails When the Vasa Sank . Если для вас это действительно проблема, то могу порекомендовать std::unique_ptr , а в будущем стандарт может подарить нам dynarray .

Динамические объекты

Динамические объекты обычно используются, когда невозможно привязать время жизни объекта к какой-то конкретной области видимости. Если это можно сделать, наверняка следует использовать автоматическую память , (см. почему не стоит злоупотреблять динамическими объектами). Но это предмет отдельной статьи.

Когда динамический объект создан, кто-то должен его удалить, и условно типы объектов можно разделить на две группы: те, которые никак не осведомлены о процессе своего удаления, и те, которые что-то подозревают. Будем говорить, что первые имеют стандартную модель управления памятью, а вторые - нестандартную.

К типам со стандартной моделью управления памятью относятся все стандартные типы , включая контейнеры. В самом деле, контейнер управляет памятью, которую он выделил сам. Ему нет никакого дела до того, кто его создал и как он будет удалён.

К типам с нестандартной моделью управления памятью можно отнести, например, объекты Qt. Здесь у каждого объекта есть родитель, который ответственен за его удаление. И объект об этом знает, т.к. он наследуется от класса QObject . Сюда же относятся типы со счётчиком ссылок, например, рассчитанные на работу с boost::intrusive_ptr .

Иными словами, тип со стандартной моделью управления памятью не предоставляет никаких дополнительных механизмов для управления своим временем жизни. Этим целиком и полностью должна заниматься пользовательская сторона. А вот тип с нестандартной моделью такие механизмы предоставляет. Например, QObject имеет методы setParent() и children() и содержит в себе список детей, а тип boost::intrusive_ptr опирается на функции intrusive_ptr_add_ref и intrusive_ptr_release и содержит в себе счётчик ссылок.

Если тип объекта имеет стандартную модель управления памятью, то будем для краткости говорить, что это объект со стандартным управлением памятью. Аналогично, если тип объекта имеет нестандартную модель управления памятью, то будем говорить, что это объект с нестандартным управлением памятью.

Далее рассмотрим объекты обеих моделей. Забегая вперёд, стоит сказать, что для объектов со стандартным управлением памятью однозначно не стоит использовать new и delete в клиентском коде, а для объектов с нестандартным - зависит от конкретной модели.

* Некоторые исключения: идиома pimpl; очень большой объект (например, буфер памяти).

** Исключение составляет std::locale::facet (см. дальше).

Динамические объекты со стандартным управлением памятью

Таковые чаще всего встречаются на практике. И именно их следует стараться использовать в современном С++, потому как с ними работают стандартные подходы, используемые в частности в умных указателях.

Собственно, умные указатели, да, это ответ. Именно им следует отдать управление временем жизни динамических объектов. Их в С++ целых два: std::shared_ptr и std::unique_ptr . Не будем здесь выделять std::weak_ptr , т.к. это просто помощник для std::shared_ptr в определённых сценариях использования.

Что касается std::auto_ptr , он был официально исключён из С++ начиная с С++17. Покойся с миром!

Не буду здесь останавливаться на устройстве и использовании умных указателей, т.к. это выходит за рамки статьи. Сразу напомню, что они идут в комплекте с замечательными функциями std::make_shared и std::make_unique , и именно их следует использовать для создания умных указателей.

Т.е. вместо вот такого:
std::unique_ptr cookie(new Cookie(dough, sugar, cinnamon));
следует писать вот так:
auto cookie = std::make_unique(dough, sugar, cinnamon);
Преимущества make -функций над явным созданием умных указателей прекрасно описаны Гербом Саттером в его GotW #89 и Скоттом Майерсом в его Effective Modern C++ , Item 21. Не буду повторяться, лишь приведу здесь краткий список тезисов:

  • Для обеих make -функций:
    • Безопасность с точки зрения исключений.
    • Нет дублирования имени типа.
  • Для std::make_shared:
    • Выигрыш в производительности, т.к. контрольный блок выделяется рядом с самим объектом, что уменьшает количество обращений к менеджеру памяти и увеличивает локальность данных. Оптимизация .
У make-функций имеется и ряд ограничений, подробно описанных в тех же источниках:
  • Для обеих make -функций:
    • Нельзя передать свой deleter . Это вполне логично, т.к. внутри себя make -функции по определению используют стандартный new .
    • Нельзя использовать braced initializer , а также все прочие тонкости, связанные с perfect forwarding (см. Effective Modern C++, Item 30).
  • Для std::make_shared:
    • Потенциальный перерасход памяти для больших объектов при долгоживущих слабых ссылках (std::weak_pointer).
    • Проблемы с операторами new и delete переопределёнными на уровне класса.
    • Потенциальное ложное разделение (false sharing) между объектом и контрольным блоком (см. вопрос на StackOverflow).
На практике указанные ограничения встречаются редко и не умаляют преимуществ. Получается, что умные указатели скрыли от нас вызов delete , а make -функции скрыли от нас вызов new . В итоге мы получили более надёжный код, в котором нет ни new , ни delete .

Кстати, устройство make -функций серьёзно раскрывает в своих докладах Стефан Лававей (a.k.a. STL). Приведу здесь красноречивый слайд из его доклада Don’t Help the Compiler:

Динамические объекты с нестандартным управлением памятью

Помимо стандартного подхода управления памятью через умные указатели встречаются и другие модели. Например, подсчёт количества ссылок (reference counting) и отношения родитель-ребёнок (parent to child relationship).

Динамические объекты с подсчётом ссылок


Очень часто встречающийся приём, используемый во многих библиотеках. Рассмотрим в качестве примера библиотеку OpenSceneGraph. Это открытый кроссплатформенный 3D-движок, написанный на С++ и OpenGL.

Большая часть классов в нём наследуется от класса osg::Referenced , который осуществляет внутри себя подсчёт ссылок. Метод ref() увеличивает счётчик, метод unref() уменьшает счётчик и удаляет объект, когда счётчик опускается до нуля.

В комплекте также идёт умный указатель osg::ref_ptr , который вызывает метод T::ref() для хранимого объекта в своём конструкторе и метод T::unref() в деструкторе. Такой же подход используется в boost::intrusive_ptr , только там вместо методов ref() и unref() выступают внешние функции.

Рассмотрим фрагмент кода, который приведён в официальном руководстве OpenSceneGraph 3.0: Beginner"s guide :
osg::ref_ptr vertices = new osg::Vec3Array; // ... osg::ref_ptr normals = new osg::Vec3Array; // ... osg::ref_ptr geom = new osg::Geometry; geom->setVertexArray(vertices.get()); geom->
Очень знакомые конструкции вида osg::ref_ptr p = new T . Абсолютно аналогично тому, как функции std::make_unique и std::make_shared служат для создания классов std::unique_ptr и std::shared_ptr , мы можем написать функцию osg::make_ref для создания класса osg::ref_ptr . Делается это очень просто, по аналогии с функцией std::make_unique:
namespace osg { template osg::ref_ptr make_ref(Args&&... args) { return new T(std::forward(args)...); } }
Перепишем этот фрагмент кода вооружившись нашей новой функцией:
auto vertices = osg::make_ref(); // ... auto normals = osg::make_ref(); // ... auto geom = osg::make_ref(); geom->setVertexArray(vertices.get()); geom->setNormalArray(normals.get()); // ...
Изменения тривиальны и легко могут быть выполнены автоматически. Таким нехитрым способом мы получаем безопасность с точки зрения исключений , отсутствие дублирования имени типа и прекрасное соответствие стандартному стилю.

Вызов delete уже был спрятан в методе osg::Referenced::unref() , а теперь мы спрятали и вызов new в функции osg::make_ref . Так что никаких new и delete .

* Технически, в данном фрагменте нет ситуаций небезопасных с точки зрения исключений, но в более сложных конфигурациях они могли бы быть.

Динамические объекты для немодальных диалогов в MFC


Рассмотрим пример, специфичный для библиотеки MFC. Это обёртка из классов С++ над Windows API. Она используется для упрощения разработки GUI под Windows.

Интересен приём, которым Microsoft официально рекомендует пользоваться для создания немодальных диалогов. Т.к. диалог немодальный, не совсем ясно, кто ответственен за его удаление. Предлагается ему удалять себя самому в переопределённом методе CDialog::PostNcDestroy() . Этот метод вызывается после обработки сообщения WM_NCDESTROY - последнего сообщения, получаемого окном в его жизненном цикле.

В примере ниже диалог создаётся по нажатию на кнопку в методе CMainFrame::OnBnClickedCreate() и удаляется в переопределённом методе CMyDialog::PostNcDestroy() .
void CMainFrame::OnBnClickedCreate() { auto* pDialog = new CMyDialog(this); pDialog->ShowWindow(SW_SHOW); } class CMyDialog: public CDialog { public: CMyDialog(CWnd* pParent) { Create(IDD_MY_DIALOG, pParent); } protected: void PostNcDestroy() override { CDialog::PostNcDestroy(); delete this; } };
Здесь у нас не спрятан ни вызов new , ни вызов delete . Способов выстрелить себе в ногу - масса. Помимо обычных проблем с указателями, можно забыть переопределить в своём диалоге метод PostNcDestroy() , получим утечку памяти. При виде вызова new , может возникнуть желание самостоятельно вызвать в определённый момент delete , получим двойное удаление. Можно случайно создать объект диалога в автоматической памяти, снова получим двойное удаление.

Попробуем спрятать вызовы к new и delete внутри промежуточного класса CModelessDialog и фабрики CreateModelessDialog , которые будут отвечать в нашем приложении за немодальные диалоги:
class CModelessDialog: public CDialog { public: CModelessDialog(UINT nIDTemplate, CWnd* pParent) { Create(nIDTemplate, pParent); } protected: void PostNcDestroy() override { CDialog::PostNcDestroy(); delete this; } }; // Фабрика для создания модальных диалогов template Derived* CreateModelessDialog(Args&&... args) { // Вместо static_assert в теле функции, можно использовать std::enable_if в её заголовке, что позволит нам использовать SFINAE. // Но т.к. вряд ли ожидаются другие перегрузки этой функции, разумным выглядит использовать более простое и наглядное решение. static_assert(std::is_base_of::value, "CreateModelessDialog should be called for descendants of CModelessDialog"); auto* pDialog = new Derived(std::forward(args)...); pDialog->ShowWindow(SW_SHOW); return pDialog; }
Класс сам переопределяет метод PostNcDestroy() , в котором мы спрятали delete , а для создания классов наследников используется фабрика, в которой мы спрятали new . Создание и определение класса наследника теперь выглядит так:
void CMainFrame::OnBnClickedCreate() { CreateModelessDialog(this); } class CMyDialog: public CModelessDialog { public: CMyDialog(CWnd* pParent) : CModelessDialog(IDD_MY_DIALOG, pParent) {} };
Конечно, подобным образом мы не решили всех проблем. Например, объект всё равно можно выделить на стеке и получить двойное удаление. Запретить выделение объекта на стеке можно только путём модификации самого класса объекта, например добавлением закрытого конструктора. Но мы никак не можем этого сделать из базового класса CModelessDialog . Можно, конечно, вообще сокрыть класс CMyDialog и сделать фабрику не шаблонной, а более классической, принимающей некоторый идентификатор класса. Но это всё уже выходит за рамки статьи.

Так или иначе, мы упростили создание диалога из клиентского кода и написание нового класса диалога. И при этом мы убрали из клиентского кода вызовы new и delete .

Динамические объекты с отношением родитель-ребёнок



Встречаются достаточно часто, особенно в библиотеках для разработки GUI. В качестве примера рассмотрим Qt - хорошо известную библиотеку для разработки приложений и UI.

Большая часть классов наследуется от QObject . Он хранит в себе список детей и удаляет их, когда удаляется сам. Хранит указатель на родителя (может быть нулевой) и может менять родителя в процессе жизни.

Отличный пример ситуации, когда избавиться от new и delete так просто не получится. Библиотека проектировалась таким образом, что эти операторы можно и нужно применять во многих случаях. Я предлагал обёртку для создания объектов с ненулевым родителем, но идея не пошла (см. обсуждение в Qt mailing list).

Таким образом, мне неизвестен хороший способ избавиться от new и delete в Qt.

Динамические объекты std::locale::facet


Для управления выводом данных в потоки в С++ используются объекты std::locale . Локаль является набором фасетов (facet), которые определяют способ вывода тех или иных данных. Фасеты имеют свой счётчик ссылок и при копировании локалей не происходит копирования фасетов, копируется лишь указатель и увеличивается счётчик ссылок.

Локаль сама ответственна за удаление фасетов, когда счётчик ссылок падает до нуля, но вот создавать фасеты должен пользователь, используя оператор new (см. секцию Notes в описании конструктора std::locale) :
std::locale default; std::locale myLocale(default, new std::codecvt_utf8);
Этот механизм был реализован ещё до внедрения стандартных умных указателей и выбивается из общих правил применения классов стандартной библиотеки.

Можно сделать простую обёртку, создающую локаль, чтобы убрать new из клиентского кода. Однако это достаточно известное исключение из общих правил, и может быть, нет смысла городить ради него огород.

Заключение

Итак, сначала мы рассмотрели такие сценарии, как создание динамических массивов и динамических объектов со стандартным управлением памятью. Вместо new и delete мы использовали стандартные контейнеры и make -функции и получили более простой и надёжный код.

Затем мы рассмотрели ряд примеров нестандартного управления памятью и увидели, как можно сделать код лучше, убрав new и delete в подходящие обёртки. Мы также обнаружили пример, когда подобный подход не работает.

Тем не менее, в большинстве случаев эта рекомендация даёт отличные результаты, и можно использовать её в качестве принципа по умолчанию. Теперь мы можем считать, что, если код использует new или delete , это особый случай, который требует особого внимания. Если вы видите эти вызовы в клиентском коде, задумайтесь, действительно ли они оправданы.

  • Избегайте использования new и delete в коде. Воспринимайте их как низкоуровневые операции ручного управления динамической памятью.
  • Используйте стандартные контейнеры для динамических структур данных.
  • Используйте make -функции для создания динамических объектов, когда это возможно.
  • Создавайте обёртки для объектов с нестандартной моделью памяти.

От автора

Лично мне приходилось сталкиваться с множеством случаев утечек памяти и падений из-за чрезмерного использования new и delete . Да, большая часть такого кода была написана много лет назад, но потом с ним начинают работать молодые программисты и думают, что вот так и надо писать.

Я надеюсь, данная статья подойдёт в качестве практического руководства, к которому можно отправить молодого разработчика, дабы он не сбился с пути истинного.

Чуть больше года назад я выступал с докладом на эту тему на конференции C++ Russia. После моего выступления аудитория разделилась на две группы: те, для кого всё было очевидным, и те, кто сделал для себя замечательное открытие. Полагаю, что на конференции чаще ходят уже достаточно опытные разработчики, так что, если даже среди них было множество людей, для кого эта информация была в новинку, я надеюсь, что эта статья будет полезна для сообщества.

PS В процессе обсуждения статьи, у нас с коллегами разгорелся целый спор, как правильно: «Майерс» или «Мейерс». С одной стороны, для русского слуха более привычно звучит «Мейерс», и мы сами вроде бы всегда говорили именно так. С другой стороны, на вики используется именно «Майерс». Если посмотреть локализованные книги , то там вообще кто во что горазд: к этим двум вариантам прибавляется ещё и «Мэйерс». На конференциях разные люди представляют его по-разному. В конечном итоге нам удалось выяснить , что сам себя он называет именно «Майерс», на чём и порешили.

Ссылки

  1. Herb Sutter, GotW #89 Solution: Smart Pointers .
  2. Scott Meyers, Effective Modern C++ , Item 21, p. 139.
  3. Stephan T. Lavavej, Don’t Help the Compiler .
  4. Bjarne Stroustrup, The C++ Programming Language , 11.2.1, p. 281.
  5. Five Popular Myths about C++ . , Part 2
  6. Mikhail Matrosov, C++ without new and delete .

Теги:

Добавить метки

Комментарии 134

С++ поддерживает три основных типа выделения (распределения ) памяти , с двумя из которых мы уже знакомы:

Статическое выделение памяти выполняется для и переменных. Память выделяется один раз, при запуске программы, и сохраняется на протяжении работы всей программы.

Автоматическое выделение памяти выполняется для и . Память выделяется при входе в блок, в котором находятся эти переменные, и освобождается при выходе из него.

является темой этой статьи.

Как статическое, так и автоматическое распределение памяти имеют две общие черты:

Размер переменной/массива должен быть известен во время компиляции.

Выделение и освобождение памяти происходит автоматически (когда переменная создается или уничтожается).

В большинстве случаев с этим всё ОК. Однако когда дело доходит до работы с внешним вводом, то эти ограничения могут привести к проблемам.

Например, при использовании для хранения имени мы не знаем наперед насколько длинным оно будет, пока пользователь его не введет. Или когда нам нужно записать количество записей с диска в переменную, но мы не знаем заранее, сколько этих записей есть. Или мы можем создать игру с непостоянным количеством монстров (во время игры одни монстры умирают, другие рождаются), пытаясь, таким образом, убить игрока.

Если нам нужно объявить размер всех переменных во время компиляции, то самое лучшее, что мы можем сделать – это попытаться угадать их максимальный размер, надеясь, что этого будет достаточно:

char name; // будем надеяться, что пользователь введет имя менее 30 символов! Record record; // будем надеяться, что количество записей будет не больше 400! Monster monster; // 30 монстров максимум Polygon rendering; // этому 3d rendering лучше состоять из менее чем 40,000 полигонов!

Это плохое решение, по крайней мере, по трем причинам:

Во-первых, теряется память, если переменные фактически не используются или используются, но не на полную. Например, если мы выделим 30 символов для каждого имени, но имена в среднем будут занимать по 15 символов, то потребление памяти получится в два раза больше, чем нужно на самом деле. Или рассмотрим массив rendering: если он использует только 20 000 полигонов, то память с 20 000 полигонами фактически тратится впустую (т.е. не используется)!

Во-вторых, память для большинства обычных переменных (включая фиксированные массивы) выделяется из специального резервуара памяти — стека . Объем памяти стека в программе, как правило, невелик – в Visual Studio он по умолчанию равен 1МБ. Если вы превысите это число, то произойдет переполнение стека , и операционная система автоматически завершит выполнение вашей программы.

В Visual Studio это можно проверить, запустив следующую программу:

int main() { int array; // выделяем 1 миллион целочисленных значений }

Лимит в 1МБ памяти может быть проблематичным для многих программ, особенно где используется графика.

В-третьих, и самое главное, это может привести к искусственным ограничениям и/или переполнению массива. Что произойдет, если пользователь попытается прочесть 500 записей с диска, но мы выделили память максимум для 400? Либо мы выведем пользователю ошибку, что максимальное количество записей — 400, либо (в худшем случае) выполнится переполнение массива и затем что-то очень нехорошее.

К счастью, эти проблемы легко устраняются с помощью динамического выделения памяти. Динамическое выделение памяти — это способ запроса памяти из операционной системы запущенными программами при необходимости. Эта память не выделяется из ограниченной памяти стека программы, а из гораздо большего хранилища, управляемого операционной системой — heap (кучи ) . На современных компьютерах размер кучи может составлять гигабайты памяти.

Динамическое выделение переменных

Для динамического выделения памяти для одной переменной используется оператор new :

new int; // динамически выделяем целочисленную переменную и сразу же отбрасываем результат (так как нигде его не сохраняем)

В примере выше мы запрашиваем выделение памяти для целочисленной переменной из операционной системы. Оператор new возвращает , содержащий адрес выделенной памяти.

Для доступа к выделенной памяти создается указатель:

int *ptr = new int; // динамически выделяем целочисленную переменную и присваиваем её адрес ptr, чтобы потом иметь возможность доступа к ней

Затем мы можем разыменовать указатель для получения значения:

*ptr = 8; // присваиваем значение 8 только что выделенной памяти

Вот один из случаев, когда указатели полезны. Без указателя с адресом на только что выделенную память, у нас бы не было способа получить доступ к ней.

Как работает динамическое выделение памяти?

На вашем компьютере имеется память (возможно, большая ее часть), которая доступна для использования приложениями. При запуске приложения ваша операционная система загружает это приложение в некоторую часть этой памяти. И эта память, используемая вашим приложением, разделена на несколько частей, каждая из которых выполняет определенную задачу. Одна часть содержит ваш код, другая используется для выполнения обычных операций (отслеживание вызываемых функций, создание и уничтожение глобальных и локальных переменных и т. д.). Мы поговорим об этом позже. Тем не менее, большая часть доступной памяти просто находится там, ожидая запросов на выделение от программ.

Когда вы динамически выделяете память, вы просите операционную систему зарезервировать часть этой памяти для использования вашей программой. Если ОС может выполнить этот запрос, то возвращается адрес этой памяти обратно, в ваше приложение. С этого момента и в дальнейшем ваше приложение может использовать эту память, как только пожелает. Когда вы уже выполнили всё, что было необходимо, с этой памятью, то её нужно вернуть обратно в операционную систему, для распределения между другими запросами.

В отличие от статического или автоматического выделения памяти, сама программа отвечает за запрос и обратный возврат динамически выделенной памяти.

Инициализация динамически выделенных переменных

Когда вы динамически выделяете переменную, то вы также можете её инициализировать посредством или uniform инициализации (в С++11):

int *ptr1 = new int (7); // используем прямую инициализацию int *ptr2 = new int { 8 }; // используем uniform инициализацию

Удаление переменных

Когда уже всё, что нужно было, выполнено с динамически выделенной переменной – нужно явно указать С++ освободить эту память. Для отдельных переменных это выполняется с помощью оператора delete :

// предположим, что ptr ранее уже был выделен с помощью оператора new delete ptr; // возвращаем память, на которую указывал ptr, обратно в операционную систему ptr = 0; // делаем ptr нулевым указателем (используйте nullptr вместо 0 в C++11)

Что означает «удаление памяти»?

Оператор delete на самом деле ничего не удаляет. Он просто возвращает память, которая была выделена ранее, обратно в операционную систему. Затем операционная система может переназначить эту память другому приложению (или этому же снова).

Хотя может показаться, что мы удаляем переменную , но это не так! Переменная-указатель по-прежнему имеет ту же область видимости, что и раньше, и ей можно присвоить новое значение, как и любой другой переменной.

Обратите внимание, удаление указателя, не указывающего на динамически выделенную память, может привести к проблемам.

Висячие указатели

C++ не дает никаких гарантий относительно того, что произойдет с содержимым освобожденной памяти, или со значением удаляемого указателя. В большинстве случаев память, возвращаемая операционной системе, будет содержать те же значения, которые были у нее до освобождения , а указатель так и останется указывать на память, только уже освобожденную (удаленную).

Указатель, указывающий на освобожденную память, называется висячим указателем . Разыменование или удаление висячего указателя приведет к неожиданным результатам. Рассмотрим следующую программу:

#include int main() { int *ptr = new int; *ptr = 8; // помещаем значение в выделенную ячейку памяти delete ptr; // возвращаем память обратно в операционную систему. ptr теперь уже висячий указатель std::cout << *ptr; // разыменование висячого указателя приведет к неожиданным результатам delete ptr; // попытка освободить память снова приведет к неожиданным результатам также return 0; }

#include

int main ()

int * ptr = new int ; // динамически выделяем целочисленную переменную

* ptr = 8 ; // помещаем значение в выделенную ячейку памяти

delete ptr ; // возвращаем память обратно в операционную систему. ptr теперь уже висячий указатель

std :: cout << * ptr ; // разыменование висячого указателя приведет к неожиданным результатам

delete ptr ; // попытка освободить память снова приведет к неожиданным результатам также

return 0 ;

В программе выше значение 8, которое ранее было присвоено выделенной памяти, после освобождения может и далее находиться там, а может и нет. Также возможно, что освобожденная память уже могла быть выделена другому приложению (или для собственного использования операционной системы), и попытка доступа к ней приведет к тому, что операционная система автоматически прекратит выполнение вашей программы.

Процесс освобождения памяти может также привести к созданию нескольких висячих указателей. Рассмотрим следующий пример:

#include int main() { int *ptr = new int; // динамически выделяем целочисленную переменную int *otherPtr = ptr; // otherPtr теперь указывает на ту же самую выделенную память, что и ptr delete ptr; // возвращаем память обратно в операционную систему. ptr и otherPtr теперь висячие указатели ptr = 0; // ptr теперь уже nullptr // однако otherPtr по-прежнему является висячим указателем! return 0; }

#include

int main ()

int * ptr = new int ; // динамически выделяем целочисленную переменную

int * otherPtr = ptr ; // otherPtr теперь указывает на ту же самую выделенную память, что и ptr

delete ptr ; // возвращаем память обратно в операционную систему. ptr и otherPtr теперь висячие указатели

ptr = 0 ; // ptr теперь уже nullptr

// однако otherPtr по-прежнему является висячим указателем!

return 0 ;

Во-первых, старайтесь избегать ситуаций, когда несколько указателей указывают на одну и ту же часть выделенной памяти. Если это невозможно, то проясните, какой указатель из всех «владеет» памятью (и отвечает за ее удаление), а какие указатели просто получают доступ к ней.

Во-вторых, когда вы удаляете указатель, и если он не выходит из сразу же после удаления, то его нужно сделать нулевым, т.е. задать значение 0 (или в С++11). Под «выходом из области видимости сразу же после удаления» имеется в виду, что вы удаляете указатель в самом конце блока, в котором он объявлен.

Правило: Присваивайте удаленным указателям значение 0 (или nullptr в C++11), если они не выходят из области видимости сразу же после удаления.

Работа оператора new

При запросе памяти из операционной системы в редких случаях она может быть не доступной (т.е. её может и не быть в наличии).

По умолчанию, если new не сработал, память не выделилась, то генерируется исключение bad_alloc . Если это исключение будет неправильно обрабатываться (а именно так и будет, поскольку мы еще не рассмотрели исключения и их обработку), то программа просто прекратит своё выполнение (произойдет сбой) с необработанной ошибкой исключения.

Во многих случаях процесс генерации исключения оператором new (как и сбой программы) нежелателен, поэтому есть альтернативная форма new, которая возвращает нулевой указатель, если память не может быть выделена. Нужно просто добавить константу std::nothrow между ключевым словом new и типом выделения данных:

int *value = new (std::nothrow) int; // указатель value станет нулевым, если динамическое выделение целочисленной переменной не выполнится

В примере выше, если new не возвратит указатель с динамически выделенной памятью, то возвратится нулевой указатель.

Разыменовывать его также не рекомендуется, так как это приведет к неожиданным результатам (скорее всего, к сбою в программе). Поэтому, наилучшей практикой является проверка всех запросов на выделение памяти, для обеспечения того, что эти запросы выполняться успешно и память будет выделена.

int *value = new (std::nothrow) int; // запрос на выделение динамической памяти для целочисленного значения if (!value) // обрабатываем случай, когда new возвращает null (т.е. память не выделяется) { // обработка этого случая std::cout << "Could not allocate memory"; }

Поскольку не выделение памяти оператором new происходит крайне редко, то обычно программисты забывают выполнять эту проверку!

Нулевые указатели и динамическое выделение памяти

Нулевые указатели (указатели со значением 0 или nullptr) особенно полезны в процессе выделения динамической памяти. Их наличие как бы говорит: «этому указателю не выделено никакой памяти». А это в свою очередь можно использовать для выполнения условного выделения памяти:

// если ptr-у до сих пор не выделено памяти, выделяем её if (!ptr) ptr = new int;

Удаление нулевого указателя ни на что не влияет. Таким образом, в следующем нет необходимости:

if (ptr) delete ptr;

if (ptr )

delete ptr ;

Вместо этого вы можете просто написать:

delete ptr ;

Если ptr не является нулевым, то динамически выделенная переменная будет удалена. Если значением указателя является нуль, то ничего не произойдет.

Утечка памяти

Динамически выделенная память не имеет области видимости. То есть она остается выделенной до тех пор, пока не будет явно освобождена или пока ваша программа не завершится (и операционная система очистит все буфера памяти самостоятельно). Однако указатели, используемые для хранения динамически выделенных адресов памяти, следуют правилам области видимости нормальных переменных. Это несоответствие может вызвать интересное поведение.

Рассмотрим следующую функцию:

void doSomething() { int *ptr = new int; }

Оператор new позволяет выделять память под массивы. Он возвращает

указатель на первый элемент массива в квадратных скобках. При выделении памяти под многомерные массивы все размерности кроме крайней левой должны быть константами. Первая размерность может быть задана переменной, значение которой к моменту использования new известно пользователю, например:

int *p=new int[k]; // ошибка cannot convert from "int (*)" to "int *"

int (*p)=new int[k]; // верно

При выделении памяти под объект его значение будет неопределенным. Однако объекту можно присвоить начальное значение.

int *a = new int (10234);

Этот параметр нельзя использовать для инициализации массивов. Однако

на место инициализирующего значения можно поместить через запятую список

значений, передаваемых конструктору при выделении памяти под массив (мас-

сив новых объектов, заданных пользователем). Память под массив объектов

может быть выделена только в том случае, если у соответствующего класса

имеется конструктор, заданный по умолчанию.

matr(){}; // конструктор по умолчанию

matr(int i,float j): a(i),b(j) {}

{ matr mt(3,.5);

matr *p1=new matr; // верно р1 − указатель на 2 объекта

matr *p2=new matr (2,3.4); // неверно, невозможна инициализация

matr *p3=new matr (2,3.4); // верно р3 – инициализированный объект

{ int i; // компонента-данное класса А

A(){} // конструктор класса А

~A(){} // деструктор класса А

{ A *a,*b; // описание указателей на объект класса А

float *c,*d; // описание указателей на элементы типа float

a=new A; // выделение памяти для одного объекта класса А

b=new A; // выделение памяти для массива объектов класса А

c=new float; // выделение памяти для одного элемента типа float

d=new float; // выделение памяти для массива элементов типа float

delete a; // освобождение памяти, занимаемой одним объектом

delete b; // освобождение памяти, занимаемой массивом объектов

delete c; // освобождение памяти одного элемента типа float

delete d; } // освобождение памяти массива элементов типа float

Организация внешнего доступа к локальным компонентам класса(friend)

Мы уже познакомились с основным правилом ООП – данные (внутренние

переменные) объекта защищены от воздействий извне и доступ к ним можно

получить только с помощью функций (методов) объекта. Но бывают такие слу-

чаи, когда нам необходимо организовать доступ к данным объекта, не исполь-

зуя его интерфейс (функции). Конечно, можно добавить новую public-функцию

к классу для получения прямого доступа к внутренним переменным. Однако в

большинстве случаев интерфейс объекта реализует определенные операции, и

новая функция может оказаться излишней. В то же время иногда возникает не-

обходимость организации прямого доступа к внутренним (локальным) данным

двух разных объектов из одной функции. При этом в С++ одна функция не мо-

жет быть компонентой двух различных классов.

Для реализации этого в С++ введен спецификатор friend. Если некоторая

функция определена как friend-функция для некоторого класса, то она:

Не является компонентой-функцией этого класса;

Имеет доступ ко всем компонентам этого класса (private, public и protected).

Ниже рассматривается пример, когда внешняя функция получает доступ к

внутренним данным класса.

#include

using namespace std;

kls(int i,int J) : i(I),j(J) {} // конструктор

int max() {return i>j? i: j;} // функция-компонента класса kls

friend double fun(int, kls&); // friend-объявление внешней функции fun

double fun(int i, kls &x) // внешняя функция

{ return (double)i/x.i;

cout << obj.max() << endl;

В С(С++) известны три способа передачи данных в функцию: по значе-

можно на некоторый существующий объект. Можно выделить следующие раз-

личия ссылок и указателей. Во-первых, невозможность существования нулевых

ссылок подразумевает, что корректность их не требуется проверять. А при использовании указателя требуется проверять его на ненулевое значение. Во-вторых, указатели могут указывать на различные объекты, а ссылка всегда на один объект, заданный при ее инициализации. Если требуется предоставить возможность функции изменять значения

передаваемых в нее параметров, то в языке С они должны быть объявлены либо

глобально, либо работа с ними в функции осуществляется через передаваемые в

нее указатели на эти переменные. В С++ аргументы в функцию можно переда-

ром ставится знак &.

void fun1(int,int);

void fun2(int &,int &);

{ int i=1,j=2; // i и j – локальные параметры

cout << "\n адрес переменных в main() i = "<<&i<<" j = "<<&j;

cout << "\n i = "<for" ами и т.п. А operator new() в свою очередь - это просто одноименная функция языка С++, поведение которой можно переопределить. ВАЖНО - operator new() НЕ вызывает конструктор(ы) для объекта(ов), под который(ые) выделяется память. Он просто выделяет память нужного размера и все. Его отличие от сишных функций в том, что он может бросить исключение и его можно переопределить, а так же сделать оператором для отдельно взятого класса, тем самым переопределить его только для этого класса (остальное вспомните сами:)).
А вот new-expression как раз и вызывает конструктор(ы) объекта(ов). Хотя правильней сказать, что он тоже ничего не вызывает, просто, встречая его, компилятор генерирует код вызова конструктора(ов).

Для полноты картины рассмотрим следующий пример:

#include class Foo { public: Foo() { std::cout << "Foo()" << std::endl; } }; int main () { Foo *bar = new Foo; }

После исполнения данного кода, как и ожидалось, будет напечатано «Foo()». Разберемся почему, для этого понадобится заглянуть в ассемблер, который я немного прокомментировал для удобства.
(код получен компилятором cl, используемым в MSVS 2012, хотя в основном я использую gcc, но это к делу не относится)
/Foo *bar = new Foo; push 1 ; размер в байтах для объекта Foo call operator new (02013D4h) ; вызываем operator new pop ecx mov dword ptr ,eax ; записываем указатель, вернувшийся из new, в bar and dword ptr ,0 cmp dword ptr ,0 ; проверяем не 0 ли записался в bar je main+69h (0204990h) ; если 0, то уходим отсюда (возможно вообще из main или в какой-то обработчик, в данном случае неважно) mov ecx,dword ptr ; кладем указатель на выделенную память в ecx (MSVS всегда передает this в ecx(rcx)) call Foo::Foo (02011DBh) ; и вызываем конструктор; дальше не интересно
Для тех, кто ничего не понял, вот (почти) аналог того, что получилось на сиподобном псевдокоде (т.е. не надо пробовать это компилировать:))
Foo *bar = operator new (1); // где 1 - требуемый размер bar->Foo(); // вызываем конструктор

Приведенный код подтверждает все, написанное выше, а именно:
1. оператор (языка) new и operator new() - это НЕ одно и тоже.
2. operator new() НЕ вызывает конструктор(ы)
3. вызов конструктора(ов) генерирует компилятор, встречая в коде key-word «new»

Итог: надеюсь, эта статья помогла вам понять разницу между new-expression и operator new() или даже узнать, что она (эта разница) вообще существует, если кто-то не знал.

P.S. оператор delete и operator delete() имеют аналогичное различие, поэтому в начале статьи я сказал, что не буду его описывать. Думаю, теперь вы поняли, почему его описание не имеет смысла и сможете самостоятельно проверить справедливость написанного выше для delete .

Update:
Хабражитель с ником khim в личной переписке предложил следующий код, который хорошо демонстрирует суть написанного выше.
#include class Test { public: Test() { std::cout << "Test::Test()" << std::endl; } void* operator new (std::size_t size) throw (std::bad_alloc) { std::cout << "Test::operator new(" << size << ")" << std::endl; return::operator new(size); } }; int main() { Test *t = new Test(); void *p = Test::operator new(100); // 100 для различия в выводе }
Этот код выведет следующее
Test::operator new(1) Test::Test() Test::operator new(100)
что и следовало ожидать.



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: