Общие принципы построения сетей кратко. Общие принципы построения компьютерных сетей

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Министерство образования и науки Российской Федерации

Федеральное государственное автономное образовательное учреждение высшего профессионального образования «Российский государственный профессионально-педагогический университет»

Институт информатики

Кафедра информационных технологий

КОНТРОЛЬНАЯ РАБОТА

по дисциплине

«МИРОВЫЕ ИНФОРМАЦИОННЫЕ РЕСУРСЫ»

Реферат на тему: “Общие принципы построения сетей. Локальные, корпоративные”

Выполнил Студент гр. Кп-514 ИЭ

Карпов Г.Р.

Екатеринбург 2012

1. Общие принципы построения сетей

1.1 Функциональные возможности сетей

1.2 Среды передачи данных

1.3 Режимы передачи данных

1.4 Способы коммутации

1.5 Организация виртуальных каналов

2. Локальные сети

2.1 Локальные сети на предприятии

3. Корпоративные сети

3.1 Принципы построения корпоративных сетей передачи данных Использование Internet

3.2 Виртуальные сети

3.3 Сети X.25

3.4 Сети Frame Relay

3.5 Структура корпоративной сети

Термины и основные понятия телекоммуникаций

Список источников

1. Общие принципы построения сетей

1.1 Функциональные возможности сетей

Польза от использования сетей может относиться к разным категориям.

Во-первых, прямое общение людей (коммуникация). При этом сеть используется как среда, передающая от одного человека другому набранный на клавиатуре текст, введенный с микрофона голос, полученное с видеокамеры изображение или и то, и другое, и третье. Сюда относятся электронная почта, различные системы для разговоров (чат-системы), системы типа ICQ, Internet Phone, видеоконференции, и многое другое. Естественно, для этого используется программное обеспечение, но оно играет чисто техническую роль приемопередатчика, подобно телефонному аппарату при разговоре по телефону.

Во-вторых, передача данных между программами и людьми. При этом на одной стороне информационного потока находится программный процесс, например, Система Управления Базами Данных (СУБД), а на другой - человек- пользователь. Человек, конечно, использует программы для доступа к СУБД, но эти программы так же, как в первом случае, играют чисто техническую роль. Однако СУБД уже выступает как полноправный участник передачи данных. Другим примером может служить сетевая файловая система, обеспечивающая доступ к файлам на другом компьютере. Такие программы, которые выполняют некоторые действия по собственной инициативе, а не по прямой команде от пользователя, будем называть активными программами или программными агентами.

В-третьих, передача данных между активными программами. В этом случае человек явно не участвует в процессе передачи данных. Например, система зеркалирования содержимого узлов Интернета, может выполняться автоматически через заданные промежутки времени или в соответствии с другими критериями. Надо понимать, что, в конце концов, результатами функционирования таких программ все равно будет пользоваться человек, и только ради этого они и созданы и запущены.

Отношения "человек-программа" функционально асимметричны: человек является либо поставщиком данных, либо их пользователем. Программы же либо просто хранят, либо преобразуют хранимую информацию.

Отношения сети и компьютера тоже асимметричны. Если компьютер может работать без сети, автономно, то сеть без компьютеров немыслима.

Определимся, что же такое компьютерная сеть. Под компьютерной сетью принято понимать совокупность компьютеров, соединяющих их каналов связи и дополнительного оборудования, предназначенная для обмена данными.

Тогда схема рис.1.1. немного преобразуется:

Рассмотрим по порядку, какими свойствами должна обладать компьютерная система, чтобы называться сетью.

Во-первых, для сети нужны компьютеры - как минимум, два. Будем называть эти компьютеры - узлами сети, или просто узлами . Можно также встретить термины "станция данных ", "оконечная система ". Принципиальных ограничений сверху на количество компьютеров в сети нет (однако для любой конкретной сетевой технологии такие ограничения всегда есть - либо ограничивается общее количество компьютеров, либо количество сегментов сети и компьютеров в них). Сети принято классифицировать не столько по размеру (количеству узлов), сколько по масштабу (охватываемой территории) - локальные, региональные и т.д.

Во-вторых, компьютеры должны быть соединены каналами передачи данных (КПД). Канал передачи данных состоит из линии передачи данных (ЛПД) и аппаратуры окончания канала данных (АОКД). За последним термином скрываются такие устройства, как, например, модем или сетевая карта. Для обозначения АОКД будем пользоваться современным термином "сетевой интерфейс ". Часто для обеспечения функционирования сети оказывается необходимым использовать дополнительное оборудование - повторители, мосты, коммутаторы, маршрутизаторы и пр. Совокупность каналов передачи данных и дополнительного сетевого оборудования называется сетью передачи данных (СПД).

В-третьих, компьютеры должны быть оснащены сетевым программным обеспечением (СПО) - как правило, сетевой операционной системой (СОС) или сетевой надстройкой над обычной операционной системой. СПО, установленное на разных компьютерах может быть разным, но обязательно совместимым друг с другом - то есть реализовывать один набор протоколов передачи данных.

В-четвертых, хотя бы один компьютер должен предоставлять для общего пользования часть своих ресурсов - дисковое пространство, принтер, программы и т.д. Такой компьютер называется сервером . Кроме этого, все остальные узлы сети (клиенты), должны иметь возможность использовать ресурсы серверов. Ресурсы, предоставляемые в общее пользование сервером, будем называть разделяемыми ресурсами .

Четвертое свойство не всегда очевидно (например, в случае сети, используемой только для обмена электронной почтой, сложно выделить разделяемые ресурсы), однако обязательно присутствует (такими ресурсами для примера с электронной почтой могут выступать программа почтового сервера, дисковое пространство, отведенное для хранения сообщений, процессорное время, затрачиваемое на обработку почты).

В большинстве случаев, название разделяемого ресурса указывается в названии сервера: файловый сервер (ресурс - дисковые файлы), сервер печати (ресурс - принтеры), сервер приложений (ресурс - прикладные программы), сервер баз данных (ресурс - базы данных) и т.д.

Отметим, что перечисленные свойства отражают разные аспекты сущности компьютерной сети. Первые два свойства можно назвать структурными - они определяют, из каких элементов состоит сеть и как эти элементы связаны между собой. Третье свойство - программное, указывающее на необходимость специальных программ, без которых элементы сети останутся разобщенными, даже будучи физически связанными. Наконец, четвертое свойство - прагматическое, оно содержит указание на то, что цель создания сети лежит не в ней самой, а той пользе, которую сеть может принести.

1.2 Среды передачи данных

Передача данных может происходить по кабелю (в этом случае говорят об ограниченной или кабельной среде передачи) и с помощью электромагнитных волн той или иной природы - инфракрасных, микроволн, радиоволн, - распространяющихся в пространстве (неограниченная среда передачи, беспроводные сети).

В большинстве случаев кабельные среды удобнее, надежнее и выгоднее неограниченных. Как правило, кабель и сопутствующее сетевое оборудование стоит гораздо дешевле оборудования для беспроводных сетей, а скорость передачи данных по кабелю выше. Тем не менее, в некоторых случаях прокладка кабеля либо технически затруднена (например, водные преграды), либо экономически неоправдана (стоимость прокладки кабеля высока, а большая скорость передачи не требуется), либо сталкивается с организационными или иными проблемами (например, необходимо проложить траншею через оживленную магистраль в центре города, на что очень сложно получить согласие городских властей). Кроме того, может появиться необходимость подключения к сети пользователей, по роду деятельности часто меняющих местонахождение (например, кладовщики на большом складе). Во всех подобных (и многих других) случаях могут использоваться беспроводные сети.

Кабельные среды по используемому материалу делятся на “медные” (в самом деле, проводящие жилы таких кабелей могут содержать не только медь, но и другие металлы и их сплавы) и оптические (оптоволоконные, проводящая жила изготавливается из оптически прозрачных материалов - кварца или полимеров). Медные кабели бывают симметричными (все проводники одинаковы, например, витая пара проводников) и асимметричными (например, коаксиальный кабель, состоящий из изолированных друг от друга центральной жилы и оплетки). Оптические кабели различаются по соотношению между толщиной проводящей жилы и несущей частотой передачи данных. Тонкие жилы, диаметр сечения которой сравним с длиной волны несущей частоты, образуют одномодовые кабели (типичная толщина 8-10 мкм), а более толстые - многомодовые (до 50-60 мкм).

При построении беспроводных сетей, как правило, применяется одна из трех технологий: передача в инфракрасном диапазоне, передача данных с помощью узкополосных радиосигналов и передача данных с помощью радиосигналов с распределенным спектром.

1.3 Режимы передачи данных

Сети делятся на два класса, различающиеся способом использования канала передачи данных: сети с селекцией данных и маршрутизацией данных.

В сетях с селекцией данных существует общий канал передачи, к которому подключены все узлы. В каждый момент времени каналом владеет только один узел, который выдает данные в канал. Любой выданный в канал блок данных получают (в виде копий) все узлы сети. Каждый узел проверяет адрес получателя, переданный с блоком данных, и, сравнив его с собственным адресом, в случае совпадения обрабатывает полученные данные, а в случае несовпадения - отбрасывает их (уничтожает свою копию).

Сети с маршрутизацией данных состоят из множества отдельных каналов, соединяющих пары узлов сети. Пара узлов, обладающая общим каналом, может передавать данных друг другу независимо от остальных узлов сети. Для передачи данных между узлами, не имеющими общего канала, необходимо задействовать одного или несколько других узлов, которые осуществили бы маршрутизацию передаваемой информации.

1.4 Способы коммутации

Коммутация является необходимым элементом связи узлов между собой, позволяющим сократить количество необходимых линий связи и повысить загрузку каналов связи. Практически невозможно предоставить каждой паре узлов выделенную линию связи, поэтому в сетях всегда применяется тот или иной способ коммутации абонентов, использующий существующие линии связи для передачи данных разных узлов.

Коммутируемой сетью называется сеть, в которой связь между узлами устанавливается только по запросу.

Абоненты соединяются с коммутаторами выделенными (индивидуальными) линиями связи. Линии связи, соединяющие коммутаторы, используются абонентами совместно.

Коммутация может осуществляться в двух режимах: динамически и статически. В первом случае коммутация выполняется на время сеанса связи (обычно от секунд до часов) по инициативе одного из узлов, а по окончании сеанса связь разрывается. Во втором случае коммутация выполняется обслуживающим персоналом сети на значительно более длительный период времени (несколько месяцев или лет) и не может быть изменена по инициативе пользователей. Такие каналы называются выделенными (dedicated) или арендуемыми (leased).

Две группы способов коммутации: коммутация каналов (circuit switching) и коммутация с промежуточным хранением (store-and-forward). Вторая группа состоит из двух способов: коммутации сообщений (message switching) и коммутации пакетов (packet switching).

При коммутации каналов между узлами, которым необходимо установить связь друг с другом, обеспечивается организация непрерывного составного канала, состоящего из последовательно соединенных отдельных каналов между узлами. Отдельные каналы соединяются между собой коммутирующим оборудованием (коммутаторами). Перед передачей данных необходимо выполнить процедуру установления соединения, в процессе которой создается составной канал.

Под коммутацией сообщений понимается передача единого блока данных между узлами сети с временной буферизацией этого блока каждым из транзитных узлов. Сообщением может быть текстовый файл, файл с графическим изображением, электронное письмо - сообщение имеет произвольный размер, определяемый исключительно его содержанием, а не теми или иными технологическими соображениями.

При коммутации пакетов все передаваемые пользователем данные разбиваются передающим узлом на небольшие (до нескольких килобайт) части - пакеты (packet). Каждый пакет снабжается заголовком, в котором указывается, как минимум, адрес узла-получателя и номер пакета. Передача пакетов по сети происходит независимо друг от друга. Коммутаторы такой сети имеют внутреннюю буферную память для временного хранения пакетов, что позволяет сглаживать пульсации трафика на линиях связи между коммутаторами. Пакеты иногда называют дейтаграммами (datagram) , а режим индивидуальной коммутации пакетов - дейтаграммным режимом.

Сеть с коммутацией пакетов замедляет процесс взаимодействия каждой конкретной пары узлов, поскольку их пакеты могут ожидать в коммутаторах, пока передадутся другие пакеты. Однако общая эффективность (объем передаваемых данных в единицу времени) при коммутации пакетов будет выше, чем при коммутации каналов. Это связано с тем, что трафик каждого отдельного абонента носит пульсирующий характер, а пульсации разных абонентов, в соответствии с законом больших чисел, распределяются во времени, увеличивая равномерность нагрузки на сеть.

1.4 Организация виртуальных каналов

В отличие от дейтаграммного режима передачи, предполагающего независимую маршрутизацию каждого пакета, режим виртуального канала (virtual circuit или virtual channel) устанавливает единый маршрут для всех пакетов в рамках одного соединения. Перед тем, как начать передачу, передающий узел выдает в сеть специальный пакет - запрос на установление соединения.

Этот пакет, проходя через коммутаторы, “прокладывает” виртуальный канал - коммутаторы запоминают маршрут для данного соединения, и последующие пакеты будут отправлены по нему же.

При этом время, затраченное на установление виртуального канала, компенсируется более быстрой передачей потока пакетов за счет того, что коммутаторы не выполняют полную маршрутизацию каждого пакета, а быстро определяют его маршрут по номеру виртуального канала.

2. Локальные сети

локальный корпоративный сеть коммутация

Сегодня локальные вычислительные сети (ЛВС) позволяют объединить компьютеры, расположенные в ограниченном пространстве, в единую систему, позволяющую обмениваться данными друг с другом.

Чтобы построить высокопроизводительную ЛВС, обладающую высокой надежностью, гибкостью и универсальностью, нужно соблюдать следующие принципы построения локальных вычислительных сетей.

· ЛВС должна быть открытой системой, то есть совмещаться с современными технологиями и оборудованием для дальнейшего расширения.

· Должна иметь высокую надежность и устойчивость к отказам каналов связи и оборудования, сбоям в ПО.

· В ЛВС должны быть реализованы средства защиты ценной информации.

· Построение и эксплуатация ЛВС должны соответствовать общепринятым моделям и стандартам.

· При изменении в структуре предприятия ЛВС должна легко изменять свою логическую структуру.

· Локальная сеть должна иметь возможность подключения к территориально-удаленным сетям для объединения в единую сеть (например, технология VLAN).

· Оборудование как активное, так и пассивное должно быть от одного производителя, чтобы избежать непредвиденных конфликтов.

Локальные вычислительные сети ЛВС - это кабельные системы, разделенные на различные структурные подсистемы. ЛВС бывают либо проводными, либо беспроводными. Для нормальной работы сети используются активное оборудование - маршрутизаторы и коммутаторы.

Сегодня локальные вычислительные сети ЛВС являются необходимой и обязательной частью современного предприятия или офиса.

С помощью построения локальной сети можно использовать разнообразное оборудование - сканеры, факсы, принтеры. ЛВС позволяет значительно экономить время и увеличить производительность.

Локальные вычислительные сети ЛВС - это:

1. Защита данных от несанкционированного доступа;

2. Скоростной доступ к любой информации в сети;

3. Надежные средства для хранения информации;

4. Возможность совместного применения сетевых ресурсов.

Для надежности ЛВС она должна быть проложена и отлажена грамотно. Поэтому проектирование, монтаж и регулировку локальных сетей должны проводить квалифицированные мастера. При этом должно использоваться только качественное оборудование от хороших и известных зарубежных производителей.

2.1 Локальные сети на предприятии

ЛВС предприятия - это транспортная инфраструктура для передачи потоков данных. В настоящее время уже нельзя представить современное предприятия без локальной сети. Локальная вычислительная сеть значительно увеличивает производительность труда и экономит время. ЛВС предприятия избавляет сотрудников от беготни по кабинетам. С помощью локальной сети можно без труда связаться с любым сотрудником, передать или принять важную информацию.Современная ЛВС обладает следующими важнейшими характеристиками:

· Управляемость;

· Отказоустойчивость;

· Масштабируемость;

· Совместимость с оборудованием иных подсистем;

· Хорошая производительность;

· Поддержка необходимых коммуникационных стандартов.

ЛВС предприятия обычно бывает довольно объемной. Соответственно, она должна быть очень надежной и, кроме того, безопасной, так как в случае какой-либо нештатной ситуации предприятие будет терпеть убытки. Поэтому разработкой и монтажом локальной сети должны заниматься только квалифицированные мастера. При этом должно применяться только качественное высокоточное оборудование.

ЛВС предприятия представляет собой транспортную инфраструктуру, предназначенную для передачи информации. Сейчас почти на всех предприятиях уже есть современные локальные сети, которые серьезно экономят время работников и увеличивают производительность. Ведь с помощью современной ЛВС не нужно постоянно бегать по кабинетам, можно мгновенно связаться с сотрудником и передать (принять) информацию.

ЛВС предприятия последнего поколения имеет многие важнейшие характеристики, такие как отличная управляемость, возможность будущего расширения, мощная отказоустойчивость, большая производительность и полная совместимость с другим оборудованием.

Как правило, ЛВС предприятия является очень объемной. Известно, что, с увеличением масштаба локальной сети гораздо труднее становится обеспечение ее отличной надежности и полной безопасности. Ведь при поломке ЛВС на большом предприятии оно будет терпеть колоссальные убытки, связанные с простоем. Поэтому специалисты настоятельно не советуют устанавливать большие ЛВС самостоятельно, а доверить ее монтаж квалифицированным мастерам.

3. Корпоративные сети

К орпоративная сеть - подразумевается система, обеспечивающая передачу информации между различными приложениями, используемыми в системе корпорации.

При этом считается, что сеть должна быть максимально универсальной, то есть допускать интеграцию уже существующих и будущих приложений с минимально возможными затратами и ограничениями.

Корпоративная сеть, как правило, является территориально распределенной, т.е. объединяющей офисы, подразделения и другие структуры, находящиеся на значительном удалении друг от друга. Часто узлы корпоративной сети оказываются расположенными в различных городах, а иногда и странах. Принципы, по которым строится такая сеть, достаточно сильно отличаются от тех, что используются при создании локальной сети, даже охватывающей несколько зданий. Основное отличие состоит в том, что территориально распределенные сети используют достаточно медленные (на сегодня - десятки и сотни килобит в секунду, иногда до 2 Мбит/с.) арендованные линии связи. Если при создании локальной сети основные затраты приходятся на закупку оборудования и прокладку кабеля, то в территориально-распределенных сетях наиболее существенным элементом стоимости оказывается арендная плата за использование каналов, которая быстро растет с увеличением качества и скорости передачи данных. Это ограничение является принципиальным, и при проектировании корпоративной сети следует предпринимать все меры для минимизации объемов передаваемых данных. В остальном же корпоративная сеть не должна вносить ограничений на то, какие именно приложения и каким образом обрабатывают переносимую по ней информацию.

Приложения здесь - это системное программное обеспечение - базы данных, почтовые системы, вычислительные ресурсы, файловый сервис и прочее - так и средства, с которыми работает конечный пользователь. Основными задачами корпоративной сети оказываются взаимодействие системных приложений, расположенных в различных узлах, и доступ к ним удаленных пользователей.

3.1 Принципы построения корпоративных сетей передачи данных

Первая проблема, которую приходится решать при создании корпоративной сети - организация каналов связи. Если в пределах одного города можно рассчитывать на аренду выделенных линий, в том числе высокоскоростных, то при переходе к географически удаленным узлам стоимость аренды каналов становится просто астрономической, а качество и надежность их часто оказываются весьма невысокими.

Естественным решением этой проблемы является использование уже существующих глобальных сетей. В этом случае достаточно обеспечить каналы от офисов до ближайших узлов сети. Задачу доставки информации между узлами глобальная сеть при этом возьмет на себя. Даже при создании небольшой сети в пределах одного города следует иметь в виду возможность дальнейшего расширения и использовать технологии, совместимые с существующими глобальными сетями. Часто первой, а то и единственной такой сетью, мысль о которой приходит в голову, оказывается Internet.

3.2 И спользование I nternet

При использовании Internet в качестве основы для корпоративной сети передачи данных выясняется очень интересная вещь. Оказывается, Сеть сетью-то как раз и не является. Это именно Internet - междусетие. Если заглянуть внутрь Internet, мы увидим, что информация проходит через множество абсолютно независимых и по большей части некоммерческих узлов, связанных через самые разнородные каналы и сети передачи данных. Бурный рост услуг, предоставляемых в Internet, приводит к перегрузке узлов и каналов связи, что резко снижает скорость и надежность передачи информации. При этом поставщики услуг Internet не несут никакой ответственности за функционирование сети в целом, а каналы связи развиваются крайне неравномерно и в основном там, где государство считает нужным вкладывать в это средства. Кроме того, Internet привязывает пользователей к одному протоколу - IP. Это хорошо, когда мы пользуемся стандартными приложениями, работающими с этим протоколом. Использование же с Internet любых других систем оказывается делом непростым и дорогим. Если у нас возникает необходимость обеспечить доступ мобильных пользователей к нашей частной сети - Internet также не самое лучшее решение. Казалось бы, больших проблем здесь быть не должно - поставщики услуг Internet есть почти везде, возьмите портативный компьютер с модемом, позвоните и работайте. Однако поставщик, скажем, в Екатеринбурге, не имеет никаких обязательств перед вами, если вы подключились к Internet в Москве. Денег за услуги он от вас не получает и доступа в сеть, естественно, не предоставит. Еще одна проблема Internet, широко обсуждаемая в последнее время, - безопасность. Если говорим о частной сети, вполне естественным представляется защитить передаваемую информацию от чужого взгляда. Непредсказуемость путей информации между множеством независимых узлов Internet не только повышает риск того, что какой-либо не в меру любопытный оператор сети может сложить ваши данные себе на диск (технически это не так сложно), но и делает невозможным определение места утечки информации. Другой аспект проблемы безопасности опять же связан с децентрализованностью Internet - нет никого, кто мог бы ограничить доступ к ресурсам вашей частной сети. Поскольку это открытая система, где все видят всех, то любой желающий может попробовать попасть в вашу офисную сеть и получить доступ к данным или программам.

3.3 Виртуальные сети

Идеальным вариантом для частной сети было бы создание каналов связи только на тех участках, где это необходимо, и передача по ним любых сетевых протоколов, которых требуют работающие приложения. На первый взгляд, это возврат к арендованным линиям связи, однако, существуют технологии построения сетей передачи данных, позволяющие организовать внутри них каналы, возникающие только в нужное время и в нужном месте. Такие каналы называются виртуальными. Систему, объединяющую удаленные ресурсы с помощью виртуальных каналов, естественно назвать виртуальной сетью. На сегодня существуют две основных технологии виртуальных сетей - сети с коммутацией каналов и сети с коммутацией пакетов. К первым относятся обычная телефонная сеть, ISDN и ряд других, более экзотических технологий. Сети с коммутацией пакетов представлены технологиями X.25 , Frame Relay и - в последнее время - ATM . Остальные типы виртуальных (в различных сочетаниях) сетей широко используются при построении корпоративных информационных систем.

Сети с коммутацией каналов обеспечивают абоненту несколько каналов связи с фиксированной пропускной способностью на каждое подключение. Хорошо нам знакомая телефонная сеть дает один канал связи между абонентами. При необходимости увеличить количество одновременно доступных ресурсов приходится устанавливать дополнительные телефонные номера, что обходится очень недешево. Даже если забыть о низком качестве связи, то ограничение на количество каналов и большое время установления соединения не позволяют использовать телефонную связь в качестве основы корпоративной сети. Для подключения же отдельных удаленных пользователей это достаточно удобный и часто единственный доступный метод. Следует только иметь в виду, что доступ к ISDN в нашей стране пока скорее исключение, чем правило.

Альтернативой сетям с коммутацией каналов являются сети с коммутацией пакетов. При использовании пакетной коммутации один канал связи используется в режиме разделения времени многими пользователями - примерно так же, как и в Internet. Однако, в отличие от сетей типа Internet, где каждый пакет маршрутизируется отдельно, сети пакетной коммутации перед передачей информации требуют установления соединения между конечными ресурсами. После установления соединения сеть "запоминает" маршрут (виртуальный канал), по которому должна передаваться информация между абонентами и помнит его, пока не получит сигнала о разрыве связи. Для приложений, работающих в сети пакетной коммутации, виртуальные каналы выглядят как обычные линии связи - с той только разницей, что их пропускная способность и вносимые задержки меняются в зависимости от загруженности сети.

3.4 Сети X.25

Классической технологией коммутации пакетов является протокол X.25. Протокол X.25 включает мощные средства коррекции ошибок, обеспечивая надежную доставку информации даже на плохих линиях и широко используется там, где нет качественных каналов связи. В нашей стране их нет почти повсеместно. Естественно, за надежность приходится платить - в данном случае быстродействием оборудования сети и сравнительно большими - но предсказуемыми - задержками распространения информации. В то же время X.25 - универсальный протокол, позволяющий передавать практически любые типы данных.

Другая стандартная возможность сетей X.25 - связь через обычные асинхронные COM-порты. Образно говоря, сеть X.25 удлиняет кабель, подключенный к последовательному порту, донося его разъем до удаленных ресурсов. Таким образом, практически любое приложение, допускающее обращение к нему через COM-порт, может быть легко интегрировано в сеть X.25. В качестве примеров таких приложений следует упомянуть не только терминальный доступ к удаленным хост-компьютерам, но и электронную почту cc: Mail, MS Mail и т.п.

Сегодня в мире насчитываются десятки глобальных сетей X.25 общего пользования, их узлы имеются практически во всех крупных деловых, промышленных и административных центрах. В России услуги X.25 предлагают Спринт Сеть, Infotel, Роспак, Роснет, Sovam Teleport и ряд других поставщиков. Кроме объединения удаленных узлов в сетях X.25 всегда предусмотрены средства доступа для конечных пользователей. Для того чтобы подключиться к любому ресурсу сети X.25 пользователю достаточно иметь компьютер с асинхронным последовательным портом и модем. При этом не возникает проблем с авторизацией доступа в географически удаленных узлах. Таким образом, если ваш ресурс подключен к сети X.25, вы можете получить доступ к нему как с узлов вашего поставщика, так и через узлы других сетей - то есть практически из любой точки мира.

С точки зрения безопасности передачи информации, сети X.25 предоставляют ряд весьма привлекательных возможностей. Прежде всего, благодаря самой структуре сети, стоимость перехвата информации в сети X.25 оказывается достаточно велика, чтобы уже служить неплохой защитой. Проблема несанкционированного доступа также может достаточно эффективно решаться средствами самой сети.

Недостатком технологии X.25 является наличие ряда принципиальных ограничений по скорости. Первое из них связано именно с развитыми возможностями коррекции и восстановления. Эти средства вызывают задержки передачи информации и требуют от аппаратуры X.25 большой вычислительной мощности и производительности, в результате чего она просто "не успевает" за быстрыми линиями связи. Хотя существует оборудование, имеющее двухмегабитные порты, реально обеспечиваемая им скорость не превышает 250 - 300 Кбит/сек на порт. С другой стороны, для современных скоростных линий связи средства коррекции X.25 оказываются избыточными и при их использовании мощности оборудования часто работают вхолостую.

Вторая особенность, заставляющая рассматривать сети X.25 как медленные, состоит в особенностях инкапсуляции протоколов LAN (в первую очередь IP и IPX). При прочих равных условиях связь локальных сетей по X.25 оказывается, в зависимости от параметров сети, на 15-40 процентов медленнее, чем при использовании HDLC по выделенной линии. Причем, чем хуже линия связи, тем выше потери производительности. Мы снова имеем дело с очевидной избыточностью: протоколы LAN имеют собственные средства коррекции и восстановления (TCP, SPX), однако при использовании сетей X.25 приходится делать это еще раз, теряя скорость. Именно на этих основаниях сети X.25 объявляются медленными и устаревшими. Но прежде чем говорить о том, что какая-либо технология является устаревшей, следует указать - для каких применений и в каких условиях. На линиях связи невысокого качества сети X.25 вполне эффективны и дают значительный выигрыш по цене и возможностям по сравнению с выделенными линиями. С другой стороны, даже если рассчитывать на быстрое улучшение качества связи - необходимое условие устаревания X.25 - то и тогда вложения в аппаратуру X.25 не пропадут, поскольку современное оборудование включает возможность перехода к технологии Frame Relay.

3.5 Сети Frame Relay

Технология Frame Relay появилась как средство, позволяющее реализовать преимущества пакетной коммутации на скоростных линиях связи. Основное отличие сетей Frame Relay от X.25 состоит в том, что в них исключена коррекция ошибок между узлами сети. Задачи восстановления потока информации возлагаются на оконечное оборудование и программное обеспечение пользователей. Естественно, это требует использования достаточно качественных каналов связи.

Вторым отличием сетей Frame Relay является то, что на сегодня практически во всех них реализован только механизм (PVC). Это означает что, подключаясь к порту Frame Relay, вы должны заранее определить, к каким именно удаленным ресурсам будете иметь доступ. Принцип пакетной коммутации - множество независимых виртуальных соединений в одном канале связи - здесь остается, однако вы не можете выбрать адрес любого абонента сети. Все доступные вам ресурсы определяются при настройке порта. Таким образом, на базе технологии Frame Relay удобно строить замкнутые виртуальные сети, используемые для передачи других протоколов, средствами которых осуществляется маршрутизация. "Замкнутость" виртуальной сети означает, что она полностью недоступна для других пользователей, работающих в той же сети Frame Relay. Например, в США сети Frame Relay широко применяются в качестве опорных для работы Internet. Однако ваша частная сеть может использовать виртуальные каналы Frame Relay в тех же линиях, что и трафик Inernet - и быть абсолютно от него изолированной.

Отсутствие коррекции ошибок и сложных механизмов коммутации пакетов, характерных для X.25, позволяют передавать информацию по Frame Relay с минимальными задержками. Дополнительно возможно включение механизма приоретизации, позволяющего пользователю иметь гарантированную минимальную скорость передачи информации для виртуального канала. Такая возможность позволяет использовать Frame Relay для передачи критичной к задержкам информации, например голоса и видео в реальном времени. Эта сравнительно новая возможность приобретает все большую популярность и часто является основным аргументом при выборе Frame Relay как основы корпоративной сети.

Существуют также частные сети Frame Relay, работающие в пределах одного города или использующие междугородние - как правило, спутниковые - выделенные каналы. Построение частных сетей на базе Frame Relay позволяет сократить количество арендуемых линий и интегрировать передачу голоса и данных.

3.6 Структура корпоративной сети

При построении территориально распределенной сети могут использоваться все описанные выше технологии. Для подключения удаленных пользователей самым простым и доступным вариантом является использование телефонной связи. Там, где это, возможно, могут использоваться сети ISDN. Для объединения узлов сети в большинстве случаев используются глобальные сети передачи данных. Даже там, где возможна прокладка выделенных линий (например, в пределах одного города) использование технологий пакетной коммутации позволяет уменьшить количество необходимых каналов связи и - что немаловажно - обеспечить совместимость системы с существующими глобальными сетями.

Подключение корпоративной сети к Internet оправдано, если нужен доступ к соответствующим услугам. Использовать Internet как среду передачи данных стоит только тогда, когда другие способы недоступны и финансовые соображения перевешивают требования надежности и безопасности. Если необходимо использовать Internet только в качестве источника информации, лучше пользоваться технологией "соединение по запросу" (dial-on-demand). Это резко снижает риск несанкционированного проникновения в сеть извне. Простейший способ обеспечить такое подключение - использовать дозвон до узла Internet по телефонной линии или, если возможно, через ISDN. Другой, более надежный способ обеспечить соединение по запросу - использовать выделенную линию и протокол X.25 или - что гораздо предпочтительнее - Frame Relay. В этом случае маршрутизатор должен быть настроен так, чтобы разрывать виртуальное соединение при отсутствии данных в течение определенного времени и вновь устанавливать его только тогда, когда появляются данные. Если необходимо предоставлять свою информацию в Internet - например, установить WWW или FTPсервер, соединение по запросу оказывается неприменимым. В этом случае следует не только использовать ограничение доступа с помощью Firewall, но и максимально изолировать сервер Internet от остальных ресурсов. Хорошим решением является использование единственной точки подключения к Internet для всей территориально распределенной сети, узлы которой связаны друг с другом с помощью виртуальных каналов X.25 или Frame Relay. В этом случае доступ из Internet возможен к единственному узлу, пользователи же в остальных узлах могут попасть в Internet с помощью соединения по запросу.

Для передачи данных внутри корпоративной сети также стоит использовать виртуальные каналы сетей пакетной коммутации. Основные достоинства такого подхода - универсальность, гибкость, безопасность - были подробно рассмотрены выше. На сегодня затраты при использовании Frame Relay для междугородной связи оказываются в несколько раз выше, чем для сетей X.25. С другой стороны, более высокая скорость передачи информации и возможность одновременно передавать данные и голос могут оказаться решающими аргументами в пользу Frame Relay. Для подключения удаленных пользователей к корпоративной сети могут использоваться узлы доступа сетей X.25, а также собственные коммуникационные узлы. В последнем случае требуется выделение нужного количества телефонных номеров (или каналов ISDN), что может оказаться слишком дорого. Если нужно обеспечить подключение большого количества пользователей одновременно, то более дешевым вариантом может оказаться использование узлов доступа сети X.25, даже внутри одного города.

Термины и основные понятия телекоммуникаций

ISDN

Цифровые сети комплексных услуг, изначально предназначенные для передачи голоса, а в настоящее время активно используемые для передачи как голоса, так и данных. Обеспечивают абоненту несколько (минимум два) прозрачных цифровых каналов со скоростью 64 кбит/с. Каналы могут использоваться независимо (например, для двух одновременных телефонных разговоров или один для разговора, другой для передачи данных) или объединяться для повышения пропускной способности. Возможны как коммутация каналов между абонентами сети ISDN, так и их «закрепление» между двумя точками. Особенностью ISDN является наличие отдельного канала сигнализации, позволяющего передавать управляющую информацию для сети не только на этапе установления соединения, но и в любой момент разговора или передачи данных.

B-канал

«Прозрачный» канал передачи информации со скоростью 64 кбит/с, обеспечиваемый сетью ISDN между абонентами. Абоненту предоставляется несколько (минимум два) B-каналов, каждый из которых может коммутироваться независимо. По B-каналу может передаваться как голос, так и данные.

D-канал

Дополнительный канал, используемый для передачи сигналов между абонентом и сетью ISDN. Постоянно соединяет абонента с АТС. Сигналы передаются в виде пакетов информации, содержащих команды и ответы на них. По D-каналу можно передавать также информацию в сети X.25. Эта возможность должна быть поддержана не только вашим оборудованием, но и оператором сети ISDN. Важно знать, что существует несколько несовместимых форматов команд ("протоколов D-канала"), принятых в различных странах. В настоящее время в Европе используется единый стандарт Euro-ISDN (ETSI), принятый в том числе и в России. При приобретении оборудования ISDN следует обратить внимание на совместимость протокола D-канала с вашим оператором ISDN.

BRI

Basic Rate Interface - основной тип абонентского подключения ISDN. Обеспечивает два B-канала по 64 кбит/с и один D-канал со скоростью 16 кбит/с. При необходимости иметь большее количество B-каналов может использоваться несколько ISDN BRI или ISDN PRI (см. ниже).

ATM

Асинхронный режим передачи - Asynchronous Transfer Mode - это усовершенствованная технология коммутации пакетов, которая обеспечивает высокоскоростную передачу пакетов фиксированной длины (53 байта) через широкополосные и узкополосные локальные или корпоративные сети. ATM способна предавать: речь, данные, факсимильные сообщения, видео реального времени, аудиосигналы качества CD, мультимегабитные потоки данных с очень высокой скоростью (от 66 Мбит/с до 622 Мбит/с и даже выше)

В настоящее время компоненты АТМ производятся узким кругом поставщиков. Вся аппаратура в сети АТМ должна быть АТМ - совместимой. Поэтому реализация АТМ в существующих условиях требует массовой замены оборудования, что является причиной медленного распространения АТМ.

LAN

Локальная вычислительная сеть - Local Area Network - соединенные в сеть компьютеры, расположенные в ограниченной зоне (например, в комнате, здании, группе близлежащих зданий).

TCP/IP

Transmission Control Protocol/Internet Protocol - промышленный стандартный набор протоколов, обеспечивающий связь в гетерогенной среде, то есть обеспечивает совместимость между компьютерами разных типов. Совместимость - одно из преимуществ TCP/IP, поэтому большинство сетей поддерживает его. Кроме того, он предоставляет доступ к ресурсам Интернета, а также маршрутизируемый протокол для сетей масштаба предприятия, но имеет два главных недостатка: размер и недостаточная скорость работы.

IPX/SPX

Internetwork Packet Exchange/Sequenced Packet Exchange - стек протоколов, используемый в сетях Novell. Относительно небольшой и быстрый протокол, поддерживающий маршрутиризацию.

HDLC

High-level Data Link Control - широко распространенный международный протокол управления передачей данных. Разработан International Standards Organization (ISO). HDLC - бит-ориентированный синхронный протокол, работающий на канальном уровне модели OSI (эталонная модель взаимодействия открытых систем. По этому протоколу данные передаются блоками произвольной длины, но стандартного формата.

PVC

Постоянный виртуальный канал - Permanent Virtual Circuit - похож на арендуемую линию, то есть является постоянным и фактически существующим каналом. Однако, в отличие от аренды линии, плата вносится только за то время, в течение которого он используется. Важность данного типа услуг связи возрастает, так как PVC используется ретрансляцией кадров в ATM.

WWW

World Wide Web - гипертекстовая мультимедийная служба в Интернете. Содержит информацию в виде адресуемых страниц, написанных на HTML.

FTP

File Transfer Protocol - процесс, обеспечивающий передачу файлов между локальным и удаленным компьютером. Поддерживает несколько команд, которые реализуют двунаправленную передачу двоичных и ASCII-файлов между компьютерами.

Список источников

http://compseti.ru

Размещено на Allbest.ru

...

Подобные документы

    Архитектура вычислительных сетей, их классификация, топология и принципы построения. Передача данных в сети, коллизии и способы их разрешения. Протоколы TCP-IP. OSI, DNS, NetBios. Аппаратное обеспечение для передачи данных. Система доменных имён DNS.

    реферат , добавлен 03.11.2010

    Характеристика современного состояния цифровых широкополосных сетей передачи данных, особенности их применения для передачи телеметрической информации от специальных объектов. Принципы построения и расчета сетей с использованием технологий Wi-Fi и WiMax.

    дипломная работа , добавлен 01.06.2010

    Рассмотрение коммутируемых (SVC) и постоянных (PVC) каналов виртуальных соединений. Характеристика структуры и размеров пакетов, протоколов передачи и алгоритмов маршрутизации сетей стандарта Х.25, Frame RELAY, АТМ и определение их преимуществ.

    реферат , добавлен 17.03.2010

    Основные преимущества, получаемые при сетевом объединении персональных компьютеров в виде внутрипроизводственной вычислительной сети. Методы оценки эффективности локальных вычислительных сетей. Типы построения сетей по методам передачи информации.

    реферат , добавлен 19.10.2014

    Структура сетей телеграфной и факсимильной связи, передачи данных. Компоненты сетей передачи дискретных сообщений, способы коммутации в них. Построение корректирующего кода. Проектирование сети SDH. Расчет нагрузки на сегменты пути, выбор мультиплексоров.

    курсовая работа , добавлен 06.01.2013

    Классификация сетей и способы коммутации. Виды связи и режимы работы сетей передачи сообщений. Унификация и стандартизация протоколов. Эталонная модель взаимосвязи открытых систем. Особенность подготовки данных. Взаимодействие информационных систем.

    реферат , добавлен 15.09.2014

    Роль и общие принципы построения компьютерных сетей. Топологии: шинная, ячеистая, комбинированная. Основные системы построения сетей "Token Ring" на персональных компьютерах. Протоколы передачи информации. Программное обеспечение, технология монтажа сети.

    курсовая работа , добавлен 11.10.2013

    Виды сетей передачи данных. Типы территориальной распространенности, функционального взаимодействия и сетевой топологии. Принципы использования оборудования сети. Коммутация каналов, пакетов, сообщений и ячеек. Коммутируемые и некоммутируемые сети.

    курсовая работа , добавлен 30.07.2015

    Роль компьютерных сетей, принципы построения. Протоколы передачи информации в сети ArcNet, используемые топологии и средства связи. Программное обеспечение, технология развёртки. Операционные системы компьютерных сетей. Инструкция по технике безопасности.

    курсовая работа , добавлен 11.10.2013

    Процесс построения мультисервисных сетей связи, его этапы. Анализ технологий сетей передачи данных, их достоинства и недостатки. Проектирование мультисервисной сети связи с использованием телекоммуникационного оборудования разных производителей.

Далее приводятся краткие сведения об организациях, наиболее активно и успешно занимающихся разработкой стандартов в области вычислительных сетей.

  • Международная организация по стандартизации (International Organization/or Standardization, ISO , часто называемая также International Standards Organization) представляет собой ассоциацию ведущих национальных организаций по стандартизации разных стран. Главным достижением ISO явилась модель взаимодействия открытых систем OSI, которая в настоящее время является концептуальной основой стандартизации в области вычислительных сетей. В соответствии с моделью OSI этой организацией был разработан стандартный стек коммуникационных протоколов OSI.

  • Международный союз электросвязи (International Telecommunications Union, JTU) - организация, являющаяся в настоящее время специализированным органом Организации Объединенных Наций. Наиболее значительную роль в стандартизации вычислительных сетей играет постоянно действующий в рамках этой организации Международный консультативный комитет по телефонии и телеграфии (МККТТ) (Consultative Committee on International Telegraphy and Telephony, CCITT). В результате проведенной в 1993 году реорганизации ITU CCITT несколько изменил направление своей деятельности и сменил название - теперь он называется сектором телекоммуникационной стандартизации ITU (ITU Telecommunication Standardization Sector, ITU-T), Основу деятельности ITU-T составляет разработка международных стандартов в области телефонии, телематических служб (электронной почты, факсимильной связи, телетекста, телекса и т. д.), передачи данных, аудио- и видеосигналов. За годы своей деятельности ITU-T выпустил огромное число рекомендаций-стандартов. Свою работу ITU-T строит на изучении опыта сторонних организаций, а также на результатах собственных исследований. Раз в четыре года издаются труды ITU-T в виде так называемой «Книги», которая на самом деле представляет собой целый набор обычных книг, сгруппированных в выпуски, которые, в свою очередь, объединяются в тома. Каждый том и выпуск содержат логически взаимосвязанные рекомендации. Например, том III Синей Книги содержит рекомендации для цифровых сетей с интеграцией услуг (ISDN), а весь том VIII (за исключением выпуска VIII. 1, который содержит рекомендации серии V для передачи данных по телефонной сети) посвящен рекомендациям серии X: Х.25 для сетей с коммутацией пакетов, Х.400 для систем электронной почты, Х.500 для глобальной справочной службы и многим другим.
  • Институт инженеров по электротехнике и радиоэлектронике - Institute of Electrical and Electronics Engineers, IEEE) - национальная организация США, определяющая сетевые стандарты. В 1981 году рабочая группа 802 этого института сформулировала основные требования, которым должны удовлетворять локальные вычислительные сети. Группа 802 определила множество стандартов, из них самыми известными являются стандарты 802.1,802.2,802.3 и 802.5, которые описывают общие понятия, используемые в области локальных сетей, а также стандарты на два нижних уровня сетей Ethernet и Token Ring.
  • Европейская ассоциация производителей компьютеров (European Computer Manufacturers Association, ЕСМА) - некоммерческая организация, активно сотрудничающая с ITU-T и ISO, занимается разработкой стандартов и технических обзоров, относящихся к компьютерной и коммуникационной технологиям. Известна своим стандартом ЕСМА-101, используемым при передаче отформатированного текста и графических изображений с сохранением оригинального формата.
  • Ассоциация производителей компьютеров и оргтехники (Computer and Business Equipment Manufacturers Association, CBEMA) - организация американских фирм-производителей аппаратного обеспечения; аналогична европейской ассоциации ЕКМА; участвует в разработке стандартов на обработку информации и соответствующее оборудование.
  • Ассоциация электронной промышленности (Electronic Industries Association, EIA) - промышленно-торговая группа производителей электронного и сетевого оборудования; является национальной коммерческой ассоциацией США; проявляет значительную активность в разработке стандартов для проводов, коннекторов и других сетевых компонентов. Ее наиболее известный стандарт - RS-232C.
  • Министерство обороны США (Department of Defense, DoD) имеет многочисленные подразделения, занимающиеся созданием стандартов для компьютерных систем. Одной из самых известных разработок DoD является стек транспортных протоколов TCP/IP.
  • Американский национальный институт стандартов (American National Standards Institute, ANSI) - эта организация представляет США в Международной организации по стандартизации ISO. Комитеты ANSI ведут работу по разработке стандартов в различных областях вычислительной техники. Так, комитет ANSI ХЗТ9.5 совместно с фирмой IBM занимается стандартизацией локальных сетей крупных ЭВМ (архитектура сетей SNA). Известный стандарт FDDI также является результатом деятельности этого комитета ANSI. В области микрокомпьютеров ANSI разрабатывает стандарты на языки программирования, интерфейс SCSI. ANSI разработал рекомендации по переносимости для языков С, FORTRAN, COBOL.
  • Тема 1 Общие принципы построения сетей. Требования, предъявляемые к современным сетям

    Самая простая сеть (network) состоит как минимум из двух компьютеров, соединенных друг с другом кабелем. Это позволяет им использовать данные совместно. Все сети (независимо от сложности) основываются именно на этом простом принципе.

    Рис. 1.1. Автономная среда

    Сетью называется группа соединенных компьютеров и других устройств. А концепция соединенных и совместно использующих ресурсы компьютеров носит название сетевого взаимодействия

    Рис. 1.2. Простая сеть

    Компьютеры, входящие в сеть, могут совместно использовать:

    • данные;
    • принтеры;
    • факсимильные аппараты;
    • модемы;
    • другие устройства.

    Данный список постоянно пополняется, так как возникают новые способы совместного использования ресурсов.

    Первоначально компьютерные сети были небольшими и объединяли до десяти компьютеров и один принтер. Технология ограничивала размеры сети, в том числе количество компьютеров в сети и ее физическую длину. Например, в начале 1980-х годов наиболее популярный тип сетей состоял не более чем из 30 компьютеров, а длина ее кабеля не превышала 185 м (600 футов). Такие сети легко располагались в пределах одного этажа здания или небольшой организации. Для маленьких фирм подобная конфигурация подходит и сегодня. Эти сети называются локальными вычислительными сетями [ЛВС (LAN)].

    Самые первые типы локальных сетей не могли соответствовать потребностям крупных предприятий, офисы которых обычно расположены в различных местах. Но как только преимущества компьютерных сетей стали неоспоримы и сетевые программные продукты начали заполнять рынок, перед корпорациями — для сохранения конкурентоспособности — встала задача расширения сетей. Так на основе локальных сетей возникли более крупные системы.

    Сегодня, когда географические рамки сетей раздвигаются, чтобы соединить пользователей из разных городов и государств, ЛВС превращаются в глобальную вычислительную сеть [ГВС (WAN)], а количество компьютеров в сети уже может варьироваться от десятка до нескольких тысяч.

    В настоящее время большинство организаций хранит и совместно использует в сетевой среде огромные объемы жизненно важных данных. Вот почему сети сейчас так же необходимы, как еще совсем недавно были необходимы пишущие машинки и картотеки.

    Основное назначение компьютерных сетей — совместное использование ресурсов и осуществление интерактивной связи как внутри одной фирмы, так и за ее пределами. Ресурсы (resources) — это данные, приложения и периферийные устройства, такие, как внешний дисковод, принтер, мышь, модем или джойстик. Понятие интерактивной связи компьютеров подразумевает обмен сообщениями в реальном режиме времени.

    До появления компьютерных сетей каждый пользователь должен был иметь свой принтер, плоттер и другие периферийные устройства. Чтобы совместно использовать принтер, существовал единственный способ — пересесть за компьютер, подключенный к этому принтеру.

    Теперь сети позволяют целому ряду пользователей одновременно «владеть» данными и периферийными устройствами. Если нескольким пользователям надо распечатать документ, все они могут обратиться к сетевому принтеру.

    Рис. 1.4. Совместное использование принтера в сетевой среде

    До появления компьютерных сетей люди обменивались информацией примерно так:

    • передавали информацию устно (устная речь);
    • писали записки или письма (письменная речь);
    • записывали информацию на дискету, несли дискету к другому компьютеру и копировали в него данные.

    Компьютерные сети упрощают этот процесс, предоставляя пользователям доступ почти к любым типам данных.

    Сети создают отличные условия для унификации приложений (например, текстового процессора). Это значит, что на всех компьютерах в сети выполняются приложения одного типа и одной версии. Использование единого приложения поможет упростить поддержку всей сети. Действительно, проще изучить одно приложение, чем пытаться освоить сразу четыре или пять. Удобнее также иметь дело с одной версией приложения и настраивать компьютеры одинаковым образом.

    Другая привлекательная сторона сетей — наличие программ электронной почты и планирования рабочего дня. Благодаря им, управляющие крупных предприятий быстро и эффективно взаимодействуют с многочисленным штатом своих сотрудников или партнеров по бизнесу, а планирование и корректировка деятельности всей компании осуществляется с гораздо меньшими усилиями, чем прежде.

    Использование компьютерных сетей сулит множество преимуществ, в частности:

    • снижение затрат благодаря совместному использованию данных и периферийных устройств;
    • стандартизацию приложений;
    • своевременное получение данных;
    • более эффективное взаимодействие и планирование рабочего времени.

    В настоящее время компьютерные сети выходят за пределы ЛВС и вырастают в глобальные компьютерные сети (ГВС), охватывая целые страны и континенты.

    Все сети имеют некоторые общие компоненты, функции и характеристики. В их числе:

    • серверы (server) — компьютеры, предоставляющие свои ресурсы сетевым пользователям;
    • клиенты (client) — компьютеры, осуществляющие доступ к сетевым ресурсам, предоставляемым сервером;
    • среда (media) — способ соединения компьютеров;
    • совместно используемые данные — файлы, предоставляемые серверами по сети;
    • совместно используемые периферийные устройства, например принтеры, библиотеки CD-ROM и т.д., — ресурсы, предоставляемые серверами;
    • ресурсы — файлы, принтеры и другие элементы, используемые в сети

    Рис. 1.6. Типичные элементы сети

    Несмотря на определенные сходства, сети разделяются на два типа:

    • одноранговые (peer-to-peer);
    • на основе сервера (server based).

    Рис. 1.7. Простейшие примеры обоих типов сетей

    Различия между одноранговыми сетями и сетями на основе сервера имеют принципиальное значение, поскольку определяют разные возможности этих сетей. Выбор типа сети зависит от многих факторов:

    В одноранговой сети все компьютеры равноправны: нет иерархии среди компьютеров и нет выделенного (dedicated) сервера. Как правило, каждый компьютер функционирует и как клиент, и как сервер; иначе говоря, нет отдельного компьютера, ответственного за администрирование всей сети. Все пользователи самостоятельно решают, какие данные на своем компьютере сделать общедоступными по сети.

    Одноранговые сети называют также рабочими группами. Рабочая группа — это небольшой коллектив, поэтому в одноранговых сетях чаще всего не более 10 компьютеров.

    Одноранговые сети относительно просты. Поскольку каждый компьютер является одновременно и клиентом, и сервером, нет необходимости в мощном центральном сервере или в других компонентах, обязательных для более сложных сетей. Одноранговые сети обычно дешевле сетей на основе сервера, но требуют более мощных (и более дорогих) компьютеров.

    В одноранговой сети требования к производительности и к уровню защиты для сетевого программного обеспечения, как правило, ниже, чем в сетях с выделенным сервером. Выделенные серверы функционируют исключительно в качестве серверов, но не клиентов или рабочих станций (workstation). О них мы еще поговорим подробнее на этом занятии, но чуть позже.

    В такие операционные системы, как Microsoft Windows NT Workstation, Microsoft Windows for Workgroups и Microsoft Windows 95, встроена поддержка одноранговых сетей. Поэтому, чтобы установить одноранговую сеть, дополнительного программного обеспечения не требуется.

    Одноранговая сеть характеризуется рядом стандартных решений:

    • компьютеры расположены на рабочих столах пользователей;
    • пользователи сами выступают в роли администраторов и обеспечивают защиту информации;
    • для объединения компьютеров в сеть применяется простая кабельная система.

    Одноранговая сеть вполне подходит там, где:

    • количество пользователей не превышает 10 человек;
    • пользователи расположены компактно;
    • вопросы защиты данных не критичны;
    • в обозримом будущем не ожидается значительного расширения фирмы и, следовательно, сети.

    Если эти условия выполняются, то, скорее всего, выбор одноранговой сети будет правильным (чем сети на основе сервера).

    Несмотря на то, что одноранговые сети вполне удовлетворяют потребностям небольших фирм, иногда возникают ситуации, когда их использование может оказаться неуместным. Змечания относительно одноранговых сетей, которые должны быть учтены при выборе сети.

    Администрирование

    Сетевое администрирование (administration) решает ряд задач, в том числе:

    • управление работой пользователей и защитой данных;
    • обеспечение доступа к ресурсам;
    • поддержка приложений и данных;
    • установка и модернизация прикладного программного обеспечения.

    В типичной одноранговой сети системный администратор, контролирующий всю сеть, не выделяется. Каждый пользователь сам администрирует свой компьютер.

    Разделяемые ресурсы

    Требования к серверу

    В одноранговой сети каждый компьютер должен:

    • большую часть своих вычислительных ресурсов предоставлять локальному пользователю (сидящему за этим компьютером);
    • для поддержки доступа к ресурсам удаленного пользователя (обращающегося к серверу по сети) подключать дополнительные вычислительные ресурсы.

    Сеть на основе сервера требует более мощных серверов, поскольку они должны обрабатывать запросы всех клиентов сети.

    Защита

    Защита подразумевает установку пароля на разделяемый ресурс, например на каталог. Централизованно управлять защитой в одноранговой сети очень сложно, так как каждый пользователь устанавливает ее самостоятельно, да и «общие» ресурсы могут находиться на всех компьютерах, а не только на центральном сервере. Такая ситуация представляет серьезную угрозу для всей сети, кроме того, некоторые пользователи могут вообще не установить защиту. Если вопросы конфиденциальности являются принципиальными, рекомендуется выбрать сеть на основе сервера.

    Подготовка пользователя

    Поскольку в одноранговой сети каждый компьютер функционирует и как клиент, и как сервер, пользователи должны обладать достаточным уровнем знаний, чтобы работать и как пользователи, и как администраторы своего компьютера.

    Если к сети подключено более 10 пользователей, то одноранговая сеть, где компьютеры выступают в роли и клиентов, и серверов, может оказаться недостаточно производительной. Поэтому большинство сетей использует выделенные серверы. Выделенным называется такой сервер, который функционирует только как сервер (исключая функции клиента или рабочей станции). Они специально оптимизированы для быстрой обработки запросов от сетевых клиентов и для управления защитой файлов и каталогов. Сети на основе сервера стали промышленным стандартом, и именно они будут приводиться обычно в качестве примера.

    Рис. 1.9. Сеть на основе сервера

    С увеличением размеров сети и объема сетевого трафика необходимо увеличивать количество серверов. Распределение задач среди нескольких серверов гарантирует, что каждая задача будет выполняться самым эффективным способом из всех возможных.

    Круг задач, которые должны выполнять серверы, многообразен и сложен. Чтобы приспособиться к возрастающим потребностям пользователей, серверы в больших сетях стали специализированными (specialized). Например, в сети Windows NT существуют различные типы серверов.

    • Файл-серверы и принт-серверы.

    Файл-серверы и принт-серверы управляют доступом пользователей соответственно к файлам и принтерам. Например, чтобы работать с текстовым процессором, Вы прежде всего должны запустить его на своем компьютере. Документ текстового процессора, хранящийся на файл-сервере, загружается в память Вашего компьютера, и, таким образом, Вы можете работать с этим документом на своем компьютере. Другими словами, файл-сервер предназначен для хранения файлов и данных.

    • Серверы приложений.

    На серверах приложений выполняются прикладные части клиент-серверных приложений, а также находятся данные, доступные клиентам. Например, чтобы упростить извлечение данных, серверы хранят большие объемы информации в структурированном виде. Эти серверы отличаются от файл-серверов и принт-серверов. В последних файл или данные целиком копируются на запрашивающий компьютер. А в сервере приложений на запрашивающий компьютер пересылаются только результаты запроса.

    Приложение-клиент на удаленном компьютере получает доступ к данным, хранимым на сервере приложений. Однако вместо всей базы данных на Ваш компьютер с сервера загружаются только результаты запроса. Например, Вы можете получить список работников, родившихся в ноябре.

    • Почтовые серверы.

    Почтовые серверы управляют передачей электронных сообщений между пользователями сети.

    • Факс-серверы.

    Факс-серверы управляют потоком входящих и исходящих факсимильных сообщений через один или несколько факс-модемов. Коммуникационные серверы.

    • Коммуникационные серверы

    Коммуникационные серверы управляют потоком данных и почтовых сообщений между этой сетью и другими сетями, удаленными пользователями через модем и телефонную линию.

    Служба каталогов предназначена для поиска, хранения и защиты информации в сети. Windows NT Server объединяет компьютеры в логические группы — домены (domain), -система защиты которых наделяет пользователей различными правами доступа к любому сетевому ресурсу.

    В расширенной сети использование серверов разных типов приобретает особую актуальность. Необходимо поэтому учитывать все возможные нюансы, которые могут проявиться при разрастании сети, с тем, чтобы изменение роли определенного сервера в дальнейшем не отразилось на работе всей сети.

    Рис. 10.1 Специализированные среды

    Сетевой сервер и операционная система работают как единое целое. Без операционной системы даже самый мощный сервер представляет собой лишь груду железа. А операционная система позволяет реализовать потенциал аппаратных ресурсов сервера. Некоторые системы, например Microsoft Windows NT Server, были созданы специально для того, чтобы использовать преимущества наиболее передовых серверных технологий.

    Так, Windows NT Server реализует следующие возможности сервера.

    Свойства

    Симметричная многопроцессорная обработка (SMP )

    Системные и прикладные задачи распределяются между всеми доступными процессорами

    Поддержка множества платформ

    Быстрые процессоры, такие, как Intel ® 386/486 и Pentium ® , MIPS ® R 4000^, RISC и Digital Alpha AXP

    Длина имени файла/каталога

    255 символов

    Размер файла

    16 эб (эксабайтов)

    Размер раздела жесткого диска

    Примечание. Эксабайт — это довольно большое число. Оно немногим более одного миллиарда гигабайтов. Представьте: если у каждого человека на Земле, включая мужчин, женщин и детей (всего около 5 миллиардов), взять по 2000 страниц текста с объемом одной страницы в 2 Кб, то все эти страницы можно сложить в один Windows NT-файл. Даже после этого файл будет заполнен лишь на 1/16 (менее 6 процентов).

    Разделение ресурсов

    Сервер спроектирован так, чтобы предоставлять доступ к множеству файлов и принтеров, обеспечивая при этом высокую производительность и защиту.

    Администрирование и управление доступом к данным осуществляется централизованно. Ресурсы, как правило, расположены также централизованно, что облегчает их поиск и поддержку. Например, в системе Windows NT Server разделение каталогов осуществляется через File Manager.

    Защита

    Основным аргументом при выборе сети на основе сервера является, как правило, защита данных. В таких сетях, например, как Windows NT Server, проблемами безопасности может заниматься один администратор: он формирует политику безопасности (security policy) и применяет ее в отношении каждого пользователя сети.

    Резервное копирование данных

    Поскольку жизненно важная информация расположена централизованно, т.е. сосредоточена на одном или нескольких серверах, нетрудно обеспечить ее регулярное резервное копирование (backup).

    Избыточность

    Благодаря избыточным системам данные на любом сервере могут дублироваться в реальном времени, поэтому в случае повреждения основной области хранения данных информация не будет потеряна — легко воспользоваться резервной копией.

    Количество пользователей

    Сети на основе сервера способны поддерживать тысячи пользователей. Сетями такого размера, будь они одноранговыми, было бы невозможно управлять.

    Аппаратное обеспечение

    Так как компьютер пользователя не выполняет функций сервера, требования к его характеристикам зависят от потребностей самого пользователя. Типичный компьютер-клиент имеет, по крайней мере, 486-й процессор и от 8 до 16 Мб оперативной памяти.

    Существуют и комбинированные типы сетей, совмещающие лучшие качества одноранговых сетей и сетей на основе сервера.

    Многие администраторы считают, что такая сеть наиболее полно удовлетворяет их запросы, так как в ней могут функционировать оба типа операционных систем.

    Операционные системы для сетей на основе сервера, например Microsoft Windows NT Server или Novell ® NetWare ® , в этом случае отвечают за совместное использование основных приложений и данных.

    На компьютерах-клиентах могут выполняться операционные системы Microsoft Windows NT Workstation или Windows 95, которые будут управлять доступом к ресурсам выделенного сервера и в то же время предоставлять в совместное использование свои жесткие диски, а по мере необходимости разрешать доступ и к своим данным.

    Рис. 1.13. Комбинированные сети имеют выделенные серверы и компьютеры

    Комбинированные сети — наиболее распространенный тип сетей, но для их правильной реализации и надежной защиты необходимы определенные знания и навыки планирования.

    Одноранговые сети и сети на основе сервера объединяет общая цель — разделение ресурсов. А вот различия между одноранговыми серверами и выделенными серверами определяют:

    • требования к аппаратному обеспечению;
    • способ поддержки пользователей.

    Таблица 1 - Компоненты сети

    Компонент

    Одноранговая сеть

    Сеть на основе сервера

    Местонахождение разделяемых ресурсов ОЗУ

    Компьютеры пользователей. Зависит от потребностей пользователя. Для Microsoft Windows NT Workstation требуется минимум 12 Мб, однако желательно 16 Мб. Для Windows 95 желательно не менее 8 Мб

    Выделенные серверы. Как можно больше. Минимум 12 Мб. Серверы, обслуживающие тысячи клиентов, как правило, должны иметь не менее 64 Мб

    Центральный процессор

    Зависит от потребностей пользователя. Желательно не ниже 386-го. Для Windows NT Workstation необходим 80386/25 и выше или поддерживаемый RISC- процессор. Для Windows 95 — 386DX и выше

    Зависит от нагрузки на сервер. Желательно не ниже 486-го. Высокопроизводительные серверы поддерживают многопроцессорные системы

    Объем дискового пространства

    Зависит от потребностей пользователя

    Зависит от потребностей организации. Чем больше, тем лучше, но следует предусмотреть возможность дальнейшего увеличения. Для небольших организаций рекомендуется не менее 1 Гб. В суперсерверах счет идет не на гигабайты, а на количество поддерживаемых жестких дисков

    Основой для создания сети передачи данных является первичная сеть, которая представляет собой совокупность сетевых узлов, сетевых станций и линий передачи, образующую сеть типовых каналов передачи и типовых групповых трактов.

    Каналом передачи называется совокупность технических средств и среды распространения, обеспечивающая передачу сигналов электросвязи или в определенной полосе частот, или с определенной

    скоростью между двумя станциями или узлами. Канал с нормированными параметрами называется типовым.

    Групповой тракт - это совокупность технических средств, обеспечивающая передачу сигналов электросвязи или в полосе частот, или со скоростью передачи нормированной группы каналов. Если параметры группового тракта нормированы, то тракт называется типовым. Групповые тракты строятся на основе линий передачи.

    Линия передачи первичной сети - это совокупность физических цепей, линейных трактов однотипных и разнотипных систем передачи, имеющих общие среду распространения, линейные сооружения и устройства их обслуживания. Линии передачи различаются в зависимости от первичной сети, к которым они принадлежат, и от среды распространения. В настоящее время наибольшее распространение получили радиорелейные, тропосферные, проводные и спутниковые линии передачи.

    Сетевым узлом (СУ) первичной сети называется комплекс технических средств, обеспечивающий:

    организацию и транзит типовых групповых трактов и типовых каналов передачи первичной сети;

    переключение указанных трактов и каналов, принадлежащих различным линиям передачи;

    предоставление необходимого числа каналов и групповых трактов для образования вторичных сетей.

    Сетевые станции первичной сети обеспечивают организацию типовых каналов и трактов, предоставление их для образования вторичных сетей и соединения каналов и групповых трактов различных вторичных сетей между собой.

    Фрагмент первичной сети с различными линиями передачи изображен на рис. 1.6.

    Первичные сети подразделяются на местные, внутренние, зоновые и магистральные.

    Часть первичной сети, ограниченная территорией города или сельского района, называется местной первичной сетью.

    Внутризоновая первичная сеть - это часть первичной сети, ограниченная территорией, совпадающей с зоной нумерации, и обеспечивающая соединение между собой типовых групповых трактов и типовых каналов передачи разных местных первичных сетей этой зоны. Зона нумерации, как правило, совпадает с административными границами области.

    Совокупность внутризоновой первичной и местных первичных сетей на территории, совпадающей с зоной нумерации, образует зоновую первичную сеть.

    Часть первичной сети, соединяющая между собой типовые групповые тракты, а также типовые каналы передачи внутризоновых первичных сетей на всей территории страны, образует магистральную первичную сеть.

    Сетевым узлам и линиям передачи присваиваются наименования в соответствии с тем, какой первичной сети они принадлежат.

    Важным понятием, относящимся к первичным сетям, является система передачи, под которой понимается совокупность линейного тракта, типовых групповых трактов и каналов передачи первичной сети. Система передачи включает станции системы передачи и среду распространения.

    АГО - аппаратура группообразования; АУ - аппаратура уплотнения; УДК - устройство долговременной коммутации; СУ - сетевой узел; ТКП - типовой канал передачи

    В системах передачи с частотным разделением каналов (ЧРК) для передачи сигналов по каждому из каналов выделяется определенная полоса частот. Системы передачи, в которых для передачи сигналов по каждому из каналов в линейном тракте отводятся определенные интервалы времени, называются системами с временным разделением каналов (ВРК).

    На современном этапе в магистральных первичных сетях большее распространение имеют системы с частотным разделением каналов. Системы с временным делением внедряются преимущественно в местных первичных сетях.

    Основными характеристиками первичных сетей независимо от используемых систем передачи являются:

    структура, определяющая взаимное расположение сетевых узлов станций и линий передачи без учета их положения на местности;

    топология - структура с учетом реального положения на местности;

    мощность, определяемая числом типовых каналов или суммарной шириной спектра частот всех каналов связи в линии передачи;

    живучесть, которая определяет устойчивость линий передачи и узлов первичной сети к повреждениям.

    Устойчивость от повреждений определяется технической надежностью оборудования, устойчивостью от стихийных бедствий и рядом других факторов.

    Вторичные сети. Технические комплексы сетей передачи данных

    Первичные сети служат основой для создания различного рода вторичных сетей. Вторичные сети, создаваемые для различных ведомств, называются ведомственными. В этом случае на первичной сети выделяются группы каналов, по которым передаются все виды информации в интересах системы управления, относящейся к,какому-либо ведомству. Например, на общегосударственной первичной сети может быть организована вторичная сеть, обеспечивающая управление некоторой отраслью народного хозяйства. Каналы такой вторичной сети используются для передачи всех видов информации .

    По виду передаваемой информации различают, например, вторичные сети телеграфной связи, передачи данных, автоматической междугородной телефонной связи .

    Ведомственные вторичные сети в ряде случаев также разделяются по виду передаваемой информации.

    На рис. 1.7 показан возможный вариант образования ведомственных вторичных сетей.

    На базе каналов общегосударственной сети Министерства связи СССР и каналов, образованных подвижными и стационарными средствами ведомства, создается первичная сеть для системы управления этого ведомства. Данная первичная сеть служит основой для создания вторичных сетей по видам передаваемой информации. Таким образом, сеть передачи данных является вторичной сетью первичной сети соответствующего ведомства.

    Иногда совокупность вторичных сетей по видам передаваемой информации называют информационной сетью системы управления ведомства.

    Сеть передачи данных включает ряд технических комплексов, к одному из которых относится совокупность средств, образующих каналы связи первичной сети, выделенные для создания сети ПД. Выделенные каналы первичной сети обеспечивают лишь потенциальную возможность передачи информации, однако для ее реализации в соответствии с потребностями АСУ необходимо введение ряда дополнительных комплексов. К ним относятся:

    1. Комплекс средств, обеспечивающих образование каналов ПД на основе каналов первичной сети. Данный комплекс реализуется в виде совокупности отдельных образцов аппаратуры передачи данных (АПД), каждый из которых обеспечивает образование одного канала ПД и работает по фиксированному алгоритму. Такая реализация называется аппаратурной.

    В ряде случаев используется программно-аппаратурная реализация, при которой часть функции АПД выполняется программными методами в специализированных или универсальных ЭВМ.

    2. Комплекс технических средств, обеспечивающий целенаправленную передачу сообщений между абонентами сети при выполнении требований АСУ к вероятностно-временным характеристикам задержки. Этот комплекс реализуется как совокупность коммутационных станций и узлов коммутации каналов и сообщений вместе с их программным обеспечением.

    3. Комплекс средств контроля состояния технических средств и управления сетью ПД, представляющий собой совокупность организационных и технических служб, а также технических и программных средств, обеспечивающих функционирование сети ПД в изменяющихся условиях.

    4. Комплекс средств сопряжения ПД, представляющий собой совокупность устройств и алгоритмов, обеспечивающих электрическое, логическое, кодовое и алгоритмическое согласования различных элементов сети ПД, а также элементов сети с техническими средствами источников и потребителей информации.

    Элементы перечисленных комплексов рассредоточены в сети и условно могут быть объединены в проблемно-ориентированные модули (рис. 1.8), каждый из которых выполняет строго определенные задачи по передаче данных и взаимодействию с другими модулями, вычислительной системой, банком данных и терминалами. Независимо от выполняемых функций модули называются функциональными единицами сети (ФЕС).

    Модуль связи вычислительной системы (или банка данных) с сетью (СВС) осуществляет взаимодействие между разнородными ЭВМ и сетью ПД. Модуль связи терминала с сетью (СТС) обеспечивает взаимодействие между различными группами терминалов и другими элементами сети. Модуль коммуникационных функций сети (КФС), представляющий собой совокупность узлов

    коммутации, обеспечивает доставку информации от отправителя к получателю по каналам первичной сети.

    Технические и программные средства ФЕС вместе с их взаимосвязями образуют архитектуру модуля, определяющим для которой является реализованный в сети способ коммутации. В настоящее время ряд модификаций способов коммутации каналов и коммутации сообщений (рис. 1.9) рассматривается в качестве самостоятельных.

    Любая из версий коммутации каналов предусматривает два этапа. На первом этапе образуется цепочка из последовательно соединенных каналов связи между абонентами. На втором этапе осуществляется передача информации.

    В зависимости от типа каналов, используемых при построении цепочки, можно выделить коммутацию: непрерывных каналов, образованных системами с частотным уплотнением; цифровых каналов, образованных системами с временным уплотнением, и каналов ПД.

    При коммутации сообщений реального соединения абонентов не происходит, а информация в виде формализованных сообщений

    передается по маршрутам, состоящим из последовательных трактов ПД. Если на некотором этапе тракт занят или находится в состоянии отказа, то сообщение ожидает момента, когда он освободится или будет восстановлен.

    Коммутация сообщений реализуется либо в чистом виде, либо как коммутация пакетов. Различают два режима коммутации пакетов: датаграммный и виртуальных соединений.

    В сетях с коммутацией датаграмм сообщение, поступая от источника на первый же узел коммутации, разбивается на блоки, к каждому из которых добавляется необходимая служебная информация для передачи по сети. Получаемые таким образом блоки называются пакетами, кодограммами или датаграммами, имеют статус самостоятельных сообщений в сети и передаются по ней независимо друг от друга, возможно, по различным маршрутам.

    В узле коммутации (УК), к которому подключен получатель, пакеты одного сообщения накапливаются в общем случае произвольно, что делает необходимым их упорядоченную сшивку перед выдачей абоненту-получателю. При этом возможны так называемые компоновочные блокировки памяти узла, при которых его запоминающие устройства оказываются занятыми несобранными сообщениями и соответственно не могут освободиться, а недостающие пакеты не могут из-за этого быть приняты.

    В сетях с виртуальными соединениями перед передачей сообщения между абонентами устанавливается фиксированный маршрут. С этой целью абонентом-отправителем в сопряженный узел коммутации дается заявка на организацию соединения. Сопряженный узел определяет маршрут передачи и выдает команды во все промежуточные центры. Команды содержат номер соединения и номер исходящего тракта для этого соединения. Одновременно по одному и тому же каналу сети организуется несколько соединений с выделением для передачи в каждом направлении определенных временных позиций - виртуального канала, который закрепляется либо жестко, либо по методу статистического уплотнения.

    Между соседними УК непрерывно передаются кадры, содержащие пакеты сообщений, сопровождаемые номером соединения. Размеры пакетов могут быть различными. Если в какой-либо момент времени нет очередного пакета для передачи по некоторому виртуальному каналу, то его временная позиция может заниматься пакетом другого сообщения, где пакеты в избытке. В каждом узле коммутации производится разборка пакетов информации для их перераспределения по исходящим виртуальным каналам в соответствии с номерами этих каналов.

    При использовании виртуальных соединений пакеты, принадлежащие одному сообщению, поступают последовательно, что снимает проблему их упорядоченной сшивки и опасность компоновочной блокировки.

    Ряд исследований, проведенных в последние годы с целью сравнения способов коммутации, а также опыт эксплуатации

    сетей ПД позволяют сформулировать следующие наиболее общие рекомендации:

    1. С точки зрения эффективности использования каналов коммутация сообщений предпочтительнее, чем коммутация пакетов, которая в свою очередь предпочтительнее коммутации каналов. Преимущество коммутации сообщений по сравнению с коммутацией каналов проявляется значительнее в случае интенсивных потоков сообщений небольшого объема. Исходя из этого коммутация сообщений и коммутация пакетов используются в сетях при высоких интенсивностях! потоков сравнительно коротких сообщений. Коммутация каналов применяется при незначительных интенсивностях потоков сообщений большого объема.

    2. При выборе между коммутацией пакетов и коммутацией сообщений следует исходить из того, что в сетях с коммутацией пакетов могут быть достигнуты значения задержки сообщений, в несколько раз меньшие, чем в сетях с коммутацией сообщений.

    3. Коммутация пакетов или коммутация сообщений должна использоваться в сетях передачи данных при необходимости обеспечения многоадресных передач, приоритетного обслуживания сообщений, а также при высоких требованиях к надежности и верности доставки. Последнее объясняется наличием в таких сетях контроля и защиты от ошибок на всех этапах передвижения сообщений по сети. При этом следует учитывать, что приоритетное обслуживание и многоадресные передачи реализуемы только в датаграммном режиме сетей с пакетной (коммутацией.

    Вопрос об использовании сетей ПД с коммутацией каналов в настоящее время достаточно не изучен, однако можно предположить, что такой режим окажется эффективным для передачи очень больших объемов информации при высоких требованиях к верности. В сетях с коммутацией первичных каналов обеспечить высокую верность достаточно сложно ввиду низкого качества составных каналов.

    Если абоненты предъявляют различные требования к процессу передачи информации и потоки передаваемых ими сообщений имеют различные интенсивности и объемы, то может оказаться целесообразным совместное использование различных способов коммутации. При этом обычно предусматривается единый узел коммутации с предоставлением абонентам возможности самостоятельного выбора способа коммутации.

    Тема. Сетевые информационные технологии

    Лекция 1 Компьютерные сети

    Классификация компьютерных сетей.

    Программное обеспечение компьютерных сетей.

    Общие сведения о сетях, принципы построения компьютерных сетей.

    В настоящее время наиболее важным применением компьютеров является использование сетей, обеспечивающих единое информационное пространство для многих пользователей. Особенно наглядно этот процесс проявляется на примере всемирной компьютерной сети Internet.

    Децентрализация процессов обработки данных реализовывалась по двум направлениям:

    1. путем подключения к отдельным ЭВМ (или комплексу ЭВМ, объединенных в рамках вычислительного центра (ВЦ)) множества абонентских пунктов пользователей, т.е. создания систем телеобработки данных

    2. путем создания вычислительных сетей, в которых осуществлялось объединение между собой множества территориально удаленных друг от друга ЭВМ или ВЦ.

    Компьютерной сетью называется совокупность взаимосвязанных через каналы передачи данных компьютеров, обеспечивающих пользователей средствами обмена информацией и коллективного использования ресурсов сети: аппаратных, программных и информационных.

    Объединение компьютеров в сеть позволяет совместно использовать дорогостоящее оборудование - диски большой емкости, принтеры, основную память, иметь общие программные средства и данные.

    Основным назначением сети является обеспечение простого, удобного и надежного доступа пользователя к распределенным общесетевым ресурсам и организация их коллективного использования при надежной защите от несанкционированного доступа, а также обеспечение удобных и надежных средств передачи данных между пользователями сети.

    Кроме того, компьютерные сети позволяют автоматизировать управление производством, транспортом, материально-техническим снабжением в масштабе отдельных регионов и страны в целом.

    Возможность концентрации в сетях больших объемов данных, общедоступность этих данных, а также программных и аппаратных средств обработки и высокая надежность их функционирования позволяет улучшить информационное обслуживание пользователей и резко повысить эффективность применения вычислительной техники.

    В условиях компьютерной сети предусмотрена возможность:

    · организовать параллельную обработку данных многими компьютерами;

    · создавать распределенные базы данных, размещаемые в памяти различных компьютеров;

    · специализировать отдельные компьютеры (их группы) для эффективного решения определенных классов задач;

    · автоматизировать обмен информацией и программами между отдельными компьютерами и пользователя сети;

    · резервировать вычислительные мощности и средства передачи данных на случай выхода из строя отдельных из них с целью быстрого восстановления нормальной работы сети;

    · перераспределять вычислительные мощности между пользователями сети в зависимости от изменения их потребностей и сложности решаемых задач;

    · стабилизировать и повышать уровень загрузки компьютеров и дорогостоящего периферийного оборудования;

    · сочетать работу в широком диапазоне режимов: диалоговом, пакетном, режимах «запрос-ответ», а также сбора, передачи и обмена информацией.

    Как показывает практика, за счет расширения возможностей обработки данных, лучшей загрузки ресурсов и повышения надежности функционирования системы в целом стоимость обработки данных в вычислительных компьютерных сетях не менее чем в полтора раза ниже по сравнению с обработкой аналогичных данных на автономных ЭВМ.


    В общем случае, в сеть могут объединяться компьютеры разных модификаций, а каналы связи - иметь разные характеристики. Поэтому важными являются: 1) разработка единых правил обмена информацией в сети (протоколов) и 2) стандартизация оборудования. Приоритет в области стандартизации связи принадлежит Международному комитету по телеграфии и телефонии (МКТТ). Он. Действуя совместно с комитетом 802 Института инженеров по электротехнике и электронике США (IEEE), принял эталонную логическую модель сети, которая предусматривает выделение семи уровней со строго определенными задачами:

    Рис.– Базовая модель взаимодействия открытых систем OSI
    (Open System Interconnection)

    Логическая модель передачи информации в сети

    УРОВЕНЬ ПРИКЛАДНЫХ ПРОГРАММ (ПРИКЛАДНОЙ) Программы пользователя; обслуживание бесперебойной работы
    УРОВЕНЬ ПРЕДСТАВЛЕНИЯ Преобразование информации; настройка задач на операционную среду
    УРОВЕНЬ ОБМЕНА (СЕАНСОВЫЙ) Организация и синхронизация диалога; процесс обмена информацией
    УРОВЕНЬ ПРИЕМА-ПЕРЕДАЧИ (ТРАНСПОРТНЫЙ) Обеспечение надежности обмена информацией между конечными пользователями
    СЕТЕВОЙ УРОВЕНЬ Конфигурация носителей информации при соединении участков сети
    УРОВЕНЬ КАНАЛА СВЯЗИ (КАНАЛЬНЫЙ) Обеспечение надежности передачи на участке сети
    ФИЗИЧЕСКИЙ УРОВЕНЬ Передача цифровых данных через физический носитель

    Физический и канальный уровни образуют нижнюю группу и непосредственно связаны с каналом передачи данных: физический осуществляет сопряжение с каналом, а канальный – управление передачей информации по каналу. Сетевой и транспортный уровни «прокладывают» путь информации между системой-отправителем и системой-получателем и управляют процессом передачи по этому пути. Сеансовый , прикладной и уровень представления данных непосредственно связаны с организацией взаимодействия прикладных программ пользователей, а также с вводом, хранением, обработкой данных и выдачей результатов. Каждый из уровней выполняет указания уровня, расположенного над ним.

    Сетевой протокол - набор правил и соглашений, используемых при передаче данных между компьютерами в сети. Протокольный стек – комплект протоколов нескольких смежных уровней (пример: TCP/IP).

    Прикладной уровень высший уровень модели, обеспечивающий прикладной программе пользователя доступ к сетевым ресурсам.

    Примеры протоколов:

    FTP (File Transfer Protocol) – пересылка файлов;

    X.400 – передача сообщений электронной почты;

    Telnet – эмуляция удаленного терминала.

    Уровень представления данных обеспечивает преобразование кодов (например, из KOI8-P в Windows 1251), форматов файлов, сжатие и распаковку, шифрование и дешифрование.

    Пример протокола: SSL (Secure Socket Layer) – обеспечивает конфиденциальность передачи данных в стеке TCP/IP.

    Сеансовый уровень – обеспечивает инициализацию и завершение сеанса-диалога между устройствами, надежность соединения до конца сеанса, обработку ошибок, повторную передачу.

    Пример протокола: NetBIOS (Network Basic Input/Output System).

    Транспортный уровень – отвечает за передачу данных от источника к получателю. Здесь:

    ‒ данные разбиваются на несколько нумерованных пакетов;

    ‒ определяются пути передачи;

    ‒ на приемной стороне данные собираются и в нужном порядке передаются на сеансовый уровень

    Примеры протоколов:

    ‒ TCP (Transmission Control Protocol) – протокол передачи данных с установлением соединения;

    ‒ UDP (User Datagram Protocol) - протокол передачи данных без установления соединения.

    Сетевой уровень – отвечает за:

    ‒ адресацию;

    ‒ поиск пути от источника к получателю;

    ‒ установление и обслуживание логической связи между узлами.

    Примеры протоколов:

    ‒ ARP (Address Resolution Protocol) – взаимное преобразование аппаратных и сетевых адресов;

    ‒ IP (Internet Protocol) - протокол доставки дейтаграмм, основа стека TCP/IP.

    Канальный уровень – обеспечивает:

    ‒ формирование кадров, передаваемых через физический уровень;

    ‒ контроль ошибок;

    ‒ управление потоком данных.

    Физический уровень – нижний уровень, обеспечивающий физическое кодирование бит кадра в электрические сигналы и передачу их по линиям связи. Определяет тип кабелей и разъемов,назначение контактов и формат физических сигналов.

    Примеры протоколов:

    IEEE 802.5 – Tokeng Ring;

    IEEE 802.3 - Ethernet.

    Задача всех семи уровней – обеспечить надежное взаимодействие прикладных (информационных) процессов. При этом каждый уровень выполняет возложенную на него задачу. Однако уровни работают так, чтобы в нужных случаях можно было проверить работу других уровней. Так, если канальный уровень случайно пропустит ошибку, появившуюся при передаче информации, то ее определит и исправит транспортный уровень.

    Некоторое представление о различиях логических уровней сети можно получить при рассмотрении следующего примера. Представьте себе, что два человека (президенты разных стран) захотят обменяться своими мыслями и жизненным опытом, причем один из них живет в нашей стране, а другой - в США. Перед нашими героями возникнут две проблемы: язык общения и техническое обеспечение связи. Техническая сторона проблемы решается установлением связи, например, по проводной линии передач. Для решения проблемы языка придется прибегнуть к помощи двух переводчиков. В результате - на уровне президентов безразлично, какой язык общения выбрали для себя переводчики и как они об этом договорились, главное, что каждый президент общается со своим переводчиком на родном языке.

    Для переводчиков безразлично то, как установлена связь: через спутник или через кабельную линию, главное, что они слышат друг друга. С точки зрения линии связи абсолютно не важно кто и что говорит, главное - обеспечить хорошую слышимость. Таким образом, у каждого уровня свои строго определенные функции, и каждый вышестоящий опирается на возможности нижестоящего.

    Основная функция систем передачи данных в условиях функционирования компьютерных сетей заключается в организации быстрой и надежной передачи информации произвольным абонентам сети, а также в сокращении затрат на передачу данных. Последнее особенно важно, так как за прошедшее время произошло увеличение доли затрат на передачу данных в общей структуре затрат на организацию сетевой обработки информации. Это объясняется главным образом тем, что затраты на техническое обеспечение компьютерных сетей сократились за этот период примерно в десять раз, тогда как затраты на организацию и эксплуатацию каналов связи сократились только в два раза.

    Аппаратные компоненты компьютерной сети:

    – Рабочая станция – подключенный к сети компьютер, на котором пользователь выполняет свою работу. Каждая РС использует свою ОС.

    – Сервер сети – мощный постоянно подключенный к сети компьютер, предоставляющий пользователям сети определенные услуги (хранение общих данных, печать заданий и т. д.)

    Серверы сети.

    Файловый сервер – компьютер, хранящий общие данные и обеспечивающий одновременный согласованный доступ пользователей к этим данным.

    Сервер прикладных программ – компьютер, который используется для выполнения прикладных программ пользователей.

    Сервер баз данных выполняет функции: хранение БД, поддержку их целостности, полноты, актуальности; прием, обработку запросов к БД и отправку результатов пользователям; обеспечение авторизованного доступа к БД, разграничение доступа; согласование изменений данных, вносимых разными пользователями; поддержку распределенных БД.

    Коммуникационный сервер – компьютер, который предоставляет пользователям прозрачный доступ к своим последовательным портам ввода-вывода.

    Сервер доступа – компьютер, позволяющий проводить удаленную обработку заданий.

    Факс-сервер – компьютер, который осуществляет рассылку факсов.

    Сервер резервного копирования данных – компьютер, который решает задачи создания, хранения и восстановления копий данных, расположенных на файловых серверах и рабочих станциях.

    Коммуникационные узлы:

    – повторитель – repeater (концентратор - hub) – устройство, усиливающее или регенерирующее пришедший сигнал;

    – коммутатор – switch, (мост - bridge) – в отличие от повторителя, выполняет развязку присоединенных сегментов;

    – маршрутизатор – router – соединяет сети с одинаковыми протоколами обмена данными. Анализируя адрес назначения, он выбирает оптимальный маршрут;

    – шлюз – gateway – соединяет сети с разными протоколами обмена данными.

    Устройства для подключения компьютеров к линиям связи:

    Сетевая карта (адаптер) – устройство для физического подключения компьютера к локальной сети. Имеет уникальный номер.

    – Модем – устройство, предназначенное для обмена информацией между удаленными компьютерами по каналам связи (выполняет преобразование компьютерных данных в звуковой аналоговый сигнал для передачи по телефонной линии (модуляция), а также обратное преобразование (демодуляция))

    Линии связи:

    – Кабели (коаксиальный, витая пара);

    Телефонные линии;

    Оптоволоконные линии;

    – Радиосвязь, спутниковая связь.

    Характеристики линий связи :

    – амплитудно-частотная характеристика

    – полоса пропускания

    – затухание

    – помехоустойчивость

    – перекрестные наводки на ближнем конце линии

    – пропускная способность

    – достоверность передачи данных

    – удельная стоимость.

    Основная характеристика: пропускная способность – Бит/с (кБит/с, МБит/с).

    Важнейшая характеристика сетей передачи данных - время доставки информации - зависит от структуры сети передачи даны, пропускной способности линий связи, а также от способа соединения каналов связи между взаимодействующими абонентами сети и способа передачи данных по этим каналам. В настоящее время различают системы передачи данных: 1) с постоянным включением каналов связи (некоммутируемые каналы связи) и 2) с коммутацией на время передачи информации по этим каналам.

    1) При использовании некоммутируемых каналов связи средства приема-передачи абонентских пунктов и компьютеры постоянно соединены между собой, т.е. находятся в режиме «on-line». В этом случае отсутствуют потери времени на коммутацию, обеспечиваются высокая степень готовности системы к передаче информации, более высокая надежность каналов связи и, как следствие, достоверность передачи информации. Недостатками такого способа организации связи являются низкий коэффициент использования аппаратуры передачи данных и линии связи, высокие расходы на эксплуатацию сети. Рентабельность подобных сетей достигается только при условии достаточно полной загрузки этих каналов.

    2) При коммутации абонентских пунктов и компьютеров только на время передачи информации (т.е. нормальным режимом, для которых является режим «off-line») принцип построения узла коммутации определяется способами организации прохождения информации в сетях передачи данных. Существуют три основных способа подготовки и передачи информации в сетях, основанных на коммутации: каналов, сообщений и пакетов

    Коммутация каналов . Способ коммутации каналов заключается в установлении физического канала связи для передачи данных непосредственно между абонентами сети. При использовании коммутируемых каналов тракт (путь) передачи данных образуется из самих каналов связи и устройств коммутации, расположенных в узлах связи

    Установление соединения заключается в том, что абонент посылает в канал связи заданный набор символов, прохождение которых по сети через соответствующие узлы коммутации вызывает установку нужного соединения с вызываемым абонентом. Этот транзитный канал образуется в начале сеанса связи, остается фиксированным на период передачи всей информации и разрывается только после завершения передачи информации.

    Такой способ соединения используется в основном в сетях, где требуется обеспечить непрерывность передачи сообщений (например, при использовании телефонных каналов связи и абонентского телеграфа). В этом случае связь абонентов возможна только при условии использования ими однотипной аппаратуры, одинаковых каналов связи, а также единых кодов.

    К достоинствам данного способа организации соединения абонентов сети следует отнести:

    · гибкость системы соединения в зависимости от изменения потребностей;

    · высокую экономичность использования каналов, достигаемую за счет их эксплуатации только в течение времени установления связи и непосредственно передачи данных;

    · невысокие расходы на эксплуатацию каналов связи (на порядок.меньше, чем при эксплуатации некоммутируемых линий связи).

    Способ коммутации каналов более оперативный, так как позволяет вести непрерывный двусторонний обмен информацией между двумя абонентами.

    Недостатками коммутируемых каналов связи является необходимость использования специальных и коммутирующих устройств, которые снижают скорость передачи данных и достоверность передаваемой информации. Использование специальных методов и средств, обеспечивающих повышение достоверности передачи информации в сети, влечет за собой снижение скорости передачи данных за счет:

    · увеличения объема передаваемой информации, вызванного необходимостью введения избыточных знаков;

    · потерь времени на кодирование информации в узле-передатчике и декодирование, логический контроль и другие преобразования - в узле-приемнике.

    Наконец, сокращение потоков информации ниже пропускной способности аппаратной части и каналов связи ведет к недогрузке канала, а в период пиковой нагрузки может вызвать определенные потери вызовов.

    Коммутация сообщений . При коммутации сообщений поступающая на узел связи информация передается в память узла связи, после чего анализируется адрес получателя. В зависимости от занятости требуемого канала сообщение либо передается в память соседнего узла, либо становится в очередь для последующей передачи. Таким образом, способ коммутации сообщений обеспечивает поэтапный характер передачи информации, В этом случае сообщения содержат адресный признак (заголовок), в соответствии с которым осуществляется автоматическая передача информации в сети от абонента-передатчика к абоненту-приемнику. Все функции согласования работы отдельных участков сети связи, а также управление передачей сообщений и их соответствующую обработку выполняют центры (узлы) коммутации сообщений. Основное функциональное назначение центра коммутации сообщений - обеспечить автоматическую передачу информации от абонента к абоненту в соответствии с адресным признаком сообщения и требованиями к качеству и надежности связи.

    Метод коммутации сообщений обеспечивает независимость работы отдельных участков сети, что значительно повышает эффективность использования каналов связи при передаче одного и того же объема информации (которая в этом случае может достигать 80 - 90% от максимального значения). В системе с коммутацией сообщений происходит сглаживание несогласованности в пропускной способности каналов и более эффективно реализуется передача многоадресных сообщений (так как не требуется одновременного освобождения всех каналов между узлом-передатчиком и узлом-приемником). Передача информации может производиться в любое время, так как прямая связь абонентов друг с другом необязательна.

    Для более полной загрузки каналов и их эффективного использования возможно совместное применение перечисленных методов коммутации, основой которого служат следующие условия:

    · использование в одном и том же узле связи аппаратуры для коммутации каналов и для коммутации сообщений (того или иного способа коммутации в узле осуществляется в зависимости от загрузки каналов связи);

    · организация сети с коммутацией каналов для узлов верхних уровней иерархии и коммутации сообщений для нижних уровней.

    Коммутация пакетов . Еще один способ коммутации абонентов сети - так называемая коммутация пакетов. Этот способ сочетает в себе ряд преимуществ методов коммутации каналов и коммутации сообщений. При коммутации пакетов перед началом передачи сообщение разбивается на короткие пакеты фиксированной длины, которые затем передаются по сети. В пункте назначения эти пакеты вновь объединяются в первоначальное сообщение, а так как их длительное хранение в запоминающем устройстве узла связи не предполагается, пакеты передаются от узла к узлу с минимальной задержкой во времени. В этом отношении указанный метод близок методу коммутации каналов.

    При коммутации пакетов их фиксированная длина обеспечивает эффективность обработки пакетов, предотвращает блокировку линий связи и значительно уменьшает емкость требуемой промежуточной памяти узлов связи. Кроме того, сокращается время задержки при передаче информации, т.е. скорость передачи информации превышает аналогичную скорость при методе коммутации сообщений.

    К недостаткам метода следует отнести односторонний характер связи между абонентами сети.

    Различают два основных типа систем связи с коммутацией пакетов:

    · в системах первого типа устройство коммутации анализирует адрес места назначения каждого принятого пакета и определяет канал, необходимый для передачи информации;

    · в системах второго типа пакеты рассылаются по всем каналам и терминалам, каждый канал (терминал), в свою очередь, проанализировав адрес места назначения пакета и сравнив его с собственным, осуществляет прием и дальнейшую передачу (обработку) пакета либо игнорирует его.

    Первый тип систем коммутации пакетов характерен для глобальных сетей с огромным числом каналов связи и терминалов, второй тип применим для сравнительно замкнутых сетей с небольшим числом абонентов.

    Сопряжение компьютеров и устройств в сетях. Существенное влияние на организацию систем обработки данных оказывают технические возможности средств, используемых для сопряжения (комплексирования) компьютеров и других устройств. Основным элементом сопряжения является интерфейс, определяющий число линий, используемых для передачи сигналов и данных, а также способ (алгоритм) передачи информации по линиям связи.

    Все интерфейсы, используемые в ВТ и сетях, разделяются на три вида: параллельные, последовательные, связные.

    Параллельный интерфейс состоит из большого числа линий, по которым передача данных осуществляется в параллельном коде (обычно в виде 8-128 разрядных слов). Параллельный интерфейс обладает большой пропускной способностью: порядка 10 4 -10 5 бод (бит/с). Столь большие скорости передачи данных обеспечиваются за счет ограниченной длины интерфейса (обычно от нескольких метров до десятков (очень редко до сотни) метров).

    Последовательный интерфейс состоит, как правило, из одной линии, данные по которой передаются в последовательном коде. Пропускная способность последовательного интерфейса составляет 10 3 - 10 4 бит/с при длине линии интерфейса от десятков метров до километра.

    Связные интерфейсы содержат каналы связи, работа которых обеспечивается аппаратурой передачи данных, повышающей (в основном с помощью специальных физических методов) достоверность передачи данных. Связные интерфейсы обеспечивают передачу данных на любые расстояния, однако с небольшой скоростью (в пределах 10 2 -10 3 бит/с). Применение связных интерфейсов экономически целесообразно на расстоянии не менее километра.


    Похожая информация.




    Есть вопросы?

    Сообщить об опечатке

    Текст, который будет отправлен нашим редакторам: