Простейший расчет силовых трансформаторов и автотрансформаторов. Расчет трансформатора с тороидальным магнитопроводом

Возникла необходимость в мощном блоке питания. В моём случае имеются два магнитопровода броневой-ленточный и тороидальный. Броневой тип: ШЛ32х50(72х18) . Тороидальный тип: ОЛ70/110-60.

ИСХОДНЫЕ ДАННЫЕ для расчёта трансформатора с тороидальным магнитопроводом:

  • напряжение первичной обмотки, U1 = 220 В;
  • напряжение вторичной обмотки, U2 = 36 В;
  • ток вторичной обмотки, l2 = 4 А;
  • внешний диаметр сердечника, D = 110 мм;
  • внутренний диаметр сердечника, d = 68 мм;
  • высота сердечника, h = 60 мм.

Расчет трансформатора с магнитопроводом типа ШЛ32х50(72х18) показал, что выдать напряжение 36 вольт с силой тока 4 ампера сам сердечник в состоянии, но намотать вторичную обмотку возможно не получится, из-за недостаточной площади окна. Приступаем к расчёту трансформатора с магнитопроводом типа ОЛ70/110-60.

Программный (он-лайн) расчет, позволит налету экспериментировать с параметрами и сократить время на разработку. Также можно рассчитать и по формулам, они приведены ниже. Описание вводимых и расчётных полей программы: поле светло-голубого цвета - исходные данные для расчёта, поле жёлтого цвета - данные выбранные автоматически из таблиц, в случае установки флажка для корректировки этих значений, поле меняет цвет на светло-голубой и позволяет вводить собственные значения, поле зелёного цвета - рассчитанное значение.

Формулы и таблицы для ручного расчет трансформатора:

1. Мощность вторичной обмотки;

2. Габаритная мощность трансформатора;

3. Фактическое сечение стали магнитопровода в месте расположения катушки трансформатора;

4. Расчётное сечение стали магнитопровода в месте расположения катушки трансформатора;

5. Фактическая площадь сечения окна сердечника;

6. Величина номинального тока первичной обмотки;

7. Расчёт сечения провода для каждой из обмоток (для I1 и I2);

8. Расчет диаметра проводов в каждой обмотке без учета толщины изоляции;

9. Расчет числа витков в обмотках трансформатора;

n - номер обмотки,
U’ - падение напряжения в обмотках, выраженное в процентах от номинального значения, см. таблицу.

В тороидальных трансформаторах относительная величина полного падения напряжения в обмотках значительно меньше по сравнению с броневыми трансформаторами.

10. Расчет числа витков приходящихся на один вольт;

11. Формула для расчёта максимальной мощности которую может отдать магнитопровод;

Sст ф - фактическое сечение стали имеющегося магнитопровода в месте расположения катушки;

Sок ф - фактическая площадь окна в имеющемся магнитопроводе;

Вмах- магнитная индукция, см. табл.№5;

J - плотность тока, см. табл.№3;

Кок - коэффициент заполнения окна, см. табл.№6;

Кст - коэффициент заполнения магнитопровода сталью, см. табл.№7;

Величины электромагнитных нагрузок Вмах и J зависят от мощности, снимаемой со вторичной обмотки цепи трансформатора, и берутся для расчетов из таблиц.

Определив величину Sст*Sок, можно выбрать необходимый линейный размер магнитопровода, имеющий соотношение площадей не менее, чем получено в результате расчета.

Для изготовления трансформаторных блоков питания необходим силовой однофазный трансформатор, который понижает переменное напряжение электросети 220 вольт до необходимых 12-30 вольт, которое затем выпрямляется диодным мостом и фильтруется электролитическим конденсатором. Эти преобразования электрического тока необходимы, поскольку любая электронная аппаратура собрана на транзисторах и микросхемах, которым обычно требуется напряжение не более 5-12 вольт.

Чтобы самостоятельно собрать блок питания , начинающему радиолюбителю требуется найти или приобрести подходящий трансформатор для будущего блока питания. В исключительных случаях можно изготовить силовой трансформатор самостоятельно. Такие рекомендации можно встретить на страницах старых книг по радиоэлектронике.

Но в настоящее время проще найти или купить готовый трансформатор и использовать его для изготовления своего блока питания.

Полный расчёт и самостоятельное изготовление трансформатора для начинающего радиолюбителя довольно сложная задача. Но есть иной путь. Можно использовать бывший в употреблении, но исправный трансформатор. Для питания большинства самодельных конструкций хватит и маломощного блока питания, мощностью 7-15 Ватт.

Если трансформатор приобретается в магазине, то особых проблем с подбором нужного трансформатора, как правило, не возникает. У нового изделия обозначены все его главные параметры, такие как мощность , входное напряжение ,выходное напряжение , а также количество вторичных обмоток, если их больше одной.

Но если в ваши руки попал трансформатор, который уже поработал в каком-либо приборе и вы хотите его вторично использовать для конструирования своего блока питания? Как определить мощность трансформатора хотя бы приблизительно? Мощность трансформатора весьма важный параметр, поскольку от него напрямую будет зависеть надёжность собранного вами блока питания или другого устройства. Как известно, потребляемая электронным прибором мощность зависит от потребляемого им тока и напряжения, которое требуется для его нормальной работы. Ориентировочно эту мощность можно определить, умножив потребляемый прибором ток (I н на напряжение питания прибора (U н ). Думаю, многие знакомы с этой формулой ещё по школе.

P=U н * I н

Где U н – напряжение в вольтах; I н – ток в амперах; P – мощность в ваттах.

Рассмотрим определение мощности трансформатора на реальном примере. Тренироваться будем на трансформаторе ТП114-163М. Это трансформатор броневого типа, который собран из штампованных Ш-образных и прямых пластин. Стоит отметить, что трансформаторы такого типа не самые лучшие с точки зрения коэффициента полезного действия (КПД ). Но радует то, что такие трансформаторы широко распространены, часто применяются в электронике и их легко найти на прилавках радиомагазинов или же в старой и неисправной радиоаппаратуре. К тому же стоят они дешевле тороидальных (или, по-другому, кольцевых) трансформаторов, которые обладают большим КПД и используются в достаточно мощной радиоаппаратуре.

Итак, перед нами трансформатор ТП114-163М. Попробуем ориентировочно определить его мощность. За основу расчётов примем рекомендации из популярной книги В.Г. Борисова «Юный радиолюбитель».

Для определения мощности трансформатора необходимо рассчитать сечение его магнитопровода. Применительно к трансформатору ТП114-163М, магнитопровод – это набор штампованных Ш-образных и прямых пластин выполненных из электротехнической стали. Так вот, для определения сечения необходимо умножить толщину набора пластин (см. фото) на ширину центрального лепестка Ш-образной пластины.

При вычислениях нужно соблюдать размерность. Толщину набора и ширину центрального лепестка лучше мерить в сантиметрах. Вычисления также нужно производить в сантиметрах. Итак, толщина набора изучаемого трансформатора составила около 2 сантиметров.

Далее замеряем линейкой ширину центрального лепестка. Это уже задача посложнее. Дело в том, что трансформатор ТП114-163М имеет плотный набор и пластмассовый каркас. Поэтому центральный лепесток Ш-образной пластины практически не видно, он закрыт пластиной, и определить его ширину довольно трудно.

Ширину центрального лепестка можно замерить у боковой, самой первой Ш-образной пластины в зазоре между пластмассовым каркасом. Первая пластина не дополняется прямой пластиной и поэтому виден край центрального лепестка Ш-образной пластины. Ширина его составила около 1,7 сантиметра. Хотя приводимый расчёт и являетсяориентировочным , но всё же желательно как можно точнее проводить измерения.

Перемножаем толщину набора магнитопровода (2 см .) и ширину центрального лепестка пластины (1,7 см .). Получаем сечение магнитопровода – 3,4 см 2 . Далее нам понадобиться следующая формула.

Где S - площадь сечения магнитопровода; P тр - мощность трансформатора; 1,3 - усреднённый коэффициент.

После нехитрых преобразований получаем упрощённую формулу для расчёта мощности трансформатора по сечению его магнитопровода. Вот она.

Подставим в формулу значение сечения S = 3,4 см 2 , которое мы получили ранее.

В результате расчётов получаем ориентировочное значение мощности трансформатора ~ 7 Ватт. Такого трансформатора вполне достаточно, чтобы собрать блок питания для монофонического усилителя звуковой частоты на 3-5 ватт, например, на базе микросхемы усилителя TDA2003.

Вот ещё один из трансформаторов. Маркирован как PDPC24-35. Это один из представителей трансформаторов - «малюток». Трансформатор очень миниатюрный и, естественно, маломощный. Ширина центрального лепестка Ш-образной пластины составляет всего 6 миллиметров (0,6 см.).

Толщина набора пластин всего магнитопровода – 2 сантиметра. По формуле мощность данного мини-трансформатора получается равной около 1 Вт.

Данный трансформатор имеет две вторичные обмотки, максимально допустимый ток которых достаточно мал, и составляет десятки миллиампер. Такой трансформатор можно использовать только лишь для питания схем с малым потреблением тока.

В данной статье вы узнаете что такое трансформатор. Покажем конструкцию силового трансформатора.

Что такое трансформатор

Трансформатор — устройство, в котором переменный ток одного напряжения преобразовывается в переменный ток другого напряжения. При этом преобразовании напряжений одновременно всегда происходит также преобразование силы тока: если трансформатор повышает напряжение, то сила тока при этом уменьшается.

Трансформатор представляет собой стальной сердечник с двумя катушками, имеющими обмотки. Одна из обмоток называется первичной, другая – вторичной. При прохождении переменного тока по первичной обмотке в сердечнике появляется переменный магнитный поток, который возбуждает ЭДС во вторичной обмотке. Сила тока во вторичной обмотке, не присоединенной к цепи, потребляющей энергию, равна нулю. Если цепь подсоединена и происходит потребление электроэнергии, то в соответствии с законом сохранения энергии сила тока в первичной обмотке пропорционально возрастает. Таким образом, и происходит преобразование и распределение электрической энергии.

Схематическое устройство трансформатора показано на рисунке.

На общем сердечнике (обычно из трансформаторной стали) расположены две обмотки. По одной из обмоток I, называемой первичной, под действием переменного напряжения U 1 проходит переменный ток I 1 . Этот ток создает в сердечнике переменный магнитный поток, изменяющийся по своей величине и направлению в соответствии с изменениями тока I 1 . Переменный магнитный поток пронизывает витки второй обмотки II, называемой вторичной обмоткой, и индуктирует в каждом из ее витков определенную переменную ЭДС. Так как все витки обмотки II соединены последовательно, то отдельные ЭДС каждого витка складываются, а на концах вторичной обмотки получается суммарная ЭДС, также переменная по величине и направлению.

Обычно трансформаторы конструируются так, что падение напряжения во вторичной обмотке невелико (порядка 2 — 5%); поэтому с известным допущением можно принять, что на концах вторичной обмотки напряжение U 2 равно её ЭДС. Это напряжение U 2 будет во столько раз больше (или меньше) напряжения первичной обмотки U 1 n 2 n 1 первичной.

Ток во вторичной обмотке I 2 наоборот, будет во столько раз меньше (или больше) тока первичной обмотки I 1 , во сколько раз число витков n 2 вторичной обмотки больше или меньше) числа витков n 1 первичной.

Отношение числа витков питаемой от сети обмотки к числу витков другой обмотки или одного напряжения (первичного) к другому (вторичному) называется коэффициентом трансформации и обозначается буквой К :

Часто коэффициент трансформации выражается соотношением двух чисел, например 1:55, показывающим, что число витков первичной обмотки в 55 раз меньше числа витков вторичной.

Конструкция силового трансформатора

Сердечники силовых трансформаторов бывают: Ш-образный (рис) у которого магнитный поток разветвляется на две ветви, и П-образный (рис) с неразветвленным магнитным потоком. Первый вид сердечников, называемый броневым, применяется более часто, чем второй — стержневой. Ещё бывает третий тип силового трансформатора – спиральный (или ленточный), который является разновидностью первых двух.

Для уменьшения потерь в сердечнике, последний делается не сплошным, а из отдельных тонких листов стали, оклеенных бумагой или покрытых изолирующим лаком. Толщина пластин составляет от 0,25 до 0,5 мм, чаще всего 0,3 — 0,35 мм.

В настоящее время пакеты пластин для трансформаторов малой и средней мощности (до 200 Ватт) собираются в основном из двух типов пластин (рис): Ш-образных и прямых (накладок). Применение прямых пластин (накладок) дает возможность делать у некоторых трансформаторов (например, у выходных) воздушный зазор в сердечнике.

Сборка пластин производится одним из двух способов. При одном способе — встык — собираются отдельно две части сердечника, которые затем прикладываются друг к другу (рис) и стягиваются болтами и накладками. При другом способе — вперекрышку — пластины накладываются друг на друга в порядке, указанном на рисунке.

Сердечник трансформатора должен быть крепко стянут, в противном случае при работе трансформатора сердечник будет гудеть. Хотя гудение и не оказывает существенного влияния на работу трансформатора, но оно неприятно действует на слух. Обмотки трансформатора располагаются на каркасе, который одевается на сердечник. Каркас, как правило изготавливается из картона, или прессшпана.

При использовании Ш-образного сердечника все обмотки трансформатора размещаются на одном каркасе, надеваемом на средний стержень сердечника. При П-образном сердечнике обмотка располагается или на одном или на двух каркасах, надеваемых соответственно на один или оба стержня сердечника.

В трансформаторах наиболее часто применяется цилиндрическая намотка: на каркас сперва наматывается первичная обмотка, на которую для изоляции укладывается несколько слоев бумаги, а затем поверх этой изоляции наматывается вторичная обмотка. Если таких вторичных обмоток будет несколько, то между каждыми двумя обмотками прокладывается изоляция из 2 — 3 слоев бумаги. При большом числе витков в обмотке, например при повышающей намотке, через каждые 2 — 3 слоя следует обязательно прокладывать бумажные изолирующие прокладки.

Расчёт силового трансформатора

Точный расчет трансформатора довольно сложен, но радиолюбитель может сконструировать силовой трансформатор, пользуясь для расчета упрощенными формулами, которые приводятся ниже.

Для расчета предварительно необходимо определить, исходя из заданных условий величины напряжений и сил токов для каждой из обмоток. Сначала подсчитывается мощность каждой из вторичных (повышающих, понижающих) обмоток:

где Р 2 , Р 3 , Р 4 — мощности (Вт), отдаваемые обмотками трансформатора;
I 2 , I 3 , I 4 — силы токов (А);
U 2 , U 3 , U 4 — напряжения (В) этих обмоток.
Для определения общей мощности Р трансформатора все мощности, полученные для отдельных обмоток, складываются и общая сумма умножается на коэффициент 1,25, учитывающий потери в трансформаторе:

где Р — общая мощность (Вт), потребляемая всем трансформатором.

По мощности Р подсчитывается сечение сердечника (в кв.см):

После этого переходят к определению числа витков каждой из обмоток. Для первичной сетевой обмотки число витков, учитывая потери напряжения, будет равно:

Для остальных обмоток с учетом потерь напряжения числа витков равны:

Диаметр провода любой обмотки трансформатора можно определить по формуле:

где I - сила тока (A), проходящего через данную обмотку; d - диаметр провода (по меди) в мм.

Сила тока, проходящего через первичную (сетевую) обмотку, определяется из обшей мощности трансформатора Р :

Остается еще выбрать типоразмер пластин для сердечника. Для этого необходимо подсчитать площадь, которую занимает вся обмотка в окне сердечника трансформатора:

где S м — площадь (в кв. мм), занимаемая всеми обмотками в окне;
d 1 , d 2 , d 3 и d 4 — диаметры проводов обмоток (в мм);
n 1 , n 2 , n 3 и n 4 - числа витков этих обмоток.
Этой формулой учитывается толщина изоляции проводов, неравномерность намотки, а также место, занимаемое каркасом в окне сердечника.

По полученной величине S м выбирается типоразмер пластины с таким расчетом, чтобы обмотка свободно разместилась в окне выбранной пластины. Выбирать пластины с окном, значительно большим, чем это необходимо, не следует, так как при этом ухудшаются общие качества трансформатора.

Наконец определяют толщину набора сердечника — величину b , которую подсчитывают по формуле:

Здесь размер a – ширина среднего лепестка пластины (рис.3) и b в миллиметрах; Q — в кв. см.

Расчёт простой, самым сложным является поиск сердечника с необходимым типоразмером.

Быстрая переделка силового трансформатора лампового телевизора

Нынче полупроводниковые телевизоры с их импульсными блоками питания навсегда вытеснили тяжёлые и громоздкие ламповые телевизоры, однако у многих «Плюшкиных» они ещё в большом количестве пылятся в гаражах и сараях. Поэтому, нет никакой сложности, найти от такого телевизора силовой трансформатор. Переделка такого трансформатора под ваши потребности элементарна.

Мощности таких трансформаторов бывают от 80 до 350 Ватт, всё определялось телевизором. В чёрно-белом телевизоре трансформатор – слабее, а в цветном – мощнее. Конструкция трансформатора – двухкаркасная на О-образном спиральном сердечнике. Сердечник трансформатора состоит из двух подковообразных половин, входящих внутрь катушек трансформатора. На обеих катушках намотаны одинаковые обмотки, с одинаковым количеством витков. Как правило, на катушках имеется табличка, на которой расписаны сетевые и все выходные обмотки с номерами выводов, напряжений и токов.

Вы можете использовать уже имеющиеся обмотки, с подходящим для Вас напряжением, а можете смотать вторичные обмотки и намотать новые, тем самым использовать полную мощность трансформатора. Удобство заключается в лёгкой разборке-сборке, расчётах новых обмоток. На катушках сначала намотаны первичные обмотки, потом стоит экранирующая фольга, а потом намотаны вторичные обмотки. Поэтому, при сматывании не нужных обмоток, Вы не допустите ошибку, смотав первичную обмотку.

Разбирается трансформатор обыкновенным гаечным ключом на 10 или на 12. Для этого необходимо открутить всего две гайки стягивающие скобы трансформатора, после чего, половины сердечника свободно вынимаются из катушек.

Перед разборкой катушек, внимательно изучите табличку, найдите в ней обмотку на наименьшее напряжение, а при сматывании этой обмотки посчитайте количество витков. Поделив подсчитанное количество витков на напряжение, значащееся в табличке, Вы узнаете количество витков вторичной обмотки трансформатора, приходящееся на один вольт. Умножив это число на то напряжение, которое хотите получить на выходе трансформатора, Вы узнаете количество витков, которое необходимо будет намотать.

Мотать можете другим проводом, а можете и тем, который смотали с трансформатора. Мотать надо виток к витку. Для получения достаточного выходного тока, можно мотать обмотки проводом, сложенным вдвое, втрое и даже вчетверо, а можете намотать несколько обмоток с одинаковым количеством витков, а потом, после сборки трансформатора, спаять их параллельно.

Слои обмоток в трансформаторе проложены трансформаторной бумагой, пропитанной парафином, при сматывании витков, снимайте её аккуратно, не рвите. При намотке используйте эту бумагу снова.

Трансформаторы от ламповых телевизоров – это «сила», главное ума много не надо. С их использованием получаются отличные зарядные устройства, мощные блоки питания, как в составе конструируемых аппаратов, так и используемые самостоятельно.

Трансформаторы используются в блоках питания различной аппаратуры для преобразования переменного напряжения. Блоки питания, собранные по трансформаторной схеме, постепенно снижают распространенность благодаря тому, что современная схемотехника позволяет понизить напряжение без самого громоздкого и тяжелого элемента системы питания. Трансформаторы для блока питания актуальны в тех случаях, когда габариты и масса не критичны, а требования к безопасности велики. Обмотки (кроме автотрансформатора) осуществляют гальваническое разделение и изоляцию цепей первичного (или сетевого) и вторичного (выходного) напряжений.

Jpg?x15027" alt="Трансформатор" width="600" height="543">

Трансформатор

Принцип действия и разновидности трансформаторов

Работа устройства основана на всем известном явлении электромагнитной индукции. Переменный ток, проходящий через провод первичной обмотки, наводит переменный магнитный поток в стальном сердечнике, а он, в свою очередь, вызывает появление напряжения индукции в проводе вторичных обмоток.

Совершенствование трансформатора с момента его изобретения сводится к выбору материала и конструкции сердечника (магнитопровода).

Типы сердечников

Металл для магнитопровода должен иметь определенные технические характеристики, поэтому были разработаны специальные сплавы на основе железа и особая технология производства.

Для изготовления трансформаторов наибольшее распространение получили следующие типы магнитопроводов:

  • броневые;
  • стержневые;
  • кольцевые.

Силовой трансформатор низкой частоты, как понижающий, так и повышающий, имеет сердечник из отдельных пластин трансформаторного железа. Такая конструкция выбрана из соображения минимизации потерь из-за образования вихревых токов в сердечнике, которые нагревают его и снижают КПД трансформатора.

Броневые сердечники наиболее часто выполняются из Ш-образных пластин. Стержневые магнитопроводы могут изготавливаться из П-образных, Г-образных или прямых пластин.

Кольцевые магнитопроводы выполняются из тонкой ленты трансформаторной стали, намотанной на оправку и скрепленной клеящим составом.

Из ленты также могут выполняться броневые и стержневые сердечники, причем такая технология наиболее часто встречается у маломощных устройств.

Jpg?x15027" alt="Виды магнитопроводов" width="600" height="461">

Виды магнитопроводов

Ниже приведена методика расчета трансформатора, где показано:

  • как рассчитать мощность трансформатора;
  • как выбрать сердечник;
  • как определить количество витков и сечение (диаметр) проводов обмоток;
  • как собрать и проверить готовую конструкцию.

Исходные данные, необходимые для расчета

Расчет сетевого трансформатора начинается с определения его полной мощности. Поэтому, перед тем, как рассчитать трансформатор, нужно определиться с мощностью потребления всех, без исключения, вторичных обмоток. Согласно мощности выбирается сечение сердечника. Опять же, от мощности определенным образом зависит и КПД. Чем больше полная мощность, тем выше КПД. Принято в расчетах ориентироваться на такие значения:

  • до 50 Вт – КПД 0.6;
  • от 50 Вт до 100 Вт – КПД 0.7;
  • от 100 Вт до 150 Вт – КПД 0.8;
  • выше 150 Вт – КПД 0.85.

Количество витков сетевой и вторичной обмоток рассчитывается уже после выбора магнитопровода. Диаметр или поперечное сечение проводов каждой обмотки определяется на основании протекающих через них токов.

Выбор магнитопровода сердечника

Минимальное сечение сердечника в см2 определяется из габаритной мощности. Габаритная мощность трансформатора – это суммарная полная мощность всех вторичных обмоток с учетом КПД.

Итак, мощность трансформатора можно определить, это полная суммарная мощность всех вторичных обмоток:

Data-lazy-type="image" data-src="http://elquanta.ru/wp-content/uploads/2017/10/formula-1.jpg?x15027" alt="" width="300" height="49">

Умножая полученное значение на КПД, завершаем расчет габаритной мощности.

Определение площади стержня сердечника производится после того, как произведен расчет габаритной мощности трансформатора из такого выражения:

Зная площадь сечения центрального стержня магнитопровода, можно подбирать нужный из готовых вариантов.

Важно! Сердечник, на котором будут располагаться обмотки, должен иметь, по возможности, сечение, как можно более близкое к квадрату. Площадь сечения должна быть равной или несколько больше расчетного значения.

Качество работы и технологичность сборки также зависит от формы магнитопровода. Наилучшим качеством обладают конструкции, выполненные на кольцевом магнитопроводе (тороидальные). Их отличает максимальный КПД для заданной мощности, наименьший ток холостого хода и минимальный вес. Основная сложность заключается в выполнении обмоток, которые в домашних условиях приходится мотать исключительно вручную при помощи челнока.

Проще всего делать трансформаторы на разрезных ленточных магнитопроводах типа ШЛ (Ш-образный) или ПЛ (П-образный). Как пример, можно привести мощный трансформатор блока питания старого цветного телевизора.

Jpg?x15027" alt="Трансформатор телевизора УЛПЦТИ" width="600" height="538">

Трансформатор телевизора УЛПЦТИ

Трансформаторы старого времени выпуска или современные дешевые выполнены с использованием отдельных Ш,- или П-образных пластин. Технологичность выполнения обмоток у них такая же, как у ленточных разрезных, но трудность состоит в сборке магнитопровода. Такие устройства практически всегда будут иметь повышенный ток холостого хода, особенно, если используемое железо низкого качества.

Расчет количества витков и диаметра проводов

Расчет трансформатора начинается с определения необходимого количества витков обмоток на 1 В напряжения. Найденное значение будет одинаковым для любых обмоток. Для собственных целей можно применить упрощенный метод расчета. Посчитать, сколько надо витков на 1 В можно, подставив площадь сечения стержня магнитопровода в см2 в формулу:

Data-lazy-type="image" data-src="http://elquanta.ru/wp-content/uploads/2017/10/formula-2.jpg?x15027" alt="" width="100" height="79">

где k – коэффициент, зависящий от формы магнитопровода и его материала.

На практике с достаточной точностью приняты следующие значения коэффициента:

  • 60 – для магнитопровода из Ш,- и П-образных пластин;
  • 50 – для ленточных магнитопроводов;
  • 40 – для тороидальных трансформаторов.

Большие значения связаны с невозможностью плотного заполнения сердечника отдельными металлическими пластинами. Как видно, наименьшее количество витков будет иметь тороидальный трансформатор, отсюда и выигрыш в массе изделия.

Зная, сколько витков нужно на 1 В, можно легко узнать количество витков каждой из обмоток:

Data-lazy-type="image" data-src="http://elquanta.ru/wp-content/uploads/2017/10/formula-3.jpg?x15027" alt="" width="150" height="44">где U – значение напряжения холостого хода на обмотке.

У маломощных трансформаторов (до 50 Вт) нужно получившееся количество витков первичной обмотки увеличить на 5%. Таким образом, компенсируется падение напряжения, которое возникает на обмотке под нагрузкой (в понижающих трансформаторах первичная обмотка всегда имеет большее количество витков, чем вторичные).

Диаметр провода рассчитываем с учетом минимизации нагрева вследствие протекания тока. Ориентировочным значением считается плотность тока в обмотках 3-7 А на каждый мм2 провода. На практике расчет диаметра проводов обмоток можно упростить, используя простые формулы, что дает допустимые значения в большинстве случаев:

Data-lazy-type="image" data-src="http://elquanta.ru/wp-content/uploads/2017/10/formula-4.jpg?x15027" alt="Трансформатор телевизора УЛПЦТИ" width="150" height="33">

Меньшее значение применяется для расчета диаметров проводов вторичных обмоток, поскольку у понижающего трансформатора они располагаются ближе к поверхности и имеют лучшее охлаждение.

Зная расчетное значение диаметра обмоточных проводов, нужно выбрать из имеющихся такие, диаметр которых наиболее близок к расчетному, но не менее.

После определения количества витков во всех обмотках, расчет обмоток трансформатора не лишним будет дополнить проверкой, поместятся ли обмотки в окно магнитопровода. Для этого подсчитайте коэффициент заполнения окна:

Data-lazy-type="image" data-src="http://elquanta.ru/wp-content/uploads/2017/10/formula-5.jpg?x15027" alt="" width="200" height="47">

Для тороидальных сердечников c внутренним диаметром D формула имеет вид:

Data-lazy-type="image" data-src="http://elquanta.ru/wp-content/uploads/2017/10/formula-6.jpg?x15027" alt="" width="300" height="63">

Для Ш,- и П-образных магнитопроводов коэффициент не должен превышать 0.3. Если это значение больше, то разместить обмотку не получится.

Jpg?.jpg 489w, https://elquanta.ru/wp-content/uploads/2017/10/4-toroidalnyj-transformator.jpg 600w" sizes="(max-width: 489px) 100vw, 489px">

Тороидальный трансформатор

Выходом из ситуации будет выбор сердечника с большим сечением, но это если позволяют габариты конструкции. В крайнем случае, можно уменьшить количество витков одновременно во всех обмотках, но не более чем на 5%. Несколько возрастет ток холостого хода, и не избежать повышенного нагрева обмоток, но в большинстве случаев это не критично. Также можно немного уменьшить провода по сечению, увеличив тем самым плотность тока в обмотках.

Важно! Увлекаться увеличением плотности тока нельзя, поскольку это вызовет сильный рост нагрева и, как следствие, нарушение изоляции и перегорание обмоток.

Изготовление обмоток

Намотка провода обмотки трансформатора производится на каркас, изготовленный из плотного картона или текстолита, за исключением тороидальных сердечников, в которых обмотка ведется непосредственно на магнитопровод, который перед намоткой нужно тщательно заизолировать. Можно использовать готовый пластиковый, который продается вместе с магнитопроводом.

Jpg?x15027" alt="Сборный каркас обмотки" width="600" height="482">

Сборный каркас обмотки

Data-lazy-type="image" data-src="http://elquanta.ru/wp-content/uploads/2017/10/6-plastikovyj-karkas-600x427.jpg?x15027" alt="Пластиковый каркас" width="600" height="427">

Пластиковый каркас

Между отдельными обмотками нужно прокладывать межобмоточную изоляцию. Важнее всего – хорошо заизолировать вторичную обмотку от первичной. В качестве изоляции можно использовать трансформаторную бумагу, лакоткань, фторопластовую ленту. Ленту из фторопласта нужно использовать с осторожностью. Несмотря на высочайшие электроизоляционные качества, тонкая лента фторопласта под действием натяжения или давления (особенно межу первичной и вторичной обмотками) способна «потечь» и обнажить отдельные витки обмотки. Особенно этим страдает лента для уплотнения сантехнических изделий.

Jpg?.jpg 600w, https://elquanta.ru/wp-content/uploads/2017/10/6-ftoroplastovaja-lenta-1-150x150.jpg 150w" sizes="(max-width: 600px) 100vw, 600px">

Фторопластовая лента

В отдельных, ответственных случаях, в процессе намотки можно пропитать первичную обмотку (если трансформатор понижающий) изоляционным лаком. Пропитка готового устройства в домашних условиях эффекта почти не даст, поскольку лак не попадет в глубину обмотки. Для этих целей на производствах существует аппаратура вакуумной пропитки.

Выводы обмоток делаются отрезками гибкого изолированного провода для проводов, диаметр которых менее 0.5 мм. Более толстый провод можно выводить напрямую. Места пайки гибкого и обмоточного проводов нужно дополнительно проложить несколькими слоями изоляции.

Обратите внимание! При пайке выводов нельзя оставлять на месте спайки острые концы проводов или застывшего припоя. Такие места нужно аккуратно обрезать бокорезами.

Сборка трансформатора

При сборке нужно учитывать следующие нюансы:

  1. Пакет сердечника должен собираться плотно, без щелей и зазоров;
  2. Отдельные части ленточного магнитопровода подогнаны друг к другу, поэтому менять местами их нельзя. Требуется аккуратность, поскольку при отслоении отдельных лент их невозможно будет установить на место;
  3. Деформированные пластины сборного сердечника нельзя выравнивать молотком – трансформаторная сталь теряет свои свойства при механических нагрузках;
  4. Пакет пластин сборного сердечника должен быть собран максимально плотно, поскольку при работе рыхлого сердечника будет издаваться сильный гул, увеличивающийся при нагрузке;
  5. Весь пакет сердечника любого типа нужно плотно стянуть по той же причине.

Обратите внимание! Качество сборки будет лучше, если торцы ленточного разрезного сердечника перед сборкой покрыть лаком. Также готовый собранный сердечник перед окончательной утяжкой можно покрыть лаком.

При этом можно добиться значительного понижения постороннего звука.

Проверка готового трансформатора заключается в измерении тока холостого хода и напряжения обмоток под номинальной нагрузкой и на нагрев при максимальной нагрузке. Все измерения рассчитанного и собранного трансформатора нужно проводить только после полной сборки, поскольку с незатянутым сердечником ток холостого хода может быть больше обычного в несколько раз.

Ток холостого хода сильно различается в трансформаторах различных типов и составляет от 10 мА для тороидальных трансформаторов, до 200 мА – с Ш-образным сердечником из низкокачественного трансформаторного железа.

Jpg?.jpg 600w, https://elquanta.ru/wp-content/uploads/2017/10/7-izmerenie-holostogo-toka-210x140.jpg 210w" sizes="(max-width: 600px) 100vw, 600px">

Измерение холостого тока

Приведен расчет трансформатора, который при наличии навыков можно произвести за пару десятков минут. Для тех, кто сомневается в своих силах или боится сделать ошибку, расчет силового трансформатора можно выполнить, используя калькулятор для расчета, который может работать как в off-line, так и в on-line режимах. Согласно данной методике возможна перемотка перегоревшего трансформатора. Для неисправного трансформатора расчет также ведется от имеющегося сердечника и значения напряжения вторичных обмоток.

Видео

Простейший расчет силового трансформатора позволяет найти сечение сердечника, число витков в обмотках и диаметр провода. Переменное напряжение в сети бывает 220 В, реже 127 В и совсем редко 110 В. Для транзисторных нужно постоянное напряжение 10 - 15 В, в некоторых случаях, например для мощных выходных каскадов НЧ - 25÷50 В. Для анодных и экранных цепей электронных ламп чаще всего используют постоянное напряжение 150 - 300 В, для накальных цепей ламп переменное напряжение 6,3 В. Все напряжения, необходимые для какого-либо устройства, получают от одного трансформатора, который называют силовым.

Силовой трансформатор выполняется на разборном стальном сердечнике из изолированных друг от друга тонких Ш-образных, реже П-образных пластин, а так же вытыми ленточными сердечниками типа ШЛ и ПЛ (Рис. 1).

Его размеры, а точнее, площадь сечения средней части сердечника выбираются с учетом общей мощности, которую трансформатор должен передать из сети всем своим потребителям.

Упрощенный расчет устанавливает такую зависимость: сечение сердечника S в см², возведенное в квадрат, дает общую мощность трансформатора в Вт.

Например, трансформатор с сердечником, имеющим стороны 3 см и 2 см (пластины типа Ш-20, толщина набора 30 мм), то есть с площадью сечения сердечника 6 см², может потреблять от сети и "перерабатывать" мощность 36 Вт. Это упрощенный расчет дает вполне приемлемые результаты. И наоборот, для электрического устройства нужна мощность 36 Вт, то извлекая квадратный корень из 36, узнаем, что сечение сердечника должно быть 6 см².

Например, должен быть собран из пластин Ш-20 при толщине набора 30 мм, или из пластин Ш-30 при толщине набора 20 мм, или из пластин Ш-24 при толщине набора 25 мм и так далее.

Сечение сердечника нужно согласовать с мощностью для того, чтобы сталь сердечника не попадала в область магнитного насыщения. А отсюда вывод: сечение всегда можно брать с избытком, скажем, вместо 6 см² взять сердечник сечением 8 см² или 10 см². Хуже от этого не будет. А вот взять сердечник с сечением меньше расчетного уже нельзя т. к. сердечник попадет в область насыщения, а индуктивность его обмоток уменьшится, упадет их индуктивное сопротивление, увеличатся токи, трансформатор перегреется и выйдет из строя.

В силовом трансформаторе несколько обмоток. Во-первых, сетевая, включаемая в сеть с напряжением 220 В, она же первичная.

Кроме сетевых обмоток, в сетевом трансформаторе может быть несколько вторичных, каждая на свое напряжение. В трансформаторе для ламповых обычно две обмотки - накальная на 6,3 В и повышающая для анодного выпрямителя. В трансформаторе для транзисторных чаще всего одна обмотка, которая питает один выпрямитель. на какой-либо каскад или узел нужно подать пониженное напряжение, то его получают от того же выпрямителя с помощью гасящего резистора или делителя напряжения.

Число витков в обмотках определяется по важной характеристике трансформатора, которая называется "число витков на вольт", и зависит от сечения сердечника, его материала, от сорта стали. Для распространенных типов стали можно найти "число витков на вольт", разделив 50-70 на сечение сердечника в см:

Так, взять сердечник с сечением 6 см², то для него получится "число витков на вольт" примерно 10.



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: