Настройка частотного преобразователя без подключения к давлению. Частотный преобразователь для электродвигателя: схема

Часто приобретя частотные преобразователь, мы открываем инструкцию, видим тысячу параметров, приходим в ужас…, оставляем всё как есть, и применяем частотный преобразователь с параметрами, установленными по умолчанию. К сожалению, в данном случае преобразователь используется неэффективно. Так поступает почти 80% потребителей частотных преобразователей.

Всё о чём будет сказано ниже применимо почти ко всем частотным преобразователям различных производителей.

1. Подключение.

Для того чтобы подключить частотный преобразователь, не достаточно просто открыть страницу со схемой подключения, и увидев там знакомые символы питающих линий и электродвигателя, просто присоединяем провода по схеме. Пред этим стоит обратить на рекомендованные производителем сечения и типы проводов, и дополнительного оборудования. Это крайне важно, для беспроблемной эксплуатации преобразователя частоты.

Реактор (катушка индуктивности) постоянного тока подключается (в разрыв) к плюсовой цепи звена постоянного тока. В частотных преобразователях напряжение выпрямляется, заряжаются конденсаторы большой ёмкости, а потом из этого постоянного напряжения с помощью IGBT транзисторов управляемых ШИМ получается выходное напряжение заданной амплитуды и частоты. Конденсатор во время работы часто заряжается- разряжается, с частотой равной частоте ШИМ, это негативно сказывается на его сроке службы и ещё вызывает помехи в электрической сети. Если представить конденсатор хранилищем напряжения, а реактор хранилищем тока, то работа в паре этих устройств благотворно скажется и на сроке службы частотного преобразователя и на искажение в питающей сети. Срок службы преобразователей и без реакторов достаточно долог, но если стоит задача сделать очень надёжную систему, можно их поставить.

Тормозные резисторы.

Для управления замедлением в большинстве не инерционных нагрузок достаточно простого снижения частоты и напряжения по определённому закону (например насосы), но для инерционных нагрузок и нагрузок требующих быстрой остановки (управление приводами тележек, лифтов, кранов), необходимо использовать динамическое торможение. Динамическое торможение подразумевает рассеивание энергии выделяемой двигателем (двигатель отключенный от сети, но вращающийся, работает в генераторном режиме, т.е. производит энергию). Для этого и служат тормозные резисторы. Есть ещё и блоки торможения и блоки торможения с рекуперацией, все они участвуют в динамическом торможении. Только при рекуперативном торможении часть энергии возвращается в электрическую сеть.

Фильтры

Большинство маломощных частотных преобразователей штатно оснащены входными фильтрами, это позволяет существенно снизить уровень помех выделяемых в электрическую сеть. Помехи имеют высокочастотный характер и могут негативно влиять на оборудование, работающее от данной питающей сети. Если встала проблема помех в питающей сети, а ваш преобразователь не оборудован встроенным фильтром, то его можно приобрести отдельно. Он не обязательно должен быть того же производителя, что и частотный преобразователь, но должен совпадать по мощности или току.

Выходные фильтры выполняют аналогичную функцию, но обычно применяются в тех случаях, когда очень большие расстояния от двигателя до частотного преобразователя. В таких вариантах часто возникают наводящиеся помехи и в обычных сетях, или проводках контрольно-измерительных приборов.

Входы- выходы.., зачем так много?

Дискретные входы

Почему дискретные? Данный вход может принимать только два внешних состояния, обычно замкнут или разомкнут. Подключив к ним внешние выключатели, мы можем реализовать множество функций. Например, назначить каждой кнопке (выключателю) одну из частот работы преобразователя. Напомню, что скорость вращения двигателя прямопропорциональна выходной частоте преобразователя, т.е. если двигатель имеет скорость вращения 1500 об/мин при 50 Гц, то при 25 Гц он будет вращаться со скоростью 750 об/мин. Можно кнопкам назначить функцию изменения скорости, начала работы, реверсирования. Это позволяют почти все преобразователи, необходимо лишь запрограммировать соответствующие параметры. Часто в инструкциях есть конкретные схемы применения данных входов, обратите на них внимание.

Аналоговые входы

Стандартный набор 0-10В, 4-20 мА. Это может быть совмещённый вход, где режим работы выбирается с помощью перемычки, или раздельные. 0-10В обычно применяется для подключения внешнего переменного резистора около 10кОм (можно использовать от 1кОм до 20кОм). Изменяя напряжение на данном входе, мы меняем выходную частоту преобразователя.

Вход 4-20 мА, обычно, применяется для подключения различных технологических датчиков, например датчика давления, и обладает большей точностью передачи сигнала и большей помехозащищённостью. Датчик подключается одним выводом к ”+” клемме встроенного в преобразователь источника питания, другой к токовому входу.

Дискретные выходы

Так же, как и входы они могут иметь всего лишь два состояния. Можно разделить их на два типа, выходы с сухим контактом (обычные контакты реле) и выходы с открытым коллектором. Если контакты реле можно использовать для коммутации различных сигналов, то открытый коллектор может только управлять непосредственно внешней нагрузкой, например реле. Данные выходы могут быть тоже запрограммированы на различные функции, например управлять группой насосов при построении насосной станции, коммутировать питание цепей средств оповещения о различных состояния частотного преобразователя. Обратите на них внимание. Всегда обращайте внимание на электрические параметры дискретных входов, не превышайте максимально возможные коммутируемые токи и напряжения. ВАЖНО! Дискретные и аналоговые входы могут иметь разные встроенные в частотный преобразователь источники питания, не перепутайте при подключении.

Цифровые интерфейсы.

Под интерфейсами будем понимать разъёмы для цифровой передачи данных. Данные могут предаваться по различным физическим интерфейсам как RS485, CAN, USB. Это позволяет провести программирование с компьютера, настроить удалённое управление электроприводом, синхронизировать работу преобразователей друг с другом. Обратите внимание и на данные разъёмы.

На частотном преобразователе могут быть и другие входы-выходы, интерфейсы, которые расширяют сферу применения конкретного частотного преобразователя, но это уже индивидуальные особенности. Рекомендую так же обращать на них внимание.

Став счастливым обладателем частотного преобразователя HYUNDAI серии N700E покупатели иногда испытывают некоторые трудности при первом включении и настройке. В связи с этим, мы решили написать пошаговую инструкцию подкрепленную видеорядом по настройке частотных преобразователей HYUNDAI. Данная инструкция применима к самой распространенной серии N700E, для 1 и 3-х фазных ЧП мощностью от 0,4кВт и до 3,7кВт

Подключние питающих и моторных проводов.

Управление частотным преобразователем через дискретные клеммы

Первое включение и программирование частотного преобразователя

Включение преобразователя происходит после подачи питабщего напряжения. Для входа в меню необходимо нажать кнопку "Func ", перемещение по параметрам осуществляется нажатием кнопок "вверх" или "вниз", выбрав необходимую группу переменных, необходимо нажать кнопку "Func " и далее стрелочками выбрав параметр который хотим изменить, снова нажимаем "Func ", стрелочками задаем новое значение и обязательно нажимаем кнопку "STR " (иначе изменения не сохранятся в памяти).

Выбор источников задания управляющих сигналов

На гарячую линию, нам не редко поступают звонки от покупателей со словами "я включил частотный преобразователь, но двигатель не крутится, а сам частотник не реагирует на регулировку потенциометра на панели управления". Все верно, дело в том, что на заводе изготовителе по умолчанию задается источник управляющих сигналов с дискретных клемм, если необходимо управлять инвертором с лицевой панели, то для этого надо изменить следующие параметры:
А01 (источник задания частоты) значение "1" меняем на "0" и нажимаем кнопку "STR", над потенциометром загорится светодиод информирующий нас о том, что частота вращения двигателя задается с потенциометра расположенного на панели управления.
А02 (запуск двигателя), если планируется запускать частотный преобразователь с панели управления то значение "1" меняем на "0" и нажимаем кнопку "STR". Над кнопкой "RUN" загорится светодиод, теперь двигатель будет включаться и выключаться с панели управления.

Задание основных параметров

А03 - частота питающей сети, устанавливаем 50Гц
А04 - максимальная выходная частота, можно задавать до 400 Гц. Выбирается в зависимости от типа двигателя и конкретных задач, по умолчанию 50Гц, но например, если подключается фрезерный шпиндель, то частота задается как правило 400Гц.
Н03 - задается номинальная мощность двигателя.
Н04 - указываем количество полюсов двигателя, как правило 4.
Н05 - задается номинальный ток двигателя (берется из паспорта двигателя).
Выше мы привели основные параметры которые необходимо задать при первом включении частотного преобразователя, со значениями остальных параметров и их назначениями Вы сможете прочитать в инструкции поставляемой с ЧП.

Настройка ПИД-регулирования

Частотные преобразователи HYUNDAI серии N700E имеют функцию ПИД-регулирования, которая позволяет поддерживать заданный параметр, например: Расход или давление.
Для включения функции ПИД-регулирования, устанавливаем в параметре А46 значение "1", время отклика задается в F02 и F03 (время разгона и время торможения). Посмотреть работу функции ПИД-регулирования можно в видеоролике с 4.33.

Видеоинструкция к частотному преобразователю HYUNDAI N700E

Установка, настройка и обслуживание преобразователя должна производиться только квалифицированным техническим персоналом. Небрежное обращение может привести к повреждению преобразователя. Запрещается бросать преобразователь, подвергать его ударам и тряске при переноске.

Указания по технике безопасности при монтаже преобразователя частоты (использована инструкция на преобразователь частоты DANFOSS):

1. Прикосновение к токоведущим частям может привести к смертельному исходу, даже если оборудование отключено от сети. При работе с токоведущими частями убедитесь, что отключены входы напряжения: как сетевого питания, так и любые другие (подключение промежуточной цепи постоянного тока), отсоединен кабель электродвигателя (если двигатель вращается).

Имейте в виду, что высокое напряжения в цепи постоянного тока может сохраняться, даже если светодиоды погасли. Прежде чем прикасаться к потенциально опасным токоведущим частям приводов мощностью до 7,5 кВт включительно, подождите не менее 4 минут. Подождите не менее 15 минут, прежде чем начать работу с приводами мощностью свыше 7,5 кВт.

2. должен быть заземлен надлежащим образом. Ток утечки на землю превышает 3,5 мА. Запрещается использовать нулевой провод в качестве заземления.

3. Кнопка на пульте оператора не выполняет функции защитного выключателя. Она не отключает преобразователь частоты от сети и не гарантирует пропадание напряжения между преобразователем и двигателем.

Проверка соответствия компонентов перед началом монтажа.

1. Сверьте кодовый номер преобразователя с тем, что было заказано.

2. Убедитесь, что входное напряжение, указанное на преобразователе частоты, совпадает с напряжением питающей сети, к которой планируется подключение. В случае, если напряжение питающей сети ниже входного напряжения преобразователя частоты, то устройство будет работать с пониженными характеристиками, или будет работать с ошибкой. Подключение устройства к питающей сети с напряжением, превышающим входное напряжение преобразователя, указанное на информационной табличке, не допускается!

3. Проверьте, что номинальное напряжение электродвигателя не превышает значения выходного напряжения преобразователя частоты. Номинальное напряжение электродвигателя в большинстве случаев определяется схемой соединения, поэтому убедитесь, подключен ли двигатель «звездой» или «треугольником», и какие значения напряжения соответствуют данной схеме подключения (указано на табличке двигателя).

4. Номинальный ток двигателя в большинстве случаев не должен превышать номинальный выходной ток преобразователя частоты, в противном случае привод не сможет развить номинальный момент.

1. Внешние условия должны соответствовать степени защиты корпуса – стандартное исполнение преобразователя – IP20 не защищает от попадания пыли или капель жидкости внутрь устройства. Исполнение корпуса IP54 защищает от пыли и влаги при соблюдении требований монтажа (использовании сальников, кабель-вводов и т.д. Убедитесь, что возле вентиляторов чисто, нет пыли и грязи.

2. Место установки должно быть сухим (максимальная относительная влажность воздуха 95%, при отсутствии конденсации).

3. Рабочая температура окружающей среды 0–40 °С. При температуре от -10 до 0 °С и свыше +40 °С работа будет происходить с пониженными характеристиками. Не рекомендуется эксплуатировать преобразователь частоты при температурах ниже -10 и свыше +50 °С, так как это может привести к сокращению срока службы изделия.

4. Максимальная высота установки устройства над уровнем моря для работы без снижения характеристик 1000 м.

5. Проверьте наличие возможности осуществлять вентиляцию преобразователя частоты. Допускается монтаж преобразователей «стенка к стенке» (корпусы IP 20 и 54), однако обязательно должно быть предусмотрено воздушное пространство 100 мм сверху/снизу устройства для преобразователя частоты мощностью до 30 кВт, 200мм для преобразователя частоты мощностью от 30 до 90 кВт и 225 мм для мощности 90 кВт.

При работе преобразователь нагревается, поэтому свободное пространство вокруг преобразователя должно составлять не менее 10 см и гарантировать циркуляцию воздуха и охлаждение. Поверхность, на которую устанавливается преобразователь, должна быть из невоспламеняющегося материала и иметь достаточную механическую прочность, чтобы выдержать вес преобразователя.

При установке преобразователя в шкафу необходимо обратить внимание на эффективность охлаждения. Необходимо следить, чтобы поток воздуха от вентилятора шкафа проходил как можно ближе к преобразователю. Пример расположения преобразователя в шкафу приведен на рисунке 3.1.

Преобразователь должен быть размещен так, чтобы не попадать в поток воздуха от других преобразователей и тепловыделяющих элементов другого оборудования, в том числе от тормозных резисторов. Желательно избегать размещения одного преобразователя над другим или выдерживать при этом минимальное расстояние между блоками 300 мм. Пример расположения нескольких преобразователей в шкафу показаны на рисунке 1.


Рисунок 1 – Примеры размещения в шкафу: а) один преобразователь; б) несколько преобразователей

Вентилятор принудительного охлаждения шкафа должен быть установлен так, чтобы получить максимальный обдув преобразователя. Для исключения рециркуляции нагретого воздуха снаружи и внутри шкафа рекомендуется устанавливать отражательные щитки.

1. К преобразователю частоты можно подключать кабели сети/двигателя с максимальным сечением указанным в таблице технических характеристик ПЧ.

2. Каждый привод должен быть заземлен индивидуально, длина линии заземления должна быть кратчайшей. Рекомендуемое сечение заземляющих кабелей должно быть того же сечения что и проводники питающей сети. При монтаже, прежде всего подключают провод заземления.

3. Необходимо установить входные быстродействующие предохранители (марки предохранителей уточняйте в руководствах по проектированию). Номиналы предохранителей можно уточнить в таблице технических характеристик.

4. Раздельные кабель-каналы должны использоваться для входных силовых кабелей, выходных силовых кабелей и кабелей управления.

5. Для выполнения требований по ЭМС используйте экранированные кабели. Обеспечьте защиту кабелей управления от электромагнитных помех.

6. Проверьте правильность подсоединения входных (клеммы L, N для 1 фазной сети и L1, L2, L3 для трёхфазной) и выходных силовых проводов (клеммы U, V, W).

7. Подключение к клемме PE преобразователя выполняется проводом заземления. Запрещается использовать нейтраль в качестве заземляющего провода. Объединение заземление и нейтрали может происходить только в месте физического заземления.

Проверка правильности подключения двигателя.

1. Максимальная длина без соблюдений требований по ЭМС неэкранированного моторного кабеля составляет до 50 м. Желаемые нормы ЭМС могут быть достигнуты посредством встроенных или внешних фильтров и экранированного кабеля. Максимальную длину кабеля в зависимости от категории среды уточняйте в руководствах по проектированию.

2. Согласно принятым на территории РФ нормам преобразователь частоты, как самостоятельное изделие может иметь различный класс ЭМС. Однако ГОСТ 51524-99 на электропривод (электропривод - изделие целиком - совокупность преобразователя частоты, электродвигателя и нагрузки) предписывает класс А1/B, который достигается только при использовании экранированных кабелей и улучшенного РЧ фильтра (у преобразователей Данфосс, встроенного в ПЧ)

3. В силовую цепь между приводом и двигателем не должно быть подключено конденсаторных батарей для компенсации реактивной мощности.

4. Двухскоростные двигатели, двигатели с фазным ротором и двигатели, которые раньше пускались по схеме «звезда» или «треугольник», должны быть постоянно включены по одной рабочей схеме и на одну скорость.

5. Если есть контактор или рубильник в цепи между приводом и двигателем, то на привод должен приходить согласующий сигнал о его положении. Не допускается разрывать цепь контактором при работающем от преобразователе частоты или намагниченном двигателе. В случае если двигатель оснащен тормозом, должен быть предусмотрен управляющий сигнал, согласующий его работу с преобразователем. Не допускается питать тормоз от блока питания преобразователя.

6. В случае если двигатель оснащен принудительной вентиляцией, должно быть предусмотрено её включение при работе двигателя.

7. В случае если двигатель оборудован датчиком температуры (термистором), то целесообразно завести этот сигнал на преобразователь частоты для возможности аварийного отключения электродвигателя при перегреве.

Из данной статьи вы узнаете, что такое рассмотрите его схему, принцип работы, а также узнаете о настройках промышленных образцов. Основной упор будет сделан на изготовление Конечно, для этого вам потребуется иметь хотя бы общее представление о проводниковой технике. Начинать необходимо с того, для каких целей используются преобразователи частоты.

Когда возникает необходимость в ПЧ

Современные преобразователи частоты — это высокотехнологичные устройства, которые состоят из элементов на основе полупроводников. Кроме того, имеется электронная система управления, построенная на микроконтроллере. С ее помощью производится управление всеми важнейшими параметрами электродвигателя. В частности при помощи преобразователя частоты можно изменять скорость вращения Возникает мысль о том, чтобы приобрести частотный преобразователь для электродвигателя. Цена такого устройства для моторов мощностью 0,75 кВт составит примерно 5-7 тыс. руб.

Стоит заметить, что изменить скорость вращения можно при помощи редуктора, построенного на основе вариатора, либо шестеренчатого типа. Но такие конструкции очень большие, применять их не всегда имеется возможность. Ко всему прочему, такие механизмы необходимо своевременно обслуживать, а их надежность крайне мала. Применение частотного преобразователя позволяет уменьшить расходы на обслуживание электрического привода, а также увеличить его возможности.

Основные узлы частотного преобразователя

Любой преобразователь частоты состоит из четырех основных модулей:

  1. Блока выпрямителя.
  2. Устройства фильтрации постоянного напряжения.
  3. Инверторного узла.
  4. Микропроцессорной системы управления.

Все они взаимосвязаны, причем блок управления контролирует работу выходного каскада - инвертора. Именно с его помощью осуществляется изменение выходных характеристик переменного тока.

О нем будет подробно рассказано ниже, приведена схема. Частотный преобразователь для электродвигателя имеет еще несколько особенностей. Стоит отметить, что в состав устройства входит несколько степеней защиты, которые также управляются микроконтроллерным устройством. В частности производится контроль температуры силовых полупроводниковых элементов. Кроме того, имеется функция защиты от короткого замыкания и превышения тока. Частотный преобразователь необходимо подключать к питающей сети посредством защитных устройств. Необходимость в отпадает.

Выпрямитель преобразователя частоты

Это самый первый модуль, через который протекает ток. С его помощью производится выпрямление переменного тока - преобразование в постоянный. Происходит это благодаря использованию таких элементов, как полупроводниковые диоды. Но теперь стоит упомянуть о небольшой особенности. Вы знаете, что питание большей части осуществляется от трехфазной сети переменного тока. Но не везде такая имеется. Конечно, на крупных предприятиях она есть, но в быту ее редко используют, так как проще провести однофазную. Да и с учетом электроэнергии дела обстоят проще.

А преобразователи частоты могут питаться как от трехфазной сети, так и от однофазной. В чем же разница? А она несущественная, в конструкции используются различные типы выпрямителей. Если речь идет про однофазный частотный преобразователь для электродвигателя, то необходимо применять схему на четырех полупроводниковых диодах, включенных по мостовому типу. Но если есть необходимость питания от трехфазной сети, следует выбрать иную схему, состоящую из шести полупроводниковых диодов. Два элемента в каждом плече, в результате вы получите выпрямление переменного тока. На выходе появятся «плюс» и «минус».

Фильтрация постоянного напряжения

На выходе выпрямителя вы имеете постоянное напряжение, но оно обладает большими пульсациями, все еще проскакивает переменная составляющая. Чтобы сгладить все эти «неровности» тока, вам потребуется применять как минимум два элемента - катушку индуктивности и электролитический конденсатор. Но обо всем стоит рассказать более детально.

Катушка индуктивности имеет большое число витков, она обладает некоторым что позволяет немного сгладить пульсации тока, протекающего через нее. Второй элемент - конденсатор, включенный между двумя полюсами. Он обладает поистине интересными свойствами. При протекании постоянного тока он по закону Кирхгофа заменяться должен обрывом, то есть между плюсом и минусом как бы ничего нет. А вот при протекании переменного - проводником, отрезком провода без сопротивления. Как было сказано выше, протекает постоянный ток, но в нем присутствует небольшая доля переменного. И она-то замыкается, в результате чего попросту исчезает.

Инверторный модуль

Инверторный узел, если быть точным, наиболее важный во всей конструкции. С его помощью производится изменение параметров выходного тока. В частности его частоты, напряжения и т. д. Состоит инвертор из шести управляемых транзисторов. Для каждой фазы два полупроводниковых элемента. Стоит отметить, что в инверторном каскаде используются современные сборки из IGBT-транзисторов. Хоть самодельный, хоть частотный преобразователь Delta, самый бюджетный и доступный на сегодняшний день, состоят из одинаковых узлов. Возможности только разные.

Они имеют три входа, столько же выходов, а также шесть точек подключения к устройству управления. Стоит отметить, что при самостоятельном изготовлении частотного преобразователя необходимо производить подбор сборки по мощности. Поэтому вы должны сразу определиться с тем, какой тип электродвигателя будет подключаться к преобразователю частоты.

Микропроцессорная система управления

При самостоятельном изготовлении вряд ли получится достигнуть тех же параметров, которые имеются у промышленных образцов. Причина этого кроется вовсе не в том, что выпускаемые сборки силовых транзисторов являются неэффективными. Дело в том, что в домашних условиях изготовить модуль управления оказывается довольно сложно. Конечно, речь идет не про пайку элементов, а о программировании микроконтроллерного устройства. Самый простой вариант — это изготовить блок управления, при помощи которого можно проводить регулировку скорости вращения, осуществление реверса, защиту по току и от перегрева.

Для изменения необходимо использовать переменное сопротивление, которое подключается к порту ввода микроконтроллера. Это задающее устройство, которое подает сигнал микросхеме. Последняя анализирует уровень изменения напряжения по сравнению с эталонным, которое составляет 5 В. Система управления работает по определенному алгоритму, который пишется до начала программирования. Строго по нему происходит работа микропроцессорной системы. Очень популярны модули управления фирмы Siemens. Частотный преобразователь этого производителя имеет высокую надежность, может использоваться в любом типе электропривода.

Как настроить преобразователь частоты

На сегодняшний день имеется много производителей данного устройства. Но алгоритм настройки у всех практически одинаков. Конечно, провести настройку преобразователя частоты без определенных знаний не получится. Вам необходимо иметь две вещи — опыт в регулировке и руководство по эксплуатации. В последнем имеется приложение, в котором описаны все функции, которые могут быть запрограммированы. Обычно на корпусе частотного преобразователя имеется несколько кнопок. Как минимум четыре штуки должно присутствовать. Две предназначены для переключения между функциями, при помощи остальных производится выбор параметров либо отмена введенных данных. Для перехода в режим программирования необходимо нажать определенную кнопку.

Для каждой модели частотного преобразователя свой алгоритм входа в режим программирования. Поэтому без руководства по эксплуатации невозможно обойтись. Стоит также отметить, что функции разбиты на несколько подгрупп. И запутаться в них не составит труда. Старайтесь не изменять те настройки, которые не рекомендует трогать производитель. Эти параметры нужно менять лишь в исключительных случаях. При выборе функции программирования вы будете видеть на дисплее ее цифро-буквенное обозначение. По мере набора опыта настройка частотного преобразователя будет казаться вам очень простым делом.

Выводы

При эксплуатации, обслуживании либо изготовлении частотного преобразователя необходимо соблюдать все меры предосторожности. Помните, что в конструкции устройства имеются электролитические конденсаторы, которые сохраняют заряд даже после отключения от сети переменного тока. Поэтому, перед тем как производить разборку, необходимо дождаться разряда. Обратите внимание на то, что в конструкции частотных преобразователей присутствуют элементы, которые боятся статического электричества. В частности это относится к микропроцессорной системе управления. Поэтому проводить пайку следует со всеми мерами предосторожности.

Имеет ряд настроек, позволяющих задать необходимый режим разгона и торможения электродвигателя. В статье мы расскажем, какими параметрами можно управлять и как их оптимизировать, чтобы избежать поломки оборудования.

Основные параметры разгона/торможения двигателя

Минимальная выходная частота. Параметр, определяющий значение частоты, при котором начинается вращение двигателя. Повышенная минимальная частота во многих случаях позволяет уменьшить нагрев двигателя при разгоне.

Нижний предел выходной частоты. Этот параметр ограничивает частоту на выходе преобразователя. Нижний предел не может быть меньше минимальной выходной частоты. Данная настройка необходима для обеспечения защиты двигателя и механизмов в случае ошибочной установки минимальной рабочей частоты.

Максимальная выходная частота. Параметр ограничивает выходную частоту сверху. Причем заданное (номинальное) значение частоты может быть меньше, либо равным максимальной выходной частоте. Данное значение используется для расчета теоретического времени разгона, а также привязывается к максимальному значению управляющих сигналов на аналоговых входах.

Частота максимального напряжения (номинальная частота двигателя). Этот параметр задается в соответствии со значением, указанным на шильдике электродвигателя. Как правило, оно равно 50 Гц. При такой частоте на двигателе действует максимально возможное для данного преобразователя напряжение. Если данный параметр выставить меньше необходимого, то двигатель будет работать с перегрузкой и никогда не разгонится до номинальной частоты.

Время разгона. Основной параметр, определяющий расчетное время, за которое электродвигатель разгонится от нулевой до максимальной выходной частоты. Темп нарастания, как правило, линейный, если не задано квадратичное изменение частоты. В случае, если нарастание задается в промежуточном диапазоне (не от нулевой и не до максимальной частоты), реальное время будет меньше заданного. Это обстоятельство нужно учитывать при проектировании оборудования.

Например, если минимальная выходная частота равна нулю, а максимальная – 50 Гц, то при установке времени разгона 10 сек и максимальной выходной частоте 25 Гц фактическое время разгона будет в 2 раза меньше, т.е. 5 сек. То же относится и к торможению.

Инерция нагрузки

На реальное время разгона и замедления также влияют различные механические и электрические параметры системы электропривода. Например, при установке очень малого времени разгона или торможения фактическое время может быть больше из-за инерции нагрузки на валу двигателя.

Инерция нагрузки при разгоне может привести к перегрузке по току, при этом преобразователь частоты выходит в ошибку. Чтобы такого не произошло, время разгона нужно выбирать по нескольким критериям. Если данный параметр не принципиален, можно выставить автоматический разгон. В этом случае преобразователь будет выбирать максимальный скоростной режим разгона или замедления, чтобы избежать ошибки перегрузки по току (разгон) или перенапряжению на звене постоянного тока (замедление).

Когда время торможения должно быть минимальным, применяют тормозные резисторы для выделения «лишней» энергии, полученной в результате торможения.

Дополнительная инерция при разгоне и торможении может проявляться также при аналоговом способе задания выходной частоты. Это происходит, когда на аналоговом входе устанавливается низкочастотный фильтр для уменьшения помех, либо в настройках выставлена большая инерционность задающего аналогового сигнала.

Во многих ПЧ имеется несколько вариантов времени разгона и торможения, которые можно применить для различных этапов технологического процесса. Переключение производится посредством подачи сигнала на соответственно запрограммированный дискретный вход.



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: