Операционные системы. Процессы и потоки (нити)

5.1 Процессы

5.1.1 Понятие процесса

Процесс (задача) - программа, находящаяся в режиме выполнения.

С каждым процессом связывается его адресное пространство, из которого он может читать и в которое он может писать данные.

Адресное пространство содержит:

    саму программу

    данные к программе

    стек программы

С каждым процессом связывается набор регистров , например:

    счетчика команд (в процессоре) - регистр в котором содержится адрес следующей, стоящей в очереди на выполнение команды. После того как команда выбрана из памяти, счетчик команд корректируется и указатель переходит к следующей команде.

    указатель стека

Во многих операционных системах вся информация о каждом процессе, дополнительная к содержимому его собственного адресного пространства, хранится в таблице процессов операционной системы.

Некоторые поля таблицы

5.1.2 Модель процесса

В многозадачной системе реальный процессор переключается с процесса на процесс, но для упрощения модели рассматривается набор процессов, идущих параллельно (псевдопараллельно).

Рассмотрим схему с четырьмя работающими программами.

В каждый момент времени активен только один процесс

С права представлены параллельно работающие процессы, каждый со своим счетчиком команд. Разумеется, на самом деле существует только один физический счетчик команд, в который загружается логический счетчик команд текущего процесса. Когда время, отведенное текущему процессу, заканчивается, физический счетчик команд сохраняется в памяти, в логическом счетчике команд процесса.

5.1.3 Создание процесса

Три основных события, приводящие к созданию процессов (вызов fork илиCreateProcess ):

    Работающий процесс подает системный вызов на создание процесса

    Запрос пользователя на создание процесса

Во всех случаях, активный текущий процесс посылает системный вызов на создание нового процесса.

Каждому процессу присваивается идентификатор процесса PID - Process IDentifier.

5.1.4 Завершение процесса

(вызов exit илиExitProcess ):

    Плановое завершение (окончание выполнения)

    Плановый выход по известной ошибке (например, отсутствие файла)

    Выход по неисправимой ошибке (ошибка в программе)

    Уничтожение другим процессом

Таким образом, приостановленный процесс состоит из собственного адресного пространства, обычно называемого образом памяти (core image ), и компонентов таблицы процессов (в числе компонентов и его регистры).

Концепция процессов и потоков. Задание, процессы, потоки (нити), волокна

Одним из основных понятий, связанных с операционными системами, являетсяпроцесс – абстрактное понятие, описывающее работу программы . Все функционирующее на компьютере программное обеспечение, включая и операционную систему, можно представить набором процессов.

Задачей ОС является управление процессами и ресурсами компьютера или, точнее, организация рационального использования ресурсов в интересах наиболее эффективного выполнения процессов. Для решения этой задачи операционная система должна располагать информацией о текущем состоянии каждого процесса и ресурса. Универсальный подход к предоставлению такой информации заключается в создании и поддержке таблиц с информацией по каждому объекту управления.

Общее представление об этом можно получить из рис. 5.1, на котором показаны таблицы, поддерживаемые операционной системой: для памяти, устройств ввода-вывода, файлов (программ и данных) и процессов. Хотя детали таких таблиц в разных ОС могут отличаться, по сути, все они поддерживают информацию по этим четырем категориям. Располагающий одними и теми же аппаратными ресурсами, но управляемый различными ОС, компьютер может работать с разной степенью эффективности. Наибольшие сложности в управлении ресурсами компьютера возникают в мультипрограммных ОС.

Рис. 5.1. Таблицы ОС

Мультипрограммирование (многозадачность, multitasking) – это такой способ организации вычислительного процесса, при котором на одном процессоре попеременно выполняются несколько программ. Чтобы поддерживать мультипрограммирование, ОС должна определить для себя внутренние единицы работы, между которыми будут разделяться процессор и другие ресурсы компьютера. В ОС пакетной обработки, распространенных в компьютерах второго и сначала и третьего поколения, такой единицей работы было задание. В настоящее время в большинстве операционных систем определены два типа единиц работы: более крупная единица – процесс, или задача, и менее крупная – поток , или нить . Причем процесс выполняется в форме одного или нескольких потоков.

Вместе с тем, в некоторых современных ОС вновь вернулись к такой единице работы, как задание (Job), например, в Windows. Задание в Windows представляет собой набор из одного или нескольких процессов, управляемых как единое целое. В частности, с каждым заданием ассоциированы квоты и лимиты ресурсов, хранящиеся в соответствующем объекте задания. Квоты включают такие пункты, как максимальное количество процессов (это не позволяет процессам задания создавать бесконтрольное количество дочерних процессов), суммарное время центрального процессора, доступное для каждого процесса в отдельности и для всех процессов вместе, а также максимальное количество используемой памяти для процесса и всего задания. Задания также могут ограничивать свои процессы в вопросах безопасности, например, получать или запрещать права администратора (даже при наличии правильного пароля).

Процессы рассматриваются операционной системой как заявки или контейнеры для всех видов ресурсов, кроме одного – процессорного времени. Это важнейший ресурс распределяется операционной системой между другими единицами работы – потоками, которые и получили свое название благодаря тому, что они представляют собой последовательности (потоки выполнения) команд. Каждый процесс начинается с одного потока, но новые потоки могут создаваться (порождаться) процессом динамически. В простейшем случае процесс состоит из одного потока, и именно таким образом трактовалось понятие "процесс" до середины 80-х годов (например, в ранних версиях UNIX). В некоторых современных ОС такое положение сохранилось, т.е. понятие "поток" полностью поглощается понятием "процесс".

Как правило, поток работает в пользовательском режиме, но когда он обращается к системному вызову, то переключается в режим ядра. После завершения системного вызова поток продолжает выполняться в режиме пользователя. У каждого потока есть два стека, один используется в режиме ядра, другой – в режиме пользователя. Помимо состояния (текущие значения всех объектов потока) идентификатора и двух стеков, у каждого потока есть контекст (в котором сохраняются его регистры, когда он не работает), приватная область для его локальных переменных, а также может быть собственный маркер доступа (информация о защите). Когда поток завершает работу, он может прекратить свое существование. Процесс завершается, когда прекратит существование последний активный поток.

Взаимосвязь между заданиями, процессами и потоками показана на рис. 5.2.

Рис. 5.2. Задания, процессы, потоки

Переключение потоков в ОС занимает довольно много времени, так как для этого необходимы переключение в режим ядра, а затем возврат в режим пользователя. Достаточно велики затраты процессорного времени на планирование и диспетчеризацию потоков. Для предоставления сильно облегченного псевдопараллелизма в Windows 2000 (и последующих версиях) используются волокна (Fiber), подобные потокам, но планируемые в пространстве пользователя создавшей их программой. У каждого потока может быть несколько волокон, с той разницей, что когда волокно логически блокируется, оно помещается в очередь блокированных волокон, после чего для работы выбирается другое волокно в контексте того же потока. При этом ОС "не знает" о смене волокон, так как все тот же поток продолжает работу.

Таким образом, существует иерархия рабочих единиц операционной системы, которая применительно к Windows выглядит следующим образом (рис. 5.3).

Возникает вопрос: зачем нужна такая сложная организация работ, выполняемых операционной системой? Ответ нужно искать в развитии теории и практики мультипрограммирования, цель которой – в обеспечении максимально эффективного использования главного ресурса вычислительной системы – центрального процессора (нескольких центральных процессоров).

Поэтому прежде чем переходить к рассмотрению современных принципов управления процессором, процессами и потоками, следует остановиться на основных принципах мультипрограммирования.

Рис. 5.3. Иерархия рабочих единиц ОС

.
Для того чтобы, структурировать свое понимание – что представляют собой threads (это слово переводят на русский язык как «нити» почти везде, кроме книг по Win32 API, где его переводят как «потоки») и чем они отличаются от процессов, можно воспользоваться следующими двумя определениями:

  • Thread – это виртуальный процессор , имеющий свой собственный набор регистров, аналогичных регистрам настоящего центрального процессора. Один из наиважнейших регистров у виртуального процессора, как и у реального – это индивидуальный указатель на текущую инструкцию (например, индивидуальный регистр EIP на процессорах семейства x86),
  • Процесс – это в первую очередь адресное пространство . В современной архитектуре создаваемое ядром ОС посредством манипуляции страничными таблицами. И уже во вторую очередь на процесс следует смотреть как на точку привязки «ресурсов» в ОC. Если мы разбираем такой аспект, как многозадачность для того, чтобы понять суть threads, то нам не нужно в этот момент думать о «ресурсах» ОС типа файлов и к чему они привязаны.
Очень важно понять, что thread – это концептуально именно виртуальный процессор и когда мы пишем реализацию threads в ядре ОС или в user-level библиотеке, то мы решаем именно задачу «размножения» центрального процессора во многих виртуальных экземплярах, которые логически или даже физически (на SMP, SMT и multi-core CPU платформах) работают параллельно друг с другом.
На основном, концептуальном уровне, нет никакого «контекста». Контекст – это просто название той структуры данных, в которую ядро ОС или наша библиотека (реализующая threads) сохраняет регистры виртуального процессора , когда она переключается между ними, эмулируя их параллельную работу. Переключение контекстов – это способ реализации threads , а не более фундаментальное понятие, через которое нужно определять thread.
При подходе к определению понятия thread через анализ API конкретных ОС обычно вводят слишком много сущностей – тут тебе и процессы, и адресные пространства, и контексты, и переключения этих контекстов, и прерывания от таймера, и кванты времени с приоритетами, и даже «ресурсы», привязанные к процессам (в противовес threads). И все это сплетено в один клубок и зачастую мы видим, что идем по кругу, читая определения. Увы, это распространенный способ объяснять суть threads в книгах, но такой подход сильно путает начинающих программистов и привязывает их понимание к конкретике реализации.
Понятное дело, что все эти термины имеют право на существование и возникли не случайно, за каждым из них стоит какая-то важная сущность. Но среди них нужно выделить главные и второстепенные (введенные для реализации главных сущностей или навешанные на них сверху, уже на следующих уровнях абстракции).
Главная идея thread – это виртуализация регистров центрального процессора – эмуляция на одном физическом процессоре нескольких логических процессоров, каждый из которых имеет свое собственное состояние регистров (включая указатель команд) и работает параллельно с остальными.
Главное свойство процесса в контексте этого разговора – наличие у него своих собственных страничных таблиц, образующих его индивидуальное адресное пространство . Процесс не является сам по себе чем-то исполнимым.
Можно говорить в определении, что «у каждого процесса в системе всегда есть по крайней мере один thread». А можно сказать иначе –адресное пространство логически лишено смысла для пользователя , если оно не видно хотя бы одному виртуальному процессору (thread). Поэтому логично, что все современные ОС уничтожают адресное пространство (завершают процесс) при завершении работы последнего thread, работающего на данном адресном пространстве. И можно не говорить в определении процесса, что в нем есть «по крайней мере, один thread». Тем более, что на нижнем системном уровне процесс (как правило) может существовать как объект ОС даже не имея в своем составе threads.
Если Вы посмотрите исходники, например, ядра Windows, то Вы увидите, что адресное пространство и прочие структуры процесса конструируются до создания в нем начальной нити (начальной thread для этого процесса). По сути, изначально в процессе не существует threads вообще. В Windows можно даже создать thread в чужом адресном пространстве через user-level API…
Если смотреть на thread как на виртуальный процессор – то его привязка к адресному пространству представляет собой загрузку в виртуальный регистр базы станичных таблиц нужного значения. :) Тем более, что на нижнем уровне именно это и происходит – каждый раз при переключении на thread, связанную с другим процессом, ядро ОС перезагружает регистр указателя на страничные таблицы (на тех процессорах, которые не поддерживают на аппаратном уровне работу со многими пространствами одновременно).

Одним из основных понятий, связанных с операционными системами, являетсяпроцесс – абстрактное понятие, описывающее работу программы . Все функционирующее на компьютере программное обеспечение, включая и операционную систему, можно представить набором процессов.

Задачей ОС является управление процессами и ресурсами компьютера или, точнее, организация рационального использования ресурсов в интересах наиболее эффективного выполнения процессов. Для решения этой задачи операционная система должна располагать информацией о текущем состоянии каждого процесса и ресурса. Универсальный подход к предоставлению такой информации заключается в создании и поддержке таблиц с информацией по каждому объекту управления.

Общее представление об этом можно получить из рис. 5.1, на котором показаны таблицы, поддерживаемые операционной системой: для памяти, устройств ввода-вывода, файлов (программ и данных) и процессов. Хотя детали таких таблиц в разных ОС могут отличаться, по сути, все они поддерживают информацию по этим четырем категориям. Располагающий одними и теми же аппаратными ресурсами, но управляемый различными ОС, компьютер может работать с разной степенью эффективности. Наибольшие сложности в управлении ресурсами компьютера возникают в мультипрограммных ОС.

Рис. 5.1. Таблицы ОС

Мультипрограммирование (многозадачность, multitasking) – это такой способ организации вычислительного процесса, при котором на одном процессоре попеременно выполняются несколько программ. Чтобы поддерживать мультипрограммирование, ОС должна определить для себя внутренние единицы работы, между которыми будут разделяться процессор и другие ресурсы компьютера. В ОС пакетной обработки, распространенных в компьютерах второго и сначала и третьего поколения, такой единицей работы было задание. В настоящее время в большинстве операционных систем определены два типа единиц работы: более крупная единица – процесс, или задача, и менее крупная – поток , или нить . Причем процесс выполняется в форме одного или нескольких потоков.

Вместе с тем, в некоторых современных ОС вновь вернулись к такой единице работы, как задание (Job), например, в Windows. Задание в Windows представляет собой набор из одного или нескольких процессов, управляемых как единое целое. В частности, с каждым заданием ассоциированы квоты и лимиты ресурсов, хранящиеся в соответствующем объекте задания. Квоты включают такие пункты, как максимальное количество процессов (это не позволяет процессам задания создавать бесконтрольное количество дочерних процессов), суммарное время центрального процессора, доступное для каждого процесса в отдельности и для всех процессов вместе, а также максимальное количество используемой памяти для процесса и всего задания. Задания также могут ограничивать свои процессы в вопросах безопасности, например, получать или запрещать права администратора (даже при наличии правильного пароля).


Процессы рассматриваются операционной системой как заявки или контейнеры для всех видов ресурсов, кроме одного – процессорного времени. Это важнейший ресурс распределяется операционной системой между другими единицами работы – потоками, которые и получили свое название благодаря тому, что они представляют собой последовательности (потоки выполнения) команд. Каждый процесс начинается с одного потока, но новые потоки могут создаваться (порождаться) процессом динамически. В простейшем случае процесс состоит из одного потока, и именно таким образом трактовалось понятие "процесс" до середины 80-х годов (например, в ранних версиях UNIX). В некоторых современных ОС такое положение сохранилось, т.е. понятие "поток" полностью поглощается понятием "процесс".

Как правило, поток работает в пользовательском режиме, но когда он обращается к системному вызову, то переключается в режим ядра. После завершения системного вызова поток продолжает выполняться в режиме пользователя. У каждого потока есть два стека, один используется в режиме ядра, другой – в режиме пользователя. Помимо состояния (текущие значения всех объектов потока) идентификатора и двух стеков, у каждого потока есть контекст (в котором сохраняются его регистры, когда он не работает), приватная область для его локальных переменных, а также может быть собственный маркер доступа (информация о защите). Когда поток завершает работу, он может прекратить свое существование. Процесс завершается, когда прекратит существование последний активный поток.

Взаимосвязь между заданиями, процессами и потоками показана на рис. 5.2.

Рис. 5.2. Задания, процессы, потоки

Переключение потоков в ОС занимает довольно много времени, так как для этого необходимы переключение в режим ядра, а затем возврат в режим пользователя. Достаточно велики затраты процессорного времени на планирование и диспетчеризацию потоков. Для предоставления сильно облегченного псевдопараллелизма в Windows 2000 (и последующих версиях) используются волокна (Fiber), подобные потокам, но планируемые в пространстве пользователя создавшей их программой. У каждого потока может быть несколько волокон, с той разницей, что когда волокно логически блокируется, оно помещается в очередь блокированных волокон, после чего для работы выбирается другое волокно в контексте того же потока. При этом ОС "не знает" о смене волокон, так как все тот же поток продолжает работу.

Таким образом, существует иерархия рабочих единиц операционной системы, которая применительно к Windows выглядит следующим образом (рис. 5.3).

Возникает вопрос: зачем нужна такая сложная организация работ, выполняемых операционной системой? Ответ нужно искать в развитии теории и практики мультипрограммирования, цель которой – в обеспечении максимально эффективного использования главного ресурса вычислительной системы – центрального процессора (нескольких центральных процессоров).

Поэтому прежде чем переходить к рассмотрению современных принципов управления процессором, процессами и потоками, следует остановиться на основных принципах мультипрограммирования.

Рис. 5.3. Иерархия рабочих единиц ОС

Процессы и потоки (нити)

Контрольная

Информатика, кибернетика и программирование

Процессы и потоки (нити). 2.1 Процессы 2.1.1 Понятие процесса Процесс (задача) - программа, находящаяся в режиме выполнения. С каждым процессом связывается его адресное пространство, из которого он может читать и в которое он может писать данн...

Процессы и потоки (нити).

2.1 Процессы

2.1.1 Понятие процесса

Процесс (задача) - программа, находящаяся в режиме выполнения.

С каждым процессом связывается его адресное пространство, из которого он может читать и в которое он может писать данные.

Адресное пространство содержит:

  • саму программу
  • данные к программе
  • стек программы

С каждым процессом связывается набор регистров , например:

  • счетчика команд (в процессоре) - регистр в котором содержится адрес следующей, стоящей в очереди на выполнение команды. После того как команда выбрана из памяти, счетчик команд корректируется и указатель переходит к следующей команде.
  • указатель стека
  • и д.р.

Во многих операционных системах вся информация о каждом процессе, дополнительная к содержимому его собственного адресного пространства, хранится в таблице процессов операционной системы.

Некоторые поля таблицы :

Управление процессом

Управление памятью

Управление файлами

Регистры

Счетчик команд

Указатель стека

Состояние процесса

Приоритет

Параметры планирования

Идентификатор процесса

Родительский процесс

Группа процесса

Время начала процесса

Использованное процессорное время

Указатель на текстовый сегмент

Указатель на сегмент данных

Указатель на сегмент стека

Корневой каталог

Рабочий каталог

Дескрипторы файла

Идентификатор пользователя

Идентификатор группы

2.1.2 Модель процесса

В многозадачной системе реальный процессор переключается с процесса на процесс, но для упрощения модели рассматривается набор процессов, идущих параллельно (псевдопараллельно).

Рассмотрим схему с четырьмя работающими программами.

В каждый момент времени активен только один процесс

С права представлены параллельно работающие процессы, каждый со своим счетчиком команд. Разумеется, на самом деле существует только один физический счетчик команд, в который загружается логический счетчик команд текущего процесса. Когда время, отведенное текущему процессу, заканчивается, физический счетчик команд сохраняется в памяти, в логическом счетчике команд процесса.

2.1.3 Создание процесса

Три основных события, приводящие к созданию процессов (вызов fork или CreateProcess

  • Работающий процесс подает системный вызов на создание процесса
  • Запрос пользователя на создание процесса
  • Во всех случаях, активный текущий процесс посылает системный вызов на создание нового процесса.

    В UNIX каждому процессу присваивается идентификатор процесса (PID - Process IDentifier )

    2.1.4 Завершение процесса

    Четыре события, приводящие к остановке процесса (вызов exit или ExitProcess ):

    • Плановое завершение (окончание выполнения)
    • Плановый выход по известной ошибке (например, отсутствие файла)
    • Выход по неисправимой ошибке (ошибка в программе)
    • Уничтожение другим процессом

    Таким образом, приостановленный процесс состоит из собственного адресного пространства, обычно называемого образом памяти (core image ), и компонентов таблицы процессов (в числе компонентов и его регистры).

    2.1.5 Иерархия процессов

    В UNIX системах заложена жесткая иерархия процессов. Каждый новый процесс созданный системным вызовом fork, является дочерним к предыдущему процессу. Дочернему процессу достаются от родительского переменные, регистры и т.п. После вызова fork, как только родительские данные скопированы, последующие изменения в одном из процессов не влияют на другой, но процессы помнят о том, кто является родительским.

    В таком случае в UNIX существует и прародитель всех процессов - процесс init .

    Дерево процессов для систем UNIX

    В Windows не существует понятия иерархии процессов. Хотя можно задать специальный маркер родительскому процессу, позволяющий контролировать дочерний процесс.

    2.1.6 Состояние процессов

    Три состояния процесса:

    • Выполнение (занимает процессор)
    • Готовность (процесс временно приостановлен, чтобы позволить выполняться другому процессу)
    • Ожидание (процесс не может быть запущен по своим внутренним причинам, например, ожидая операции ввода/вывода)

    Возможные переходы между состояниями.

    1. Процесс блокируется, ожидая входных данных

    2. Планировщик выбирает другой процесс

    3. Планировщик выбирает этот процесс

    4. Поступили входные данные

    Переходы 2 и 3 вызываются планировщиком процессов операционной системы, так что сами процессы даже не знают о этих переходах. С точки зрения самих процессов есть два состояния выполнения и ожидания.

    На серверах для ускорения ответа на запрос клиента, часто загружают несколько процессов в режим ожидания, и как только сервер получит запрос, процесс переходит из "ожидания" в "выполнение". Этот переход выполняется намного быстрее, чем запуск нового процесса.

    2.2 Потоки (нити, облегченный процесс)

    2.2.1 Понятие потока

    Каждому процессу соответствует адресное пространство и одиночный поток исполняемых команд. В многопользовательских системах, при каждом обращении к одному и тому же сервису, приходится создавать новый процесс для обслуживания клиента. Это менее выгодно, чем создать квазипараллельный поток внутри этого процесса с одним адресным пространством.

    Сравнение многопоточной системы с однопоточной

    2.2.2 Модель потока

    С каждым потоком связывается :

    • Счетчик выполнения команд
    • Регистры для текущих переменных
    • Стек
    • Состояние

    Потоки делят между собой элементы своего процесса:

    • Адресное пространство
    • Глобальные переменные
    • Открытые файлы
    • Таймеры
    • Семафоры
    • Статистическую информацию.

    В остальном модель идентична модели процессов.

    В POSIX и W indows есть поддержка потоков на уровне ядра.

    В Linux есть новый системный вызов clone для создания потоков, отсутствующий во всех остальных версиях системы UNIX .

    В POSIX есть новый системный вызов pthread _ create для создания потоков.

    В W indows есть новый системный вызов Createthread для создания потоков.

    2.2.3 Преимущества использования потоков

    1. Упрощение программы в некоторых случаях, за счет использования общего адресного пространства.
    2. Быстрота создания потока, по сравнению с процессом, примерно в 100 раз.
    3. Повышение производительности самой программы, т.к. есть возможность одновременно выполнять вычисления на процессоре и операцию ввода/вывода. Пример: текстовый редактор с тремя потоками может одновременно взаимодействовать с пользователем, форматировать текст и записывать на диск резервную копию.

    2.2.4 Реализация потоков в пространстве пользователя, ядра и смешанное

    А - потоки в пространстве пользователя

    B - потоки в пространстве ядра

    В случае А ядро о потоках ничего не знает. Каждому процессу необходима таблица потоков , аналогичная таблице процессов.

    Преимущества случая А :

    • Такую многопоточность можно реализовать на ядре не поддерживающим многопоточность
    • Более быстрое переключение, создание и завершение потоков
    • Процесс может иметь собственный алгоритм планирования.

    Недостатки случая А :

    • Отсутствие прерывания по таймеру внутри одного процесса
    • При использовании блокирующего (процесс переводится в режим ожидания, например: чтение с клавиатуры, а данные не поступают) системного запроса все остальные потоки блокируются.
    • Сложность реализации

    Мультиплексирование потоков пользователя в потоках ядра

    Поток ядра может содержать несколько несколько потоков пользователя.

    2.2.5 Особенности реализации Windows

    Используется четыре понятия:

    • Задание - набор процессов с общими квотами и лимитами
    • Процесс - контейнер ресурсов (память...), содержит как минимум один поток.
    • Поток - именно исполняемая часть, планируемая ядром.
    • Волокно - облегченный поток, управляемый полностью в пространстве пользователя. Один поток может содержать несколько волокон.

    Потоки работают в режиме пользователя, но при системных вызовах переключаются в режим ядра. Из-за переключения в режим ядра и обратно, очень замедляется работа системы. Поэтому было введено понятие волокна . У каждого потока может быть несколько волокон.

    PAGE 7


    А также другие работы, которые могут Вас заинтересовать

    77702. Конструкции дисководов CD-ROM 5.39 MB
    В этом заключается принципиальное отличие дисководов компактдисков от накопителей на жестких и гибких дисков в которых носители вращаются с постоянной угловой скоростью. Необходимость поддержания постоянной линейной скорости обусловлена исключительно тем что при воспроизведении звуковых компактдисков данные должны поступать в декодирующее устройство в постоянном и строго определенном темпе независимо от того с какого витка рожки они считываются. Механическая часть дисководов CDROM Конструкция дисководов компактдисков приведена на рис.
    77703. Устройства записи информации со сменными дисками 2.29 MB
    Однако в ближайшее время их скорее всего заменят пишущие DVDнакопители которые работают быстрее позволяют записывать прожигать 47Гбайт DVDносители что значительно удобнее 700Мбайт CDдисков и кроме того обеспечивают обратную совместимость с CDносителями поскольку могут работать как обычные накопители CDRW. Так МОнакопитель Fujitsu работает медленнее накопителей CDRW и DVDRW а по цене сильно проигрывает первым и сравним со вторыми. В том случае когда требуется иметь постоянно под рукой пятьдесять сменных...
    77705. Флэш-память. От ROM к Flash 572.5 KB
    Внимание которое уделяется флэш-памяти вполне объяснимо ведь это самый быстрорастущий сегмент полупроводникового рынка. Ежегодно рынок флэш-памяти растет более чем на 15 что превышает суммарный рост всей остальной полупроводниковой индустрии.
    77706. Технологии развития современной памяти 115 KB
    Всего за несколько десятилетий в области технологий хранения данных произошли разительные перемены а появление флешпамяти без преувеличения можно назвать революцией. Сегодня принцип хранения информации в электронных устройствах конечно отличается от условных расчётов Фейнмана но размер единичного элемента хранения известен около 40 нм в коммерческих устройствах на основе флешпамяти. Технологии устройств памяти следующего поколения будут использовать новые материалы обладать временем доступа в единицы наносекунд и хранить информацию...
    77707. Трёхмерная графитовая память 35.5 KB
    На сделанных сканирующим электронным микроскопом снимках видны графитовая полоска неизменённой ячейки памяти вверху и содержащей бит данных Выход нашли исследователи из Университета Райса Rice University в Хьюстоне которые показали что родственник графена графит может быть адаптирован для создания быстрых высокоёмких устройств хранения обладающих преимуществами по сравнению с флэшпамятью которой комплектуется сегодня множество мобильных устройств. Ячейки памяти могут быть расположены в виде вертикальных массивов что в...
    77709. Современные тенденции развития носителей информации 697 KB
    Интерфейс IDE Что бы ни говорили сторонники SCSI широкое распространение IDEустройств на сегодняшний день свершившийся факт. В идеале каждое IDEустройство стоит подключать к отдельному каналу в этом пожалуй заключается основное преимущество SCSI. И это одно из главных преимуществ IDE перед SCSI. SCSI Smll Computer System Interfce Несмотря на кажущееся засилье устройств с интерфейсом IDE EIDE по объемам выпуска за SCSI жесткими дисками всетаки остается около 27 рынка.


    Есть вопросы?

    Сообщить об опечатке

    Текст, который будет отправлен нашим редакторам: