Проектирование. STM32 — это очень просто Обвязка stm32 описание и инструкция по программированию

В последние годы 32 разрядные микроконтроллеры (МК) на основе процессоров ARM стремительно завоёвывают мир электроники. Этот прорыв обусловлен их высокой производи тельностью, совершенной архитектурой, малым потреблением энергии, низкой стоимостью и развитыми средствами программирования.

КРАТКАЯ ИСТОРИЯ
Название ARM является аббревиатурой Advanced RISC Machines, где RISC (Reduced Instruction Set Computer) обозначает архитектуру процессоров с сокращённым набором команд. Подавляющее число популярных МК, а пример семейства PIC и AVR, также имеют архитектуру RISC, которая позволила увеличить быстродействие за счёт упрощения декодирования инструкций и ускорения их выполнения. Появление совершенных и производительных 32 разрядных ARMмикроконтроллеров позволяет перейти к решению более сложных задач, с которыми уже не справляются 8 и 16 разрядные МК. Микропроцессорная архитектура ARM с 32 разрядным ядром и набором команд RISC была разработана британской компанией ARM Ltd, которая занимается исключительно разработкой ядер, компиляторов и средств отладки. Компания не производит МК, а продаёт лицензии на их производство. МК ARM – один из быстро развивающихся сегментов рынка МК. Эти приборы используют технологии энергосбережения, поэтому находят широкое применение во встраиваемых системах и доминируют на рынке мобильных устройств, для которых важно низкое энергопотребление. Кроме того, ARM микроконтроллеры активно применяются в средствах связи, портативных и встраиваемых устройствах, где требуется высокая производительность. Особенностью архитектуры ARM является вычислительное ядро процессора, не оснащённое какими либо дополнительными элементами. Каждый разработчик процессоров должен самостоятельно до оснастить это ядро необходимыми блоками под свои конкретные задачи. Такой подход хорошо себя зарекомендовал для крупных производителей микросхем, хотя изначально был ориентирован на классические процессорные решения. Процессоры ARM уже прошли несколько этапов развития и хорошо известны семействами ARM7, ARM9, ARM11 и Cortex. Последнее делится на подсемейства классических процессоров CortexA, процессоров для систем реального времени CortexR и микропроцессорные ядра CortexM. Именно ядра CortexM стали основой для разработки большого класса 32 разрядных МК. От других вариантов архитектуры Cortex они отличаются, прежде всего, использованием 16разрядного набора инструкций Thumb2. Этот набор совмещал в себе производительность и компактность «классических» инструкций ARM и Thumb и разрабатывался специально для работы с языками С и С++, что существенно повышает качество кода. Большим достоинством МК, построенных на ядре CortexM, является их программная совместимость, что теоретически позволяет использовать программный код на языке высокого уровня в моделях разных производителей. Кроме обозначения области применения ядра, разработчики МК указывают производительность ядра CortexM по десятибалльной шкале. На сегодняшний день самыми популярными вариантами являются CortexM3 и CortexM4. МК с архитектурой ARM производят такие компании, как Analog Devices, Atmel, Xilinx, Altera, Cirrus Logic, Intel, Marvell, NXP, STMicroelectronics, Samsung, LG, MediaTek, MStar, Qualcomm, SonyEricsson, Texas Instruments, nVidia, Freescale, Миландр, HiSilicon и другие.
Благодаря оптимизированной архитектуре стоимость МК на основе ядра CortexM в некоторых случаях даже ни же, чем у многих 8разрядных приборов. «Младшие» модели в настоящее время можно приобрести по 30 руб. за корпус, что создаёт конкуренцию предыдущим поколениям МК. МИКРОКОНТРОЛЛЕРЫ STM32 Рассмотрим наиболее доступный и широко распространённый МК семейства STM32F100 от компании STMicroelectronics , которая является одним из ведущих мировых производителей МК. Недавно компания объявила о начале производства 32битного МК, использующего преимущества индустриального
ядра STM32 в недорогих приложениях. МК семейства STM32F100 Value line предназначены для устройств, где не хватает производительности 16разрядных МК, а богатый функционал «обычных» 32разрядных приборов является избыточным. Линейка МК STM32F100 базируется на современном ядре ARM CortexM3 с периферией, оптимизированной для применения в типичных приложениях, где использовались 16разрядные МК. Производительность МК STM32F100 на тактовой частоте 24 МГц превосходит большинство 16разрядных МК. Данная линейка включает приборы с различными параметрами:
● от 16 до 128 кбайт флэшпамяти программ;
● от 4 до 8 кбайт оперативной памяти;
● до 80 портов ввода вывода GPIO;
● до девяти 16разрядных таймеров с расширенными функциями;
● два сторожевых таймера;
● 16канальный высокоскоростной 12разрядный АЦП;
● два 12разрядных ЦАП со встроенными генераторами сигналов;
● до трёх интерфейсов UART с поддержкой режимов IrDA, LIN и ISO7816;
● до двух интерфейсов SPI;
● до двух интерфейсов I2С с поддержкой режимов SMBus и PMBus;
● 7канальный блок прямого доступа к памяти (DMA);
● интерфейс CEC (Consumer Electronics Control), включённый в стандарт HDMI;
● часы реального времени (RTC);
● контроллер вложенных прерываний NVIC.

Функциональная схема STM32F100 представлена на рисунке 1.

Рис. 1. Архитектура МК линейки STM32F100

Дополнительным удобством является совместимость приборов по выводам, что позволяет, при необходимости, использовать любой МК семейства с большей функциональностью и памятью без переработки печатной платы. Линейка контроллеров STM32F100 производится в трёх типах корпусов LQFP48, LQFP64 и LQFP100, имеющих, соответственно, 48, 64 и 100 выводов. Назначение выводов представлено на рисунках 2, 3 и 4. Такие корпуса можно устанавливать на печатные платы без применения специального оборудования, что является весомым фактором при мелкосерийном производстве.


Рис. 2. МК STM32 в корпусе LQFP48 Рис. 3. МК STM32 в корпусе LQFP64


Рис. 4. МК STM32 в корпусе LQFP100

STM32F100 – доступный и оптимизированный прибор, базирующийся на ядре CortexM3, поддерживается развитой средой разработки МК семейства STM32, которая содержит
бесплатные библиотеки для всей пе риферии, включая управление двига телями и сенсорными клавиатурами.

СХЕМА ВКЛЮЧЕНИЯ STM32F100C4
Рассмотрим практическое использование МК на примере самого простого прибора STM32F100C4, который, тем не менее, содержит все основные блоки линейки STM32F100. Принципиальная электрическая схема включения STM32F100C4 представлена на рисунке 5.


Рис. 5. Схема включения МК STM32F100C4

Конденсатор С1 обеспечивает сброс МК при включении питания, а конденсаторы С2-С6 фильтруют напряжение питания. Резисторы R1 и R2 ограничивают сигнальный ток выводов МК. В качестве источника тактовой частоты используется внутренний генератор, поэтому нет необходимости применять внешний кварцевый резонатор.


Входы BOOT0 и BOOT1 позволяют выбрать способ загрузки МК при включении питания в соответствии с таб лицей. Вход BOOT0 подключён к шине нулевого потенциала через резистор R2, который предохраняет вывод BOOT0 от короткого замыкания при его использовании в качестве выход ного порта PB2. С помощью соединителя J1 и одной перемычки можно из менять потенциал на входе BOOT0, определяя тем самым способ загрузки МК – из флэшпамяти или от встроенного загрузчика. При необходимости загрузки МК из оперативной памяти аналогичный соединитель с перемычкой можно подключить и к входу BOOT1.
Программирование МК осуществляется через последовательный порт UART1 или через специальные программаторы – отладчики JTAG или STLink. Последний входит в состав популярного отладочного устройства STM32VLDISCOVERY , изображённого на рисунке 6. На плате STM32VLDIS COVERY 4контактный разъём программатора – отладчика STLink – имеет обозначение SWD. Автор статьи предлагает программировать МК через последовательный порт UART1, поскольку это значительно проще, не требует специального оборудования и не уступает в скорости JTAG или ST Link. В качестве управляющего устройства, способного формировать команды и отображать результаты работы про граммы МК, а также в качестве программатора можно использовать любой персональный компьютер (ПК), имеющий последовательный COM порт или порт USB с преобразователем USBRS232.

Для сопряжения COMпорта ПК с МК подойдет любой преобразователь сиг налов RS232 в уровни логических сигналов от 0 до 3,3 В, например, микросхема ADM3232. Линия передачи TXD последовательного порта компьютера, после преобразователя уровней, должна подключаться к входу PA10 микроконтроллера, а линия приёмника RXD, через аналогичный преобразователь, – к выходу PA9.

При необходимости использования энергонезависимых часов МК, к нему следует подключить элемент питания типа CR2032 с напряжением 3 В и кварцевый резонатор на частоту 32768 Гц. Для этого МК оснащён выводами Vbat/GND и OSC32_IN/OSC32_OUT. Предварительно вывод Vbat необходимо отключить от шины питания 3,3 В.

Оставшиеся свободными выводы МК можно использовать по необходимости. Для этого их следует подключить к разъёмам, которые расположены по периметру печатной платы для МК, по аналогии с популярными устройствами Arduino и отладочной платой STM32VLDISCOVERY .


Рис. 6. Отладочное устройство STM32VLDISCOVERY


Схема электрическая принципиальная STM32VLDISCOVERY.

Таким образом, в зависимости от назначения и способа применения МК, к нему можно подключать необходимые элементы, чтобы задействовать другие функциональные блоки и пор ты, например, ADC, DAC, SPI, I2C и т.п. В дальнейшем эти устройства будут рас смотрены подробнее.

ПРОГРАММИРОВАНИЕ
Сегодня многие компании предлагают средства для создания и отладки программ микроконтроллеров STM32. К их числу относятся Keil от ARM Ltd, IAR Embedded Workbench for ARM, Atol lic TrueStudio, CooCox IDE, GCC и Eclipse IDE. Разработчик может выбрать про граммные средства по своему пред почтению. Ниже будет описан инструментарий Keil uVision 4 от компании Keil , который поддерживает огромное число типов МК, имеет развитую систему отладочных средств и может быть использован бесплатно с ограничениями размера генерируемого кода 32 кбайт (что, фактически, максимально для рассматриваемых МК).

Простой и быстрый старт с CooCox CoIDE.

Итак приступим. Идем на официальный сайт CooCox и качаем последнюю версию CooCox CoIDE . Для скачивания необходимо зарегистрироваться, регистрация простая и бесплатная. Затем инсталлируем скачанный файл и запускаем.

CooCox CoIDE — среда разработки, на базе Eclipse, которая помимо STM32 поддерживает кучу других семейств микроконтроллеров: Freescale, Holtek, NXP, Nuvoton, TI, Atmel SAM, Energy Micro и др. С каждой новой версией CoIDE список МК постоянно пополняется. После успешной установки CoIDE запускаем:

Появится стартовое окно Step 1, в котором необходимо выбрать производителя нашего микроконтроллера. Нажимаем ST и переходим к Step 2 (выбор микроконтроллера), в котором необходимо выбрать конкретную модель. У нас STM32F100RBT6B, поэтому нажимаем на соответствующую модель:

Справа, в окне Help отображаются краткие характеристики каждого чипа. После выбора нужного нам микроконтроллера переходим к третьему шагу Step 3 — к выбору необходимых библиотек для работы:

Давайте создадим простейший проект для мигания светодиодом, как это принято для изучения микроконтроллеров.

Для этого нам понадобится библиотека GPIO, при включении которой, CoIDE попросит создать новый проект. На это предложение нажимаем Yes, указываем папку где будет храниться наш проект и его название. При этом, CoIDE подключит к проекту 3 другие, необходимые для работы библиотеки, а также создаст всю необходимую структуру проекта:

Чем еще хорош CoIDE, это тем, что в нем есть возможность загружать примеры прямо в среду разработки. В вкладке Components вы можете видеть, что почти к каждой библиотеке есть примеры, нажимаем на GPIO (with 4 examples) и видим их:

Туда можно добавлять и свои примеры. Как видно на скриншоте выше, в примерах уже присутствует код для мигания светодиодом GPIO_Blink. Можно нажать кнопку add и он добавиться в проект, но как подключаемый файл, поэтому мы сделаем по другому просто скопируем весь код примера в файл main.c. Единственное, строку void GPIO_Blink(void) замените на int main(void). Итак, нажимаем F7 (или в меню выбираем Project->Build), чтобы скомпилировать проект и… не тут то было!

Среде нужен компилятор GCC, а у нас его нет. Поэтому идем на страничку GNU Tools for ARM Embedded Processors , справа выбираем тип вашей ОС и качаем последнюю версию тулчайна. Затем запускаем файл и инсталируем gcc toolchain. Далее, в настройках CoIDE укажем правильный путь к тулчайну:

Опять нажимаем F7 (Project->Build) и видим, что компиляция прошла успешно:

Осталось прошить микроконтроллер. Для этого при помощи USB подключаем нашу плату к компьютеру. Затем, в настройках дебаггера необходимо поставить ST-Link, для этого в меню выбираем Project->Configuration и открываем вкладку Debugger. В выпадающем списке выбираем ST-Link и закрываем окно:

Попробуем прошить МК. В меню выбираем Flash->Program Download (или на панели инструментов щелкаем по соответствующей иконке) и видим, что МК успешно прошит:

На плате наблюдаем мигающий светодиод, видео или фото я думаю приводить нет смысла, т.к. все это видели.

Также, в CoIDE работают различные режимы отладки, для этого нажимаем CTRL+F5 (или в меню Debug->Debug):

На этом все. Как видите, настройка среды CoIDE и работа с ней очень проста. Надеюсь данная статья подтолкнет вас в изучении очень перспективных и недорогих микроконтроллеров STM32.

Дисплей имеет разрешение 128х64 точки, но, как и большинство монохромных дисплеев, имеет постраничную организацию.

Экран разбит на 8 страниц высотой по 8 точек (строк), которые образуют байт. Прямое обращение к произвольной точке невозможно, обращение производиться постранично.

То есть для того, что бы закрасить один пиксель по координате X=1 Y=5, нам будет нужно записать первый столбец нулевой страницы целиком X=1 Y=0-7. Для этого нужно или хранить видео буфер в контроллере; или перед записью считать блок, затем его модифицировать и только потом записать его; или хорошо представлять структуру экрана и учитывать её при выводе надписей, графиков, рисунков… В самом простом — текстовом — варианте работы с такими дисплеями, достаточно использовать шрифт кратный по высоте 8 точкам (1 странице) и выводить его кратно 8 точкам: 0,7,15…

Прошивка/библиотека

Библиотека для работы с дисплеями на контроллере ST7565R по параллельному интерфейсу 8080 в текстовом режиме была написана на основе даташита и исходника идущего с подобным дисплеем от другого производителя. Команды и были взяты и адаптированы из ранних моих проектов по дисплеям от и . Библиотека подходит для дисплеев на основе контроллера ST7565R. При её использование нужно учитывать особенности каждого отдельно взятого дисплея, например, то, какие линии управления у дисплея инвертированы, а какие нет. Так же она написана под
семейство контроллеров stm32f1xx, при использовании её на других контроллерах нужно изменить функцию инициализации выводов и define’ы отвечающие за управления выводами.

Библиотека содержит следующий функции:

lcd_init_pins (); Инициализация выводов дисплея
lcd_delay (unsigned long p ); Задержка
lcd_write_data (unsigned char dat ); отправка данных на дисплей
lcd_write_cmd (unsigned char cmd ); Отправка команд
lcd_Initial_Dispay_Line (unsigned char line ); Адрес первой строки дисплея
lcd_Set_Page_Address (unsigned char add ); Установка строки (заменена lcd_gotoxy)
lcd_Set_Column_Address (unsigned char add ); Установка столбца (заменена lcd_gotoxy)
lcd_Power_Control (unsigned char vol ); Управление питанием
lcd_Regulor_Resistor_Select (unsigned char r );
lcd_Set_Contrast_Control_Register (unsigned char mod ); Установка контрастности дисплея
lcd_init (void); Инициализация дисплея
lcd_clear (void); Очистка дисплея
lcd_gotoxy (unsigned char x ,unsigned char y ); Установка текстового курсора
x — столбец, y — строка (страница)
unsigned char lcd_symbol_decode (unsigned char c ); Декодирование сжатой ASCII таблицы
c — код символа в ASCII
lcd_putch (unsigned char c ); Вывод символа на дисплей
c — символ
lcd_putch_inv (unsigned char c ); Вывод инвертированного (закраска) символа
c — символ
lcd_puts (char *s ); Вывод строки
s — строка
lcd_puts_inv (char *s ); Вывод инвертированной строки
s — строка
void lcd_test (void); Тестовое заполнение дисплея подряд идущим символами
lcd_putch_big_prototype (unsigned char col ,unsigned char row ,char c , unsigned char inv ); Вывод символов х2 х4 х8 размера
col — ширина
row — высота
c — символ
inv — инверсия 0 — выкл, 1 -вкл
lcd_putch_big (char c ); Вывод символа размера х2
c — символ
lcd_puts_big (char *s ); Вывод строки х2
s — строка
lcd_puts_int2 (unsigned char v ); Вывод числа из двух цифр (простая функция)
v — число от 0 до 99
lcd_puts_int (int v ); Вывод числа.
v — число от -32768 до 32767
lcd_puts_long (unsigned long v ); Вывод длинного 4 Байтового числа (внимание! функция занимает много памяти)
v — число от -2147483648 до 2147483647

Инициализация выводов дисплея производиться путём настройки следующих define’ов в файле ST7565R.h , для stm32f1xx контроллеров.

#define INVERT_MODE 1 // перевернуть дисплей #define lcd_port_data GPIOB // порт линий данных #define lcd_port_data_rcc RCC_APB2Periph_GPIOB // тактирование порта линий данных #define lcd_port_data_offest 0 // смещение, если начальный вывод не 0 #define lcd_pins_data GPIO_Pin_0 | GPIO_Pin_1 | GPIO_Pin_2 | GPIO_Pin_3 | GPIO_Pin_4 | GPIO_Pin_5 | GPIO_Pin_6 | GPIO_Pin_7; // линии данных, должны идти подряд по возрастающей #define lcd_port_control GPIOB // порт линий команд #define lcd_port_control_rcc RCC_APB2Periph_GPIOB // тактирование порта линий команд #define lcd_pin_RS GPIO_Pin_14 // линия выбора команды/данные #define lcd_pin_RW_WR GPIO_Pin_13 // линия чтение/запись #define lcd_pin_E_RD GPIO_Pin_12 // линия enable, разрешения #define lcd_pin_CS1 GPIO_Pin_11 // линия выбора кристала/дисплея #define lcd_pin_RST GPIO_Pin_15 // линия сброса

Если семейства контроллера отличается, то нужно будет подправить настройку выводов МК функция в файле ST7565R.c: lcd_init_pins, функции вывода данных и команд — lcd_write_data, lcd_write_cmd , а так же define управляющих линий в ST7565R.h .

Пример программы, результат работы которой представлен на первых фотографиях.

Init(); // инициализация контроллера GPIO_WriteBit(GPIOC,GPIO_Pin_13,Bit_SET); // включить светодиод delay_ms(100); // задержка 100 мс lcd_init_pins(); // инициализация выводв LCD delay_ms(100); lcd_init(); // инициализация LCD delay_ms(100); GPIO_WriteBit(GPIOC,GPIO_Pin_13,Bit_RESET); // выключить светодиод lcd_clear(); // очистка дисплея lcd_gotoxy(0,0); // установить курсора по координатам x=0 , y=0 lcd_puts("COG"); // вывод строки lcd_gotoxy(3,0); // установить курсора по координатам x=3 , y=0 lcd_puts_big("LCD128x64"); // вывод строки шрифтом x2 lcd_gotoxy(0,2); // установить курсора по координатам x=0 , y=2 lcd_puts("GS-GG1286456FFWJ-A-R"); lcd_gotoxy(0,3); lcd_puts("controller ST7565R on"); lcd_gotoxy(0,4); lcd_puts("mc stm32f103c8t6"); lcd_gotoxy(0,5); lcd_puts_big("Alex_EXE"); lcd_gotoxy(10,7); lcd_puts("сайт");

Думаю, нечего дополнительно комментировать не нужно, в коде комментарии достаточны.

Статья обновлена 23.04.2016

18 комментариев на « Подключение COG LCD дисплея на ST7565R контроллере»

    Добрый день!
    Периодически посещаю ваш сайт и слежу за новыми обновлениями, т.к. сам начинал с pic-ов и в данный момент работаю с stm32.
    Очередная хорошая статья! Жаль, что чуть раньше не вышла)
    Пару месяцев назад тоже пришлось разбираться с контроллером ST7565 на экране w012864C2-TFH от WINSTAR и писать свою библиотеку под русские шрифты разной величины и стиля (подключение по spi).
    Очень помогла вот эта статья:
    http://edeca.net/wp/electronics/the-st7565-display-controller/
    и программа для генерации шрифтов на странице автора.
    Возможно вам тоже будет интересно.

    Удачи и успеха во всем.

    К сожалению, что-то написание этой статьи у меня затянулось, начал её ещё в декабре прошлого года.
    Хотел всё её написать более развёрнутой (программную часть), а в итоге вчера дописал до необходимого минимума и выложил. Может быть ближайшее время немного дополню её.
    С данными дисплеями с удовольствием работаю уже более 2-х лет.

    В своих статьях Вы выкладываете только основу кода, для запуска и понимания работы модуля. Интересно, как у Вас организован вывод русских символов 🙂
    Данный вопрос возник еще при использовании библиотеки на 1602 дисплей, брал ее за образец для своего проекта.
    Я пользуюсь Keil и для меня в обоих случаях сложность была связана с соотнесением кода русской буквы в таблице дисплея с кодом в отладчике)
    Интересно, какой средой разработки Вы пользуетесь и какое решение использовали =)

    С Уважением, Юрий

    Сейчас использую CooCox, у него проблем с кириллицей не наблюдается. В Keil по началу библиотеку работы с дисплеем и все сообщения на русском писал в notepad++. Потом как то случайно, файл перевёлся, кажется, в юникод, из под него с кириллицей в Keil стало возможно работать. Точнее объяснить не смогу, т.к. уже забыл, по моему, на этот вопрос не раз давал ответ в комментариях к ранее описанным символьным дисплеям под stm32.
    Когда закончил изучение и перешел к проекту, над которым до сих пор работаю, то сразу оценил, что выйду за ограничение в 32КБ и перешел на другую IDE.

    Статью слегка дополнил.

    Владимир пишет 20.10.2016 в 20:15

    А нет ли у вас случайно конвертера изображений 128*64,чтобы на выходе получить массив,как в вашей программе Image generator 84*48 дисплея от нокиа.

    Как промню, у меня на сайте есть 2 программы image generator. Первая генерирует для нокии т.е. 84х48, это первая версия программы и та статья иметь пометку устарела. Вторая версия генерирует до 320х240.

    вряд ли есть что-то из паябельного дешевле дисплея от nokia 1202
    по цене 70! р.

    Статья не об этом. Читайте внимательно предисловие.
    Если в своих конструкциях хотите использовать — то используйте дисплеи от сотовых, сам когда то так делал, кстати по дисплеям от нокии у меня есть несколько статей. Я же данный дисплей применяю в серийном устройстве, ну и в своих конструкциях перешел на него то же.

    Алексей пишет 19.02.2017 в 00:40 Обвязка у подобных дисплеев примерно одинакова, но выводы могут располагаться по другому, название выводов одинаковы. Схема включения может немного различаться.
    Поэтому на выбранный дисплей в любом случае нужен даташит. Схемы включения всех дисплеев брал из официальной документации именно на конкретные марки.
    В статье видны 4 разные дисплея, у 3-х (на зеленой платке) схема включения и распиновка оказалась одинаковой и она отличается от GG1286456FFWJ-A-R.

    спасибо! очень помог

    Александр Д пишет 25.02.2018 в 18:34

    Добрый день!
    В моем устройстве был использован довольно редкий дисплейный модуль COG с матрицей 132×64 на контроллере Solomon SSD1815BZ. К сожалению ничего похожего в сети сейчас не обнаруживается. Максимально близкое это 132×64 на контроллере ST7567, где-то прочитал что у них система команд одинаковая. Однако по распиновке не у всех контактов есть прямое соответствие. Можете ли как-то помочь по данному вопросу? Т.е. имеется ли возможность один заменить другим? И что будет если установить дисплей на контроллере SSD1815BZ но с матрицей 128×64 — будет ли работать вообще?

    Данные дисплеи бывают с разными интерфейсами SPI, i2c, 8080. Некоторые поддерживают несколько, выбор производится соответствующими выводами.
    Для дисплеев с интересом 8080: идут 8 линий данных и 5 линий управления, у которых в разных источниках разные названия, даже у меня на сайте на принципиальной схеме название одно, а на pcb, которая была разработана много ранее, другое (использовались разные даташиты на разные дисплеи, а управление одинаковое); порядок у меня совпадает, ищите аналогию использую эти две картинки.
    CS — выбор кристалла
    Reset (RST) — сброс
    RS — выбор команд/данных
    E (A0) — разрешение
    RW/RD — запись/чтение
    При подключении подобных дисплеев так же нужно обратить внимание на линии подключения конденсаторного умножителя: CAP+- V1… Вот здесь нужен даташит. Но можно попробовать подобрать по аналогии, некоторая зависимость по названиям просматривается, но у таких дисплеев бывает несколько схем включения умножительных конденсаторов.
    По разрешению:
    отличие разрешения и смещение — не страшно, его можно настроить или во время инициализации (если есть соответствующие команды) или компенсировать при выводе данных на дисплей.
    В инициализации так же есть свои нюансы:
    Выбор напряжения умножителя и схемы включения конденсаторов умножителя, контрастность, начало вывода (угол), ориентация горизонтальная/вертикальная, развертка (чересстрочная, последовательная…)… Это уже будет зависеть от типа дисплея. Здесь критические могут быть только первые пункты, остальные можно будет без документации подобрать уже во время работы.

    Александр Д пишет 27.02.2018 в 18:54

    Спасибо за ответ!
    Вообще ситуация такова, что сильно ограничены в возможности внесения каких-либо программных изменений кода. Условно имеем «черный ящик» с 18-пиновым выходом и анод/катод для подсветки. В этот разъем был включен дисплей, который надо заменить. Даташиты, распиновка есть. На рынке нет ничего похожего… Максимально подходящий дисплей из доступных на ST6757 практически с аналогичной распиновкой (порядок пинов тот же, но обратный). Бустера (умножителя) на новом дисплее нет. Вопросы по соответствию контактов 1..5 SSD1815BZ и 10..12 ST6757 соответственно. Можно ли просто тупо включить другой дисплей в разъем через переходник и что подавать на контакты 10-12? Если у вас есть время и возможность помочь советом, напишите на email…

    Дисплей на SSD1815BZ
    1.V6 (This pin is the most negative LCD driving voltage)
    2.V5
    3.V4
    4.V3
    5.V2 (V2-V5 — These are the LCD driving voltage levels)
    6.C2P
    7.C2N
    8.C1N
    9.C1P
    10.C3N
    11.VEE
    12.VSS
    13.VDD
    14.SDA
    15.SCK
    16.D/C
    17./RES
    18./CS
    K
    A

    Дисплей на ST6757
    1.A
    2.K
    3./CS
    4./RES
    5. A0 (D/S)
    6.SCK
    7.SDA
    8.VDD
    9.VSS
    10.V0 (Positive LCD driver supply voltage)
    11.XV0 (Negative LCD driver supply voltage)
    12.VG (LCD driving voltage for segments)

В последнее время на хабре появилось много статей по STM32 (). В комментариях неоднократно упоминается сложность STM32 по сравнению с AVR. Эта тема особенно влияет на новичков, которые хотят начать изучение микроконтроллеров, и, видя такое мнение, выбирают для изучения AVR. Давайте разберемся, так ли сложен этот зверь - STM32?

Для этого выберем недорогой вариант платы и напишем прошивку в десяток-другой байт (да-да, мигание светодиодом в 2 килобайта сродни «Hello world» в сотни килобайт x86 для неумех). Также научимся писать программы на любом языке программирования для STM32.

Вступление

Какой тип микроконтроллеров изучать? Этот вопрос, по-моему, аналогичен вопросам типа «Какой язык программирования изучать?», «Какой иностранный язык учить?». ИМХО, изучать нужно тот, который нужнее в данную минуту, для данной задачи. Когда знаешь что-то одно, изучение второго дастся намного легче, а на счет третьего и не задумаешься.

Итак, в чем же сложность STM32? Наиболее часто звучит мнение о сложности программирования его периферии. Количество и тип периферии STM32 и AVR примерно одинаков. Конфигурирование ее также не сильно отличается. Так в чем же сложность? В микроконтроллерах STM32 всю периферию нужно предварительно включать. Вот и вся сложность.

Я сравниваю AVR с общественными зданиями: все двери нараспашку, везде мониторы сверкают рекламой и свет горит, а STM32 с личным домом: хочешь телевизор посмотреть - включи сначала, потом переключай каналы, захотел пи-пи - открой дверь и включи там свет, руки помыть - открой воду, и так далее. Не верите? Убедимся вместе.

Обзор платы

Я выбрал самую дешевую плату из предложенных на aliexpress (рисунок выше). Чуть дороже $2, 180 рублей в декабре 2015. На борту минимальная обвязка: два кварцевых резонатора - высокочастотный на 8МГц и часовой на 32.768Гц, кнопка «сброс», два джампера выбора режима загрузки, пара светодиодов - на питание и на ножке PC13 и набор разъемов: microUSB, отладочный, две гребенки для всех выводов микроконтроллера.

Дешевле только купить все детали, сделать самому плату и спаять. Чем шить и отлаживать? Если есть ST-LINK, то лучше им, нет - не беда, есть еще несколько вариантов, например через USB-USART переходник, нет и его - можно напрямую через USB, правда нужно самому написать драйвер для такого случая, никто пока не озаботился. ST-LINK достаточно дешев, да и входит во все платы серии DISCOVERY. Вот и я воспользовался таким.

Подключаем питание, светодиод весело мигает, плата исправна. Скачиваем и устанавливаем программу-программатор (масло-масляное) «STM32 ST-LINK Utility» (все программы и документы берем на сайте производителя). Пытаемся считать прошивку… Программа защищена от чтения. Видимо, недаром все говорят о сложности написания программ для STM32, даже китайцы защитили эту сверхсложную программу от взлома. Или там спрятана закладка-вирус? Разбираться не будем, снимаем защиту и получаем девственно чистый микроконтроллер STM32F103C8T6.

Первая программа

Давайте тоже помигаем светодиодом, сделаем, так сказать, реверс-инжиниринг в уме родной прошивки. Чем? Чтобы не городить споры по выбору среды разработки, я это сделаю в родной Visual Studio Community. Мне кажется, для Windows лучше для мужчины нет.

Как там программа мигания для ардуины? Конфигурируем ножку на выход и в цикле переключаем ее с нуля на единицу и обратно.
А как будет выглядеть она же для STM32? Намного сложнее. Сначала включим свет в комнате конфигурации ножек микроконтроллера, а затем «Конфигурируем ножку на выход и в цикле переключаем ее с нуля на единицу и обратно». Я понимаю, сложно… Но мы справимся.

В документе «RM0008. Reference Manual» на наш микроконтроллер посмотрим карту памяти для нужных нам регистров.

- Пойдем простым и логическим ходом.
- Пойдем вместе.

1. Включим тактирование порта C (наш светодиод висит на ножке 13 порта C). Смотрим документ. Нужный нам регистр RCC_ABP2ENR (переводим: регистр сброса и тактирования - вторая низкоскоростная шина периферии). Адрес порта - 0x40021018, нужный бит IOPCEN (порт ввода-вывода C - бит разрешения) четвертый - 0x00000010.

Отступление

У микроконтроллеров все как у взрослых процессоров. Есть высокоскоростная шина AHB aka «Северный мост» и низкоскоростная APB aka «Южный мост». Сам процессор микроконтроллера умеет все для ускорения работы: имеет предвыборку команд, конвейер выполнения команд. Нет кеша, но процессор не намного быстрее памяти, и чтение-запись в память успевает выполняться за один такт. Так что, можно сказать, вся память микроконтроллера - это один большой кеш. Ладно-ладно, не один и не большой. Два маленьких кеша.
Вся периферия отображена (маппирована) на адресное пространство. По сравнению с x86 нет команд in-out, но и Intel оставил их только для совместимости, сейчас они практически не используются.


2. Сконфигурируем ножку на вывод. Смотрим документ. Нужный нам регистр GPIOC_CRH (переводим: регистр порта ввода-вывода C - конфигурационный регистр для старшей половины ножек). Адрес порта - 0x40011004, за конфигурацию каждой ножки отвечают 4 бита, значение для переключения ножки на выход - 0001b, для ножки 13 значение - 0x00100000.

3. Как переключить логическое значение на ножке. Смотрим документ. Нужный нам регистр GPIOC_ODR (переводим: регистр порта ввода-вывода C - регистр вывода данных). Адрес порта - 0x4001100С, его значение напрямую выводится в ножки микроконтроллера, для ножки 13 значение - 0x00002000. Все готово для написания программы (не забыть выложить проект на github):

Int main(void) { *((int*)0x40021018) = 0x00000010; // RCC_APB2ENR = RCC_APB2ENR_IOPCEN *((int*)0x40011004) = 0x00100000; // GPIOC_CRH = MODER_OUTPUT_13 while(1) { *((volatile int*)0x4001100C) ^= 0x00002000; // GPIOC_ODR ^= BIT_13 int i; for (i=1000000; i>0; i--) ; } } extern int _eram; __attribute__ ((section(".isr_vector"))) int g_pfnVectors = { (int)&_eram, // начальное значение стека (int)main // Reset Handler };
С векторами прерываний, надеюсь все понятно? Мы используем только два из них, поэтому незачем занимать память пустышками. Все остальные прерывания включаются программно, не включали - значит они никогда не сработают. Исключение - третий вектор HardFault, если случилось - микроконтроллер неисправен или сбоит, для простых проектов (не космос-авиация, не медицина) можно не обрабатывать.

Это учебный проект, конечно следует оформить все адреса как символические константы в отдельный h-файл с большим количеством дефайнов, как это сделано в CMSIS. Можно взять их и приспособить для своих нужд. Для компиляции использую gcc, прошивка с помощью «STM32 ST-LINK Utility». Прошивка заняла 56 байт (привет, ассемблер).

Еще отступление

Еще одно утверждение о сложности STM32 - мало документации на русском языке. Спорно. Необходимы только два документа - Datasheet и Reference Manual на нужный микроконтроллер. Язык на котором он написан сложно назвать английским. Я изучал язык по непереведенным игрушкам, уровень английского остался на том же уровне, но даташиты я читаю без проблем, незнакомые термины понятны из контекста.



Вроде много получилось, тогда на сегодня все.

Во второй половине расскажу о программировании STM32 на любом языке программирования.

Теги: STM32, микроконтроллеры-это-просто, ардуино-не-надо

О том, как прикрутить к микроконтроллеру ёмкостный сенсор прикосновения. Эта идея показалась мне довольно перспективной, некоторым приборам сенсорные клавиши подошли бы куда лучше механических. В этой статье я расскажу о своей реализации этой полезной технологии на основе отладочной платы STM32 Discovery.

Итак, только начав осваивать STM32, я решил в качестве упражнения добавить устройству способность определять прикосновения. Начав разбираться с теорией и практикой по вышеупомянутой статье, я повторил схему товарища "a. Она работала идеально, но мне, любителю минимализма, захотелось её упростить, избавившись от лишних элементов. Лишними на мой взгляд оказались внешний резистор и дорожка к питанию. Всё это уже есть в большинстве микроконтроллеров, в том числе в AVR и в STM32. Я имею в виду подтягивающие резисторы портов ввода/вывода. Почему бы не заряжать пластинку и наши пальцы через них? В ожидании подвоха я собрал на макетке схему, которая, к моему удивлению, заработала с первого же раза. Собственно говоря, схемой это называть даже смешно, ведь всё что нам нужно - это просто подсоединить контактную пластинку к ножке отладочной платы. Всю работу на себя возьмёт микроконтроллер.

Что же из себя представляет программа? Во первых две функции:
Первая выводит на ножку сенсора (нулевой пин регистра C) логический «0»

Void Sensor_Ground (void) { GPIOC->CRL = 0x1; GPIOC->BRR |= 0x1; }

Вторая настраивает тот же вывод на вход, с подтяжкой к питанию.

Void Sensor_InPullUp (void) { GPIOC->CRL = 0x8; GPIOC->BSRR |= 0x1; }

Теперь в начале цикла опроса вызовем Sensor_Ground(), и подождём некоторое время чтобы разрядить на землю весь остаточный заряд на сенсоре. Затем обнулим переменную count, которой будем считать время зарядки сенсора и вызовем Sensor_InPullUp().

Sensor_Ground(); Delay(0xFF); //простой пустой счётчик count = 0; Sensor_InPullUp();

Теперь сенсор начинает заряжаться через внутренний подтягивающий резистор номиналом порядка десятков КОм (30..50КОм у STM32). Постоянная времени такой цепи будет равняться считанным тактам, поэтому я поменял кварцевый резонатор на отладочной плате на более быстрый, 20МГц (кстати, я не сразу заметил, что оказывается на STM32 Discovery кварц меняется без пайки). Итак считаем такты процессора, пока на входе не появится логическая единица:

While(!(GPIOC->IDR & 0x1)) { count++; }

После выхода из этого цикла в переменной count будет храниться число, пропорциональное ёмкости сенсорной пластинки. В моём случае с чипом на 20МГц значение count равняется 1 при отсутствии нажатия, 7-10 при самом лёгком касании, 15-20 при нормальном прикосновении. Остаётся лишь сравнить её с пороговым значением и не забыть снова вызвать Sensor_Ground(), чтобы к следующему циклу опроса сенсор уже был разряжен.
Полученной чувствительности хватает для уверенного определения прикосновений к голым металлическим площадкам. При прикрытии сенсора листом бумаги или пластика чувствительность падает в три - четыре раза, хорошо определяются только уверенные нажатия. Чтобы увеличить чувствительность в случае, когда сенсор необходимо прикрыть защитным материалом, можно повысить тактовую частоту микроконтроллера. С чипом серии STM32F103, способном работать на частотах до 72МГц, помехой не будут и миллиметровые преграды между пальцем и сенсором.
По сравнению с реализацией "a, мой подход работает гораздо быстрее (порядка десятка тактов на опрос одного сенсора), поэтому я не стал усложнять программу, настраивая прерывания по таймеру.

Напоследок видео с демонстрацией работы сенсора.

Main.c тестовой программы.

На микроконтроллер

Cпасибо пользователю за очень полезную статью ARM-микроконтроллеры STM32F. Быстрый старт c STM32-Discovery , пользователю за идею и доходчивое теоретическое описание.

UPD. После комментариев "a я решил разобраться с тактированием и обнаружил, что по умолчанию STM32 Discovery настроен на тактовую частоту
(HSE / 2) * 6 = 24 MHz, где HSE - частота внешнего кварца. Соответственно поменяв кварц с 8 на 20 МГц, я заставил бедную STM"ку работать на 60 МГц. Так что во-первых, некоторые из выводов очевидно не совсем верны, во-вторых то чем я занимался может привести к сбоям чипа. На случай таких сбоев в микроконтроллере есть HardFault прерывание, воспользовавшись им, я проверил более высокие частоты. Так вот, сбоить чип начинает только на 70 МГц. Но хотя эту конкретную программу контроллер переваривает на 60МГц, при использовании периферии или работе с Flash памятью он может повести себя непредсказуемо. Вывод: относитесь к данному топику как к эксперименту, повторяйте только на свой страх и риск.



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: