Начинаем изучать Cortex-M на примере STM32. Управление тактированием периферийных блоков

Данная статья является первой в планируемом цикле статей по изучению программирования микроконтроллеров. Изучая различные материалы я отметил, что практически все они начинаются с того, что новичку предлагается скачать (или использовать идущую со средой разработки) библиотеку для работы с периферийными устройствами и использовать ее для написания своей первой программы (обычно мигание светодиодом).

Меня это сильно удивило. Если верить данным статьям, для программирования не обязательно даже читать документацию к программируемому контроллеру. Меня же учили премудростям «железного программирования» совершенно иначе.

В этой статье, путь от фразы «Да, я хочу попробовать!» до радостного подмигивания светодиода, будет значительно длиннее чем у других авторов. Я постараюсь раскрыть аспекты программирования микроконтроллеров, которые прячутся за использованием библиотечных функций и готовых примеров.
Если вы намерены серьезно изучать программирование микроконтроллеров данная статья для вас. Возможно, она может заинтересовать и тех, кто вдоволь наигрался с Arduino и хочет получить в свои руки все аппаратные возможности железа.

Выбор микроконтроллера

Многие могут сказать, что начинать изучение микроконтроллеров лучше с AVR, PIC, 8051 или чего-то еще. Вопрос многогранный и спорный. Я знаю достаточно примеров, когда люди изучив Cortex-M, программировали AVR, ARM7 и т.д. Сам же я начинал с Cortex-M3. Если перед вами стоит определенная задача, в интернете достаточно много информации со сравнением различных типов микроконтроллеров и решаемых с их помощью задач. На хабре этот вопрос тоже поднимался, например .

Будем считать, что с типом микроконтроллера мы разобрались. Но на рынке представлен огромнейший спектр различных модификаций от разных производителей. Они отличаются по множеству параметров - от размера флеш памяти до количества аналоговых входов. Для каждой задачи выбор стоит производить индивидуально. Ни каких общих рекомендаций тут нет и быть не может. Отмечу лишь, что стоит начинать изучение с МК производителей имеющих как можно больший ассортимент. Тогда, при выборе МК для определенной задачи достаточно велик шанс, что из представленного ассортимента вам что-нибудь да подойдет.

Я остановил свой выбор на STM32 (хотя и считаю, что лучше начинать изучение с МК от TexasInstruments - очень грамотно составлена документация), потому что они широко распространены среди российских разработчиков электроники. При возникновении проблем и вопросов вы сможете без труда найти решения на форумах. Еще одним плюсом является богатый выбор демонстрационных плат как от производителя, так и от сторонних организаций.

Что необходимо для изучения?

К сожалению, для начала программирования МК не достаточно одного лишь ПК. Придется где-то раздобыть демонстрационную плату и программатор. Хотя это и уменьшает конкуренцию на рынке труда.

Сам я использую демонстрационную плату STM3220G-EVAL и программатор J-Link PRO . Но для начала, будет вполне достаточно STM32F4DISCOVERY , которую можно купить без особых проблем за небольшую сумму.

Все примеры будут именно для отладочной платы STM32F4DISCOVERY . На данном этапе нам будет совершенно не важно, что этой плате стоит МК на базе ядра Cortex-M4. В ближайшее время мы не будем использовать его особенности и преимущества над Cortex-M3. А как там будет дальше - посмотрим.

Если у вас есть в наличии любая другая плата на базе STM32F2xx/STM32F4xx, вы сможете работать с ней. В изложении материала я постараюсь максимально подробно описывать почему мы делаем именно так, а не иначе. Надеюсь ни у кого не возникнет проблем с переносом примеров на другое железо.

Среда разработки

Как уже неоднократно упоминалось, для ARM микроконтроллеров существует достаточное количество сред разработки, как платных так и не очень. И снова хочется опустить полемику по этому поводу. Я использую IAR Embedded Workbench for ARM 6.60 . Все примеры будут именно в этой среде. Если вам по душе (или в вашей организации используется) что-то другое (Keil, Eclipse, CCS, CooCoc и т.д.) то это вам тоже не очень помешает. На особенности, связанные именно со средой разработки, я буду обращать отдельное внимание.

Почему платная среда разработки?

Возможно, кто-то будет не совсем доволен тем, что я предлагаю использовать платную среду разработки, но в IAR есть возможность получить временную лицензию без ограничения функционала, либо безлимитную лицензию с ограничением по размеру кода (32КБ для МК это очень много).
Помимо этого, сразу замечу, что для некоторых МК не существует бесплатных сред разработки. И к сожалению эти МК в некоторых областях незаменимы.


Процесс установки я описывать не буду.

С чего начать?

Создание проекта
Для начала создадим пустой проект. IAR позволяет создать проекты на ASM, C и C++. Мы будем использовать C.

Перед нами появится пустой проект с main файлом.

Теперь необходимо настроить проект для начала работы с «нашим» МК и отладчиком. На плате STM32F4DISCOVERY установлен MK STM32F407VG . Его необходимо выбрать в свойствах проекта (General Options->Target->Device):

При выборе целевого программируемого процессора происходит загрузка его описания, что дает широкие возможности для отладки (об этом будет идти речь ниже). Кроме того, автоматически присоединяется конфигурационный файл с описанием доступного адресного пространства для линкера. Если будет необходимо, мы затронем тему конфигурационного файла линкера в следующих статьях.

После этого необходимо настроить отладчик. Отладка программы происходит непосредственно «в железе». Производится это с помощью JTAG отладчика. Более подробнее ознакомиться с тем, как это происходит можно на Википедии . На плату STM32F4DISCOVERY интегрирован отладчик ST-LINK/V2. Для работы с отладчиком необходимо выбрать его драйвер в меню Debugger->Setup->Driver . Так же необходимо указать, что отладка должна производиться непосредственно в железе. Для этого необходимо поставить флаг Debugger->Download->Use flash loader(s)


Для тех, кто увидел слово Simulator

Теоретически, IAR позволяет отлаживать программы с использованием симулятора. Но я ни разу на практике не встречал его использования.

Теперь проект готов для работы (программирования, заливки и отладки).

«ТЗ» для первого проекта
Подведем промежуточный итог: МК и отладочная плата выбраны, проект подготовлен. Пора определиться с задачей.

Не будем отходить от классики. Первым проектом будет мигающий светодиод. Благо на плате их предостаточно.Что же это означает с точки зрения программирования? Первым делом необходимо изучить принципиальную схему демонстрационной платы и понять как «заводится» светодиод.
доступен на сайте производителя. В данном описании даже есть отдельный раздел про светодиоды на плате -4.4 LEDs . Для примера, будем использовать User LD3 . Найдем его на схеме:

Простейший анализ схемы говорит о том, что для того, что бы «зажечь» светодиод необходимо на пин МК подать «1» (которая для данного МК соответствует 3.3В). Выключение производится подачей на этот пин «0». На схеме этот пин обозначается PD13 (это, наверное, самая важная информация из этого документа).

В итоге, мы можем написать «ТЗ» для нашей первой программы:
Программа для МК должна переводить состояние пина МК PD13 из состояния «0» в состояние «1» и обратно с некоторой периодичностью, различимой для человеческого глаза (важное замечание, если моргать светодиодом слишком часто глаз может этого не различить).

Прежде чем приступать к программированию, или немного теории
Прежде чем приступить к реализации нашего ТЗ, необходимо понять как производится управление МК.

Начнем с того, что любой МК включает ядро, память и периферийные блоки. Думаю, что с памятью пока все понятно. Упомяну лишь, в STM32 есть флеш память в которой хранится программа МК (в общем случае это не верное утверждение, программа может храниться во внешней энергонезависимой памяти, но пока это опустим) и другие данные, в том числе и пользовательские. Так же есть SRAM - оперативная память.

Ядро - часть микроконтроллера, осуществляющая выполнение одного потока команд. В нашем МК тип ядра - Cortex-M4. Ядро МК можно сравнить с процессором в ПК. Оно умеет только выполнять команды и передавать данные другим блокам (в этом сравнении не учитываются процессоры с интегрированными графическими ускорителями).
При этом производитель МК не разрабатывает ядро. Ядро покупается у компании ARM Limited . Главное отличие между различными МК - в периферии.

Периферийные блоки - блоки осуществляющие взаимодействие с «внешним миром» или выполняющие специфические функции, недоступные ядру МК. Современные МК (в том числе и STM32) содержат огромный спектр периферийных блоков. Периферийные блоки предназначены для решения различных задач, от считывания значения напряжения с аналогового входа МК до передачи данных внешним устройствам по шине SPI.
В отличии от ядра МК периферийные блоки не выполняют инструкции. Они лишь выполняют команды ядра. При этом участие ядра при выполнении команды не требуется.

Пример

В качестве примера можно привести блок UART, который предназначен для приема и передачи данных от МК внешним устройствам. От ядра необходимо лишь сконфигурировать блок и отдать ему данные для передачи. После этого ядро может дальше выполнять инструкции. На плечи же периферийного блока ложится управление соответствующим выводом МК для передачи данных в соответствии с протоколом. Периферийный блок сам переводит выход МК в необходимое состояние «0» или «1» в нужный момент времени, осуществляя передачу.

Взаимодействие ядра с периферийным блоком
Взаимодействие ядра МК с периферийным блоком осуществляется с помощью спецрегистров (есть еще взаимодействие через механизм прерываний и DMA, но об этом в следующих постах). С точки зрения ядра это просто участок памяти с определенным адресом, вот только на самом деле это не так . Запись данных в спецрегистр эквивалентна передаче команды или данных периферийному блоку. Считывание - получение данных от блока или считывание его состояния. Описание периферийных блоков и их спецрегистров занимает львиную долю описания МК.

ВАЖНО: После записи данных в спецрегистр и последующем чтении вы можете получить совершенно иные данные. Например, передача данных блоку UART для отправки, и считывание данных, полученных блоком от внешнего устройства, осуществляется с помощью одного и того же регистра.

Спецрегистры обычно разделены на битовые поля. Один (или несколько) бит управляют определенным параметром периферийного блока, обычно независимо. Например, разные биты одного регистра управляют состоянием разных выходов МК.

Вспоминаем С
Если вы гуру в языке C, то можете смело пропускать данный раздел. Он предназначен в первую очередь для тех, кого учили (или ктоучился сам) программировать для ПК. Опыт показывает, что люди часто не помнят важных команд. Здесь я вкратце напомню про побитовые операции и работу напрямую с памятью по ее адресу.

Запись данных по адресу в памяти

Предположим, что читая описание периферийного блока, мы поняли, что для его корректной работы необходимо записать в него число 0x3B. Адрес спецрегистра 0x60004012. Регистр 32-битный.
Если вы сразу не знаете как это сделать, попробую описать цепочку рассуждений для получения правильной команды.

Значение 0x60004012 есть не что иное, как значение указателя на ячейку памяти. Нужно именно это и указать в нашей программе, тоесть сделать преобразование типов согласно синтаксису языка C:

(unsigned long*)(0x60004012)

Таким образом, у нас есть указатель на элемент. Теперь нужно в этот элемент записать необходимое значение. Делается это разыменовыванием указателя. Таким образом получаем правильную команду:

*(unsigned long*)(0x60004012) = 0x3B;

Установка произвольных бит в 1

Предположим, что необходимо установить «1» в 7 и 1 биты по адресу 0x60004012, при этом не изменив значение всех остальных бит в регистре. Для этого необходимо использовать бинарную операцию |. Сразу приведу правильный ответ:

*(unsigned long*)(0x60004012) |= 0x82;

Обратите внимание на 2 факта. Биты считаются с нулевого, а не с первого. Данная операция на самом деле занимает неменее 3 тактов - считывание значения, модификация, запись. Иногда это не допустимо, поскольку между считыванием и записью значение одного из бит, которые нам запрещено изменять, могло быть изменено периферийным блоком. Незабывайте про эту особенность, иначе могут полезть баги, которые крайне сложно отловить.

Установка произвольных бит в 0

Предположим, что необходимо установить «0» в 7 и 1 биты по адресу 0x60004012, при этом не изменив значение всех остальных бит в регистре. Для этого необходимо использовать бинарную операцию &. Сразу приведу правильный ответ:

*(unsigned long*)(0x60004012) &= 0xFFFFFF7D;

Или его более простою запись (не переживайте за лишнюю операцию, компилятор все заранее посчитает даже при минимальной оптимизации):

*(unsigned long*)(0x60004012) &= (~0x82);

Некоторые особенности программ для МК
Здесь я постараюсь описать некоторые особенности программ для МК, которые важно помнить. Вещи достаточно очевидные, но все же.
У программы нет конца
В отличии от большинства программ для ПК, программа для МК не должна заканчиваться, НИКОГДА! А что собственно должен будет делать МК после завершения вашей программы? Вопрос, практически, риторический. Поэтому не забываем убедиться в том, что вы не забыли вечный цикл. При желании, можно перевести МК в режим сна.
Пользуйтесь целочисленными переменными
Не смотря на то, что мы используем МК с ядром Cortex-M4, который аппаратно выполняет операции над числами с плавающей точкой, советую вам отказаться от их использования. В МК без поддержки таких операций время вычислений будет просто огромным.
Откажитесь от динамического выделения памяти
Это только совет. Причина проста - памяти мало. Я не раз встречался с библиотеками, в которых были «медленные утечки» памяти. Было очень неприятно, когда после нескольких недель стабильной работы МК зависал с ошибкой. Лучше заранее продумать архитектуру своей программы так, чтобы не пришлось использовать динамическое выделение памяти.
Если же все-таки хочется использовать - внимательно изучите работу менеджера памяти или пишите свой.

Приступаем к работе!

Работа над программой для МК всегда начинается с чтения документации. Для нашего МК доступен на сайте производителя. Страниц много, но все читать пока не нужно. Как уже было сказано, большую часть документации составляет описание периферийных блоков и их регистров. Так же хочу обратить внимание на то, что этот Reference Manual написан не для одного МК, а для нескольких линеек. Это говорит о том, что код будет переносим при переходе на другие МК в этих линейках (если конечно не пытаться использовать периферийные блоки которых нет в используемом МК).

В первую очередь необходимо определиться с какими блоками предстоит работать. Для это достаточно изучит разделы Introduction и Main features .

Непосредственное управление состоянием пинов МК осуществляется с помощью блока GPIO. Как указано в документации в МК STM32 может быть до 11 независимых блоков GPIO. Различные периферийные блоки GPIO принято называть портами. Порты обозначаются буквам от A до K. Каждый порт может содержать до 16 пинов. Как мы отметили ранее, светодиод подключается к пину PD13. Это означает, что управление этим пином осуществляется периферийным блоком GPIO порт D. Номер пина 13.

Ни каких других периферийных блоков на это раз нам не понадобится.

Управление тактированием периферийных блоков
Для снижения электропотребления МК практически все периферийные блоки после включения МК отключены. Включение/выключение блока производится подачей/прекращением подачи тактового сигнала на его вход. Для корректной работы, необходимо сконфигурировать контроллер тактового сигнала МК, чтобы необходимому периферийному блоку поступал тактовый сигнал.
Важно: Периферийный блок не может начать работу сразу после включения тактового сигнала. Необходимо подождать несколько тактов пока он «запустится». Люди, использующие библиотеки для периферийных устройств, зачастую даже не знают об этой особенности.

За включение тактирования периферийных блоков отвечают регистры RCC XXX peripheral clock enable register .На месте XXX могут стоять шины AHB1, AHB2, AHB3, APB1 и APB2. После внимательного изучения описания соответствующих регистров, можно сделать вывод о том, тактирование периферийного блока GPIOD включается установкой «1» в третий бит регистра RCC AHB1 peripheral clock enable register (RCC_AHB1ENR) :

Теперь необходимо разобраться с тем, как узнать адрес самого регистра RCC_AHB1ENR .

Замечание: Описание системы тактирования МК STM32 достойно отдельной статьи. Если у читателей возникнет желание, я подробнее освещу этот раздел в одной из следующих статей.

Определение адресов спецрегистров
Определение адресов спецрегистров необходимо начинать с чтения раздела Memory map в Reference manual. Можно заметить, что каждому блоку выделен свой участок адресного пространства. Например, для блока RCC это участок 0x4002 3800 - 0x4002 3BFF:

Для получения адреса регистра, необходимо к начальному значению адресного пространства блока RCC прибавить Addr. offset нужного регистра. Addres offset указывается и в описании регистра (см. скриншот выше).

В итоге, мы определили адрес регистра RCC_AHB1ENR - 0x4002 3830.

Блок GPIO
Для общего ознакомления с блоком GPIO я настоятельно рекомендую полностью прочитать соответствующий раздел Reference Manual. Пока можно не особо обращать внимание на Alternate mode . Это оставим на потом.

Сейчас же наша задача научиться управлять состоянием пинов МК. Перейдем сразу к описанию регистров GPIO.

Режим работы
В первую очередь необходимо установить режим работы 13 пина порта D как General purpose output mode , что означает что блок GPIO будет управлять состоянием пина МК. Управление режимом работы пинов МК производитсяс помощью регистра GPIO port mode register (GPIOx_MODER) (x = A..I/J/K) :

Как видно из описания для совершения требуемой нам настройки необходимо записать значение 01b в 26-27 биты регистра GPIOx_MODER . Адрес регистра можно определить тем же методом, что описан выше.

Настройка параметров работы выходных пинов порта GPIO
Блок GPIO позволяет применить дополнительные настройки для выходных пинов порта. Данные настройки производятся в регистрах:
  • GPIO port output type register (GPIOx_OTYPER) - задается тип выхода push-pull или open-drain
  • GPIO port output speed register (GPIOx_OSPEEDR) - задается скорость работы выхода
Мы не будем менять данных параметров, поскольку нас вполне устраивают значения по умолчанию.
Установка значения на пине МК
Наконец-то мы подошли к моменту управления состоянием выхода МК. Для утановки выходного значения на определенном пине МК есть два метода.

Используем регистр GPIO port bit set/reset register (GPIOx_BSRR)

Запись «0» или «1» в биты 0-16 приводят к соответствующему изменению состояния пинов порта. Для того, чтобы установить определенное значение на выходе одного или нескольких пинов МК и не изменить состояния остальных, необходимо будет пользоваться операцией модификации отдельных бит. Такая операция выполняется не менее чем за 3 такта. Если же необходимо в часть битов записать 1, а в другие 0, то понадобится не менее 4 тактов. Данный метод предпочтительнее всего использовать для изменения состояния выхода на противоположное, если его изначальное состояние не известно.

GPIO port bit set/reset register (GPIOx_BSRR)

В отличии от предыдущего метода, запись 0 в любой из битов данного регистра не приведет ни к чему (да и вообще, все биты write-only!). Запись 1 в биты 0-15 приведет к установке «1» на соответствующем выходе МК. Запись 1 в биты 16-31 приведет к установке «0» на соответствующем выходе МК. Этот метод предпочтительнее предыдущего, если необходимо установить определенное значение на пине «МК», а не изменить его.

Зажигаем светодиод!
Найдя адреса всех необходимых регистров, можно написать программу, которая включает светодиод:
void main() { //Enable port D clocking *(unsigned long*)(0x40023830) |= 0x8; //little delay for GPIOD get ready volatile unsigned long i=0; i++; i++; i++; i=0; //Set PD13 as General purpose output *(unsigned long*)(0x40020C00) = (*(unsigned long*)(0x40020C00)& (~0x0C000000)) | (0x04000000); //Turn LED ON! *(unsigned long*)(0x40020C14) |= 0x2000; while(1); }
Можно компилировать (Project->Compile ) и заливать (Project->Download->Download active application ). Или запустить отладку (Project->Dpwnload and Debug ) и начать выполнение (F5).
Светодиод загорелся!
Мигаем светодиодом
Мигание светодиода есть ни что иное, как попеременное включение и выключение с задержкой между этими действиями. Самый простой способ - поместить включение и выключение в вечный цикл, а между ними вставить задержку.
void main() { //Enable port D clocking *(unsigned long*)(0x40023830) |= 0x8; //little delay for GPIOD get ready volatile unsigned long i=0; i++; i++; i++; i=0; //Set PD13 as General purpose output *(unsigned long*)(0x40020C00) = (*(unsigned long*)(0x40020C00)& (~0x0C000000)) | (0x04000000); while(1) { //Turn LED ON *(unsigned long*)(0x40020C14) |= 0x2000; //Delay for(i=0; i<1000000 ;++i); //Turn LED OFF *(unsigned long*)(0x40020C14) &= ~0x2000; //Delay for(i=0; i<1000000 ;++i); } }
Значение 1000000 в задержке подобрано экспериментально так, чтобы период мигания светодиода был различим глазом, но и не был слишком велик.
Оптимизируем алгоритм
Минусом выбранного подхода миганием светодиодом является то, что ядро МК большую часть времени проводит в пустых циклах, хотя мог бы заниматься чем-нибудь полезным (в нашем примере других задач нет, но в будущем они появятся).

Для того, чтобы этого избежать, обычно используется счетчик циклов, а переключение состояние пина МК происходит при прохождении программы определенного числа циклов.
void main() { //Enable port D clocking *(unsigned long*)(0x40023830) |= 0x8; //little delay for GPIOD get ready volatile unsigned long i=0; i++; i++; i++; i=0; //Set PD13 as General purpose output *(unsigned long*)(0x40020C00) = (*(unsigned long*)(0x40020C00)& (~0x0C000000)) | (0x04000000); while(1) { i++; if(!(i%2000000)) { //Turn LED ON *(unsigned long*)(0x40020С14) |= 0x2020; } else if(!(i%1000000)) { //Turn LED OFF *(unsigned long*)(0x40020С14) &= ~0x2000; } } }
Но и тут не обойдется без проблем, с изменением количества команд выполняемых внутри цикла, будет меняться период мигания светодиодом (или период выполнения других команд в цикле). Но на данном этапе мы не можем с этим бороться.

Немного об отладке
IAR позволяет осуществлять отладку приложения непосредственно в железе. Все выглядит практически так же, как и отладка приложения для ПК. Есть режим пошагового выполнения, входа в функцию, просмотр значения переменных (В режиме отладки View->Watch->Watch1/4 ).

Но помимо этого, присутствует возможность просмотра значений регистров ядра, спецрегистров периферийных блоков (View->Register) и т.п.
Я настоятельно рекомендую ознакомиться с возможностями дебаггера во время изучения программирования МК.

Несколько слов в заключение

Возможно, многие скажут, что ручное прописывание адресов в программе это не правильно, поскольку производитель предоставляет файлы с определениями регистров и битовых полей, библиотеки для работы с периферией и другие инструменты, облегчающие жизнь разработчику. Я с этим полностью согласен, но все равно считаю, что первые шаги в программировании МК необходимо делать перекапывая документацию к вручную, самостоятельно определяя необходимые регистры и битовые поля. В дальнейшем этим можно не пользоваться, но уметь нужно обязательно.
Приведу лишь несколько причин для этого утверждения:
  • В библиотеках от производителя иногда встречаются ошибки! Я один раз чуть не сорвал срок проекта из-за этого. Несколько раз перепаивал чип, думая, сто повредил кристалл при пайке (до этого такое случалось). А проблема заключалась в том, что в библиотеке был неверно прописан адрес спецрегистра. Обычно такое случается с МК или линейками МК только вышедшими на рынок.
  • Библиотеки для работы спериферией некоторых производителей не реализуют всех возможностей периферийных блоков. Особенно этим грешилb Luminary Micro , которых в последствии выкупили TI. Приходилось писать инициализацию периферии вручную.
  • Многие привыкают начинать программирование МК с изучения примеров. Я считаю, что сперва необходимо определиться с тем, что позволяет реализовать МК. Это можнопонять только прочитав документацию. Если чего-то нет в примерах, это не значит, что железоэто не поддерживает. Последний пример - аппаратная поддерка PTP STM32. В сети, конечно, можно кое-что найти, но это не входит в стандартный набор от производителя.
  • Драйверы периферийных блоков некоторых производителей настолько не оптимизированы, что на переключение состояния пина средствами библиотеки тратится до 20 тактов. Это непозволительная роскошь для некоторых задач.

Спасибо всем, кто прочитал мой пост, получилось значительно больше чем я ожидал в начале.
Жду ваших комментариев и аргументированной критики. Если у прочитавших возникнет желание - постараюсь продолжить цикл статей. Возможно у кого-то есть идеи по поводу тем, которые стоило бы осветить - я был бы рад их услышать.

Для мучений и изучений данного девайса. Сказано, сделано. Была собрана платка и пошло поехало. Ах да! Тема нашего разговора зашла о сравнении двух МК. Один выше сказанный против ATmega328. Почему именно они. Оба МК в корпусе TQFP-32. (Правда ATmega328 бывает и в DIP корпусе)
Теперь давайте рассмотрим по ближе их внутренности. Для большего понимания я собрал все необходимые данные в одну табличку.

Параметры ATmega328 STM32F030K6T6
Разрядность 8 бит 32 бита
FLASH 32кб 32кб
SRAM 1кб 4кб
EEPROM 512б -
Таймер 8 бит 2 шт -
Таймер 16 бит 1 шт 16 шт
ШИМ 3 канала 6 каналов
USART 1 шт 1 шт
SPI 1 шт 1 шт
I2C 1 шт (TWI) 1 шт
АЦП 8 каналов 10 бит 16 каналов 12 бит
Питание 2,7 - 5,5 2,4 - 3,6
Скорость 0 - 16МГц 48МГц при внешних 4 - 32МГц
Стоимость 160 - 170 руб. 80 - 140 руб.
Как видно из таблицы, STM32 довольно интереснее и богаче чем AVR. Есть правда одна мелочь. У STM32 нет EEPROM, но зато есть DMA которое просто убивает AVR напрочь. Правда AVR может похвастаться Ардуиной и простатой программирования. Да не спорю, но у STM32 есть STM32Cube, который генерит код для IAR и берет на себя всю рутину настройки периферии. И последний гвоздь в "гроб" AVR это RTOS. Да, на AVR тоже можно установить, но с ней надо разбираться, а в STM32 ставим галочку "FREERTOS" и все. Система сама сделает все что нужно, а нам останется только создавать потоки и писать код в них. Ну это так для затравки. На самом деле там все немного сложнее. Короче STM32 мне нравится и для того чтобы окончательно склонить вас на эту платформу, бросив в ящик стола Ардуину, я создам от начала до конца плату и покажу как с ней работать. О, забыл. У всех STM32 есть отладчик SWD. Это три провода SWDIO, SWCLK, GND и можно скакать по строкам кода прямо в железе, а не как у ATmega328 виртуально в Протеусе. Для этого нужен всего лишь универсальный программатор ST-LINK. Его можно использовать если приобрести плату Discovery или отдельно программатор . А теперь от слов к делу.
Схема. Покрупнее
Данную плату я делал как модуль для своей отладочной платы под AVR. Но ее можно повторить разведя плату по своему усмотрению (Проект под DipTrace я выложу в конце статьи). Что на схеме. А на схеме простая обвязка как и для AVR. Кварц на 8МГц с двумя конденсаторами по 20p. Так же как и в AVR собрана схема питания для опорки АЦП. Цепь сброса как у AVR. Единственное отличие это цепь BOOT. В отличии от AVR у всех STM32 на борту есть железный загрузчик. По умолчанию он выведен на USART. То есть если прижать к питанию ножку BOOT0 и рестартануть МК, то при помощи программы Flash Loader Demonstrator можно прошить МК без программатора. Данная фишка полезна если у вас уже есть готовое и работающее устройство и необходимо обновить прошивку, то нужно лишь переходник USB USART. Многие не хотят связываться с STM32 из-за питания не более 3,6 вольт. Ерунда. Если посмотреть в таблицу пинов, то можно заметить что все ножки могут принимать на себя 5 вольт без последствий. Поехали дальше.

А так она выглядит установленная на плату.

Теперь подключаем программатор ST-LINK-GA к SWD разъему.

Теперь когда все готово, качаем свежую версию с сайта ST (ссылка в самом низу страницы). Устанавливаем и запускаем.

Жмем New Project. И в появившемся окне находим наш контроллер. Жмем Ок.

После небольших раздумий. программа выдаст вот такое окно.

Расписывать что и зачем я не буду, так как это тема отдельной статьи. Сейчас для примера просто сделайте то что я покажу. Что мы будем делать. Мы запустим операционную систему и в единственном потоке будем моргать светодиодом. Этакий "Хелой Ворд" из пушки.))) Для этого в левом окошке нажмите на плюс у надписи "FREERTOS" и в выпавшем списке поставте галочку.

Причем как только будет выбран внешний кварц, справа на контроллере подсветятся зеленым ножки на которые нужно его повесить. Следующим делом надо выбрать ножку на которой будет висеть светодиод. Я выбрал порт В и пин 0. И нашел граблю.Я с перепугу что ли, не знаю зачем, перевернул выводную гребенку первых четырех пинов к верху ногами. Отсюда неразбериха на порте В. Этот косяк касается только моей платы. Но ничего, от этого МК работать не перестал. И так как настроить пин. Дело в том что у STM все пины могут принимать кучу значений, но если касаться дискретного ввода/вывода, то на выход может быть три варианта. Выход в воздухе, выход с подтяжкой к плюсу питания, выход с подтяжкой к общей шине. По умолчанию STM32CubeMX вешает ножку в воздухе. Ну и пусть, нам же нужно просто проверить работу и продемонстрировать силу STM32. Для того чтобы настроить ножку, нужно щелкнуть по ней левой кнопкой мышки и в появившемся окне выбрать GPIO_Output. Если МК мелковат, то можно покрутить колесиком и увеличить его.)))

Следующим этапом нужно настроить тактование МК. Дело в том что у STM32 с этим делом очень мутно. В отличии от AVR у STM32 на входе стоит кварц с частотой от 4 до 32 МГц, а на шинах его можно разогнать до 48 МГц. Внутри МК очень сложная система тактования, но на помощь нам идет опять STM32CubeMX. Переходим во вкладку Clock Configuration и настраиваем как на картинке ниже.

Вот и все. Жмем на иконку с шестеренкой на верху.

Появится вот такое окно.

А вот тут я забыл сказать. Скачайте и установите себе IAR. Его можно скачать у официалов но урезанный по количеству кода, либо можно найти в торрентах. Либо если много лишних денег, то можно и прикупить лицензию. Ну я думаю многие пойдут по тропе с CodeVisionAVR. В общем это оставляю на ваше усмотрение. У меня версия 7.40. Возвращаемся к Кубу. В окошке назовите проект, но только латинскими, IAR не любит русские буквы в путях. И задайте где будет хрониться проект. В окне IDE нужно выбрать (а он по умолчанию) EWARM. Жмем Ок. Программа думает, а потом выдает вот такое окно. Бла-бла-бла. В общем жмем открыть проект (для тех кто в танке средняя кнопка).

Окно исчезнет, а вместо него запустится IAR и наш проект. Слева заходим в Aplication->User и запускаем main.c. Вот эта куча кода и есть то что нагенерил за нас STM32CubeMX.

И что теперь с этим ужасом делать? А вот для этого нужно целую серию статей))) А сейчас просто находим вот такой кусок кода.

Это и есть наш единственный поток. В теле цикла for(;;) удаляем единственную функция osDelay(1);, а вместо нее запишем вот такой код. HAL_GPIO_WritePin(GPIOB,GPIO_PIN_0,GPIO_PIN_SET);
osDelay(500);
HAL_GPIO_WritePin(GPIOB,GPIO_PIN_0,GPIO_PIN_RESET);
osDelay(500);

Чудненько. Теперь просто жмем на кнопочку с зеленой стрелочкой справа на верху и ждем компиляцию и загрузку.

Если все правильно и без ошибок, то программа соберет весь проект, создаст все что нужно и загрузит прошивку в МК. После этого перейдет в режим отладки. Вот он родной. Мечта AVR-щика. Если есть не преодолимое желание поюзать, то можно прям на железе походить по шагам, строка за строкой. А если охота посмотреть как работает программа, то жмен на крестик сверху слева и наслаждаемся микание светодиода.

Вот и все. Микроконтроллеры можно купить по самой низкой цене аж по 78 рублей за штуку в магазине ЧипРезистор . Ну а если хочется по дешевле то есть и мелкий опт. От 35 штук уже по 50 руб.
Проект для DipTrace.
И конечно же видео.


гость 31.12.15 10:35

Недавно хотел сделать частотомер на АТМЕГА16 плюс внешний 8 бит счетчик на 74логике, -не хватило быстродействия.На ассемблере писать-голова не выдержит,городить внешний счетчик на 16 бит-геморойно.АВР - это прошлый век, недешевый контроллер.Поддержу автора, АВР это пройденый этап,я тоже купил чип stm32f100 плюс чип адаптера ЮСБ CP2103, скоро от АВР все откажутся.

Алексей 31.12.15 12:26

Я не согласен. Все таки еще развивается Arduino и многие на нее подсели, а последняя в свою очередь работает на AVR. Переход на STM это что-то вроде перехода на следующий уровень. Так сказать из Детсада в школу.

АНОНИМ 12.02.16 10:44

AVR и STM32 это процессоры не конкурирующие друг с другом. В вашей табличке нет самого главного параметра - это ток потребления!! А посмотрев на них - можно прослезится. Atmega 328 - – Active Mode: 0.2 mA – Power-down Mode: 0.1 µA – Power-save Mode: 0.75 µA (Including 32 kHz RTC) STM32F030K6T6 48 MHz - Active Mode: периферия включена 23.3 mA периферия выключена 11.5 mA - Stop Mode: 0.048 mA STM32 жрёт электричество нещадно - грубо говоря в 100 раз больше чем AVR. От батарейки девайс на STM32 не запитаешь. А вот AVR будут работать месяцами. Так что отказаться от AVR трудно. Удачи всем.

Алексей 12.02.16 10:54

А никто и не предлагает отказаться от AVR. Я лишь показа разницу в периферии. Я до сих пор поддерживаю библиотеку для AVR и до сих пор мой основной МК ATMega8A.

Сергей 24.02.16 18:02

На мой взгляд как то странно сравнивать свежие STM32 с пенсионерами AVR. Если хотите сравнивать STM32 с контролерами ATMEL, то сравнивайте их с семейством ATSAM но не как ни с AVR.

Андрей 24.02.16 18:06

Это кто это пенсионер? AVR жив и будет еще жить хрен знает сколько. И глядя в таблицу, сравнение по моему идет больше по периферии, а не по архитектуре.

Алексей 24.02.16 19:04

Ну начинается. Давайте теперь обсудим АМД и Интел.

Сергей 24.02.16 22:02

На хабре один "знаток" написал, что у AVR нет параллельной шины для подключения стандартного LCD, а у STM32 есть...

Алексей 24.02.16 22:36

Что значит стандартный LCD? Это про FSMC? Так это не только для дисплея, это и для памяти. Просто параллельная шина. У AVR тоже есть, например у Mega8515. К ней через регистр-защелку можно SRAM подключить.

Сергец 25.02.16 06:24

Алексей, ну а я про что?! Такое впечатление, что вы даже не пытаетесь вникнуть в смысл моих сообщений.

Алексей 25.02.16 09:38

Ну, а какой смысл сравнивать два одинаковых микроконтроллера разных фирм. Оба на ядре ARM. Если совсем придираться, то тогда уж надо сравнивать AVR с STM8. Я то придерживался приближенностью периферии, формфактора и цены. И как раз разной архитектуры.

Адлан 03.06.16 17:40

Здравствуйте. Помогите, пожалуйста, кто может. Установил последнюю версию Куба 4.15, Библиотеки F1 1.4.0. Созданный пустой проект в EWARM не компилируется - больше сотни ошибок. ЧТо может быть? Спасибо [email protected]

Алексей 03.06.16 20:48

Адлан, первое что нужно сделать, так это скинуть проект который не компилится.

Doc 18.07.16 21:51

"Правда AVR может похвастаться Ардуиной и простатой программирования." ЧЕМ может похвастаться? ;D

Алексей 19.07.16 11:41

Это глупое сравнение. Во первых у STM есть аналог ардуины под названием нуклео. Программы пишутся в онлайн IDE прямо через браузер. А вот если плюсы лично камня, то. Частота работы ядра 72МГц, AVR и не снилась такая скорость. Конечно если маргать светодиодом, то разницы никакой, а вот если запустить ось и кучу периферии, то AVR сдуется. Разряднось, 32 далеко не 8. Попериферии на STM может находиться 3 I2C, 3 SPI, 6 UART, USB, CAN, Ethernet. Почти все имеет возможность ремапится, то есть переноситься на другие ноги мк. Есть так же DMA, это независимый сопроцессор для работы с периферией. Так что прерывания у AVR нервно курят в сторонке. Есть аппаратный SDIO для полноценной работы с CD картами, а не костыльный ISP в AVR. В общем там много чего еще есть, но самый жирный камень в огород AVR, это помехоустойчивосиь. AVR выбить пролегающим рядом кабелем от электромортора как нефиг делать, а вот STM нужно постараться. Так что язвить с ардуиной я бы не советовал.

гость 11.08.16 23:27

MICROCHIP поглотила AVR!))))))))))

Алексей 12.08.16 08:35

Опоздали с новостью, уже как лет пять назад.

Владимир 17.08.16 22:56

Алексей! В январе 2016 года фирма Microchip покупает Atmel за 3,56 млрд долларов.Каких 5лет?

Алексей 18.08.16 10:30

Это деюро, а дефакто это тянется аж с 2008 года. Так что я действительно ошибся, не 5 лет, а 8 лет назад.))))

Владимир 18.08.16 23:53

Алексей!Стал переходитьна stm32 !А насчёт потребления в авотономном режиме советует всё не тактировать, тогда и снизится ток потребления.

Олег 09.11.16 22:31

В datashet на STM не нашел графиков потребления оттактовой CLK системной как у AVR - а по тем табличкам что есть - STM32 вчистую проигрывает акак в обычном режмие, так и в Idle. Да и нет у этого STM32 тактовой в 72Мгц - только 48 макс, ивсе, так что даже при 32 разрядах 8 битник AVR - лучше получается, и кстати производитель в datasheet не написал сколько тактов в STM32 машинный цикл у него, так что если окажется 2 такта против 1 у AVR - то считай что 48/2=24 реальных Мгца - почти те же самые что и у 20 Мгц у AVR. Вот и вопрос - а чудо-то где у этого STM32 о котором Вы все талдычете?

АНОНИМ 09.11.16 23:03
Алексей 10.11.16 00:23

Я даже не хочу спорить. Что лучше Интел или АМД? Или Жигули или Волга? У СТМ есть аппаратный USB, CAN, Ethernet, SDIO и еще куча периферии которой AVRу только может присниться во сне. В конце концов есть ДМА как самостоятельный сопроцессор с прямым доступом к памяти перед которым все прерывания AVR нервно покуривают в сторонке. Например у первых сериях на борту сразу 3 UARTа, 2 SPI, 3 I2C. Ремап портов есть и не нужно ломать башку как развести плату. Если вам по нраву работать с AVR, то работайте, кто вам мешает. Я по сей день под мелкие проекты леплю меги восьмые и не жалуюсь. Ай да, воткните AVR рядом с пускателем и посмотрите как ему башку снесет наводками. У AVR нет защиты от ЭМН. Поэтому в автосигнализации всегда ставили ПИКи, так как АВР умирает в таких условиях. Да чего спорить, дохлый номер.

Корнет 27.11.16 21:22

Ну кстати уже есть ардуино и на STM32. Это и Амперка и Espruino всякие на JS) Тем более если Микрочип взял Атмел ну нафиг их

Алексей 27.11.16 21:44

Название Espruino пародирует Arduino, самую известную на тот момент хобби-платформу, но Espruino не совместима с классической Arduino Uno ни механически, ни программно.(цитата из Амперки)
Еще у меня есть плата Нуклео и она тоже никаким боком к Arduino не относится, разве что геометрией самой платы)))
Вообще по сути я использую тот МК, который подходит для текущей задачи.

Андрей 20.12.16 22:50

Кому нравится переплачивать: стоит attiny2313-20 - 2Kb-flash /128bit-ram/16bit_ timer -1/8bit_ timer -1 =2.1$ против stm32f103c8t6 64Kb-flash/20Kb-sram/16BIT timer (+контроль мертвого времени для двухканального режима ШИМ) -4/ADC-2/72MHz CPU/=2.3$.По-моему сделать измеритель импеданса цепи RLC c помощью авр практически нереально,либо городить 10 камней.А с STM и БПФ можно сделать(ДМА помогает).Попытался как-то сделать на Меге10 частотомер (точность 1 герц)- банально не хватило быстродействия (либо городить внешний 32-битный счетчик с регистром сдвига-откуда габариты).От АВР отказался год назад, AVR- выходит, для небедных людей.

Andrey 20.12.16 22:53

АНОНИМ писал-"И вот еще, цитата из описания STM32 на русском - "...С
момента
получения
прерывания
до
начала
выполнения
первой
команды
обработчика
прерывания
затрачивается
только
двенадцать
циклов
тактового
сигнала"

Это правда.Но перемножьте два 32-битных числа на avr - явно 8-10 тактов!

Алексей 20.12.16 23:31

Да, я уже сожалею что этот халивар начал.))))

Александр 21.12.16 00:27

Почитал коменты и вспомнил.
Два малыша в песочнице
Один дудука!
Второй, бибика!
Первый, ДУдука! (интонация более грозная)
Второй, БИБИКА! (С еще более выразительной интонацией)
Первый ДУДУКА! (Уже крича)
Второй БИБИКА!!! (Чуть ли не плача)
....
Закончилось эта баталия, оба стоят и плачат, один громче другова.)))

Вал 10.02.17 01:43

Какая частота будет если зациклить без задержки
while (1)
{
HAL_GPIO_WritePin(GPIOB,GPIO_PIN_0,GPIO_PIN_SET);
HAL_GPIO_WritePin(GPIOB,GPIO_PIN_0,GPIO_PIN_RESET);
}

Алексей 10.02.17 10:07

Та что на шине APB

Игорь 08.06.17 22:33

Так давайте сразу ноутбуки во встраиваемые системы встраивать, они же лучше чем СТМ в сотни раз, и пееферии там ну просто охрененно сколько, там уже и вай фай есть и блютузы и даже программаторы не нужны, сразу и монитор есть с клавой чтобы писать прогу и сразу запустить, и программаторы не нужны и отладчики.
Всё равно что купить себе на дачу в личное пользование экскаватор для того чтобы ИНОГДА выкапывать пару ям глубиной в пол метра.
Ставить в термостат, часы, весы СТМ ну по моему это не нормально. Кстати да, как насчёт энергонезависимой памяти, вот делаю я термостат, выставляю температуру, тут вырубается свет, и что, настройки потеряны. А ведь во встроенные системы которые должны настраиваться 1 раз для дальнейшей работы, значения должны сохраняться навсегда

Алексей 09.06.17 08:25

Ну например в чип-дип STM32F030F4P6 стоит 48р, а прямой аналог ATtiny2313 98р. Я думаю для построения термостата любого из них будет достаточно. А компенсация памяти у STM может быть в любом датчике температуры. Да хотя бы в том же DS18B20. А что касается ноутов, так в любом терминале приема оплаты как раз установлен ПК с ОС и монитором. Так что даже такие системы есть. При выборе МК в первую очередь выбирают тот что дешевле. Это если хобби, то можно купить ардуину дабы не заморачиваться с пайкой, а когда систему планируется ввести на производство и выпускать сотнями, то считается каждая копейка. И переплата за МК 50 рублей при его цене в 48 это непозволительная роскошь.

Руслан 17.06.17 21:46
Я ее переделал под хол!
Но при подключении вилазят еррори!
Нужна информация как работать с не родними библиотеками!
В интернете ничего не нашел там только расказивают как подключать родние библиотеки.
Если "плохо искал" то дайте ссилку где можно посмотреть или почитать как ето делать!
А еще лучше сделайте видео, думаю многим начинающим (и не только) оно будет интересно посмотреть!
Заранее благодарен!
Алексей 05.08.17 10:19
Руслан 22.11.17 12:17

Я имел ввиду ето https://www.youtube.com/watch?v=wOIlhRd-vN8
5 - 7 минута!!!

Руслан 22.11.17 12:18

Алексей подскажите пожалуйста как работать с перечислениями "enum" а то нигде нету такой информации и в ваших видео "Си для самих маленьких" тоже нету а мне как раз очень надо!
Когда баловался AVR-ками то такоє чудо как перечисления не встречал а сейчас заинтересовался STM-ками а там их очень много! И нету информации как с ними работать!
Есть такой пример из реального кода:


StatusCode MIFARE_Read(byte blockAddr, byte * buffer, byte * bufferSize);

Где StatusCode ето перечисление:


enum StatusCode: byte {
STATUS_OK , // Success
STATUS_ERROR , // Error in communication
STATUS_COLLISION , // Collission detected
STATUS_TIMEOUT , // Timeout in communication.
STATUS_NO_ROOM , // A buffer is not big enough.
STATUS_INTERNAL_ERROR , // Internal error in the code. Should not happen ;-)
STATUS_INVALID , // Invalid argument.
STATUS_CRC_WRONG , // The CRC_A do es not match
STATUS_MIFARE_NACK = 0xff // A MIFARE PICC responded with NAK.
};

Ето из ардуиновской библиотеки(С++), но Keil ругается на ето!
Как правильно записать возврат функцией перечисления?

Руслан 22.11.17 12:29

И еще как обьявить в функции одним из аргументов которой есть перечисление:


void PCD_WriteRegister(PCD_Register reg, byte value);

Где PCD_Register перечислениє:


enum PCD_Register: byte {
// Page 0: Command and status
// 0x00 // reserved for future use
CommandReg = 0x01 << 1, // starts and stops command execution
ComIEnReg = 0x02 << 1, // enable and disable interrupt request control bits
DivIEnReg = 0x03 << 1, // enable and disable interrupt request control bits
ComIrqReg = 0x04 << 1, // interrupt request bits
...
};

А reg ето как я понял име перечисления но его нигде нету обьявленним в коде и откуда оно взялось мне не понятно!
Много страний перечитал в интернете и нашел информацию что ети перечисления можно заменить дефайнами но все же хотелось би узнать как с ними работать!!!

Руслан 22.11.17 12:35

С нетерпением жду ответа!
Может снимите видосик как с ними работать,чтоб и для других било, думаю видео будет очень полезним потому что таких видео нету(по крайней мере я не нашел)!

Дмитрий 28.11.17 22:02

"простатой программирования"

Интересный орган для программирования контроллеров. Вообще как можно было сравнивать 32-битные с 8-битными непонятно. Как Порш Каен с Зарпорожцем.

Алексей 29.11.17 10:24

Можно сравнивать, можно. Просто нужно учесть что в данном сравнении Порш стоит дешевле Запорожца. По поводу урологии, так пикантнее. Так что исправлять не буду.

Константин 23.12.17 00:06

Руслан, я не понимаю, как ты ищешь и ничего не находишь (видимо, не ищешь). Это самые-самые основы языка С (не только для МК, но и для компов). Почитай книгу Кернигана и Ритчи, там весь С прекрасно описан.
А на твои вопросы никто тебе отвечать не будет, это элементарщина.

АНОНИМ 11.02.18 16:27

Почему вы сравниваете 32разрядный МК ST с 8разрядным Atmel. Глупое сравнение. Равносильно сравнивать 32разрядный Atmel AT91SAM с 8разрядными STM8 учитывая даже что у Atmel есть 32 разрядники еще мощнее

Алексей 13.02.18 12:18

Потому что на момент написания статьи, 8-ми бинтных ST не было в продаже, а по цене мега и СТМ32 стоят одинаково.

ST-LINK/V2 - крайне экономичное решение для внутрисхемного программирования и отладки микроконтроллеров STM8 и STM32. Изделие имеет минимальные габариты. На плате для защиты от короткого замыкания установлен самовосстанавливающийся предохранитель на 500 мА. Выходные уровни напряжения ST-LINK/V2 составляют 3.3 В и 5 В. К компьютеру плата подключается через стандартный USB порт. Для работы с целевой платой используются SWIM и SWD интерфейсы, которые характеризуются быстрым откликом при отладке и высокой скоростью программирования. Отладчик работает в полноскоростном (FS) режиме. Доступны стандартные функции отладки: пошаговое выполнение программы, точки останова, просмотр переменных и регистров и т. д. ST-LINK/V2 имеет обновляемое firmware для расширения списка совместимых МК. Режим обновления ПО - автоматический. Изделие поддерживается широким спектром программных средств, среди которых интегрированные среды разработки IAR, Keil, ATOLLIC, а также утилиты STM.

ST-LINK/V2 поддерживает все STM8 (SWIM интерфейс) и все STM32 (SWD интерфейс).

Для работы с изделием требуется установить USB драйвер.

Таблица 1. Сравнительные характеристики различных моделей программаторов/отладчиков

Параметр

ST-LINK/V2 (mini)

ST-LINK/V2

Примечание

Диапазон напряжений SWD

ST-LINK/V2 иST-LINK/V2 (mini) низковольтные МК STM32

Диапазон напряжений SWIM

Поддержка SWV

Отладочные интерфейсы

ST-LINK/V2 и ST-LINK/V2 (mini) поддерживает STM8/STM32 с использованием отдельных интерфейсов

LED индикатор

Двухцветный LED

Двухцветный LED

Красный LED

Двухцветный светодиод увеличивает возможности индикации состояний

Предохранитель

Предохранитель поможет избежать повреждений при КЗ

Таблица 2. ST-LINK/V2 (mini) должен быть подключен к приложению на STM8 через SWIM интерфейс

Таблица 3. ST-LINK/V2 (mini) должен быть подключен к приложению на STM32 через SWD интерфейс

Примечание. Чтобы избежать повреждения ST-LINK/V2 (mini), VCC и GND должны быть подключены корректно.

Рис. 1. Программатор/отладчик ST-LINK/V2 . Общий вид

Рис. 2. Программатор/отладчик ST-LINK/V2 . Вид сверху

Рис. 3. Программатор/отладчик ST-LINK/V2 . Вид снизу

Отличительные особенности:

  • На плате установлен самовосстанавливающийся предохранитель 500 мА, чтобы избежать повреждения от КЗ;
  • Уровни выходного напряжения (3.3 V/5 V), простота отладки и программирования;
  • Стандартный USB интерфейс для простого подключения к PC;
  • Возможности отладки/программирования:
    • отладка: работа в полноскоростном режиме, пошаговое выполнение, точки останова, просмотр переменных и регистров и т. д.,
    • программирование: поддержка FLASHROM, EEPROM и т. д.,
    • USB2.0 и SWIM/ SWD интерфейсы: быстрый отклик в режиме отладки и высокая скорость программирования;
  • Обновляемое firmware:
    • Firmware обновляется для расширения списка поддерживаемых МК,
    • автоматическое обновление;
  • Поддерживаемое ПО:
    • ST-LINK Utility v2.0 (или выше),
    • STVD Version 4.2.1 (или выше),
    • STVP Version 3.2.3 (или выше),
    • IAR EWARM Revision v6.20 (или выше),
    • IAR EWSTM8 Revision v1.30 (или выше),
    • KEIL RVMDK Revision v4.21 (или выше),
    • ATOLLIC,
    • TASKING;
  • Поддерживаемые микроконтроллеры:
    • все STM8 (SWIM интерфейс),
    • все STM32 (SWD интерфейс).

Дополнительную информацию и программное обеспечение можно найти на сайте производителя .

Анонс составил и подготовил
Шрага Александр,
a.

Собственно можно сказать: "А на кой он мне нужен, когда есть Discovery". С какой-то стороны да... Но. Первый камень в огород. Собирал схему на Discovery1 для работы с параллельной ОЗУ на 1 Мб. 40 проводков. Отлаживал, отлаживал и бац, нужно залить другой контроллер. Ё-ё-ё мое. Все разбери, после перепрошивки собери. Благо есть еще Discovery4. Но та же проблема. Второй камень. Discovery голая плата. Как-то ваяя очередной шедевр в 60 проводков я где-то на что-то наехал и бум. Коротнул Discover-ку напрочь. Начал разбираться. Короче коротыш попал на входное питание от USB. Слава богу или скорее инженеру ST за то что он поставил диод. Тот принял все на себя и порт не сгорел. Все бы хорошо, да вот надпись 60 на диоде мне ничего не говорила. Полез на сайт ST, нашел телефон поддержки, звоню. Але говорю, нужон наминал диёда. А мне в ответ, не волнуйтесь, давайте ка вашу почту. Даю адрес и бац мне скидывают документацию на Discovery. Схемы, платы, описание. Ну просто сказка. Я тут же нашел диод, впаял и о чудо, все заработало. После этого случая дабы не повторить содеянное я решил прикупить программатор от ST. Я думаю все его видели, такое белое яйцо с эмблемкой. Но так и не купил. Цена, какая цена. За такую цену можно купить 3 Discovery и иметь сразу три программатора. Немного подумав я вспомнил про схему которую мне скинули. Там же есть та самая... Открыл файл, заценил. Хмы, а в первой платке-то ST-LINK и усе, а интересно что в Discovery4. Взял плату и вижу надпись на ней. www.st.com/stm32f4-discovery. Так... Зашел по ссылке, куча файлов и о чудо, архив с документацией и схемой. С надеждой решил зайти на страничку родного программатора. Ага. Ща... Так вам и дали схему. В общем решил довольствоваться схемой от Discovery4.
Вот она.

Изучил сей манускрипт и понял что тут чего-то не хватат. Полез в ейнтернет и вижу что на всех просторах есть только две схемы. Одна ну ооочень замороченная, другая слишком простая (тока SWD). Не думаю, надо их скрестить. Посидел, покумекал, порисовал и радил вот такое чудо.

На проводок не обращайте внимания. Это я не запаял перемычку, а узрел после впайки разъема. Так как перемычка оказалась под разъемом и подлезть к ней не удалось, я припаял проводок. Если пропаять перемычку, то провод не нужен. После сборки его нужно прошить. Ха. Вот тут затык. Где взять прошивку для МК. Полазив в интернете я нарыл какую-то кривую прошивку, которая не работает, но имеет одну важную вещь. С этой прошивкой программатор цепляется к родному ST-шному драйверу и отдается на обновление прошивкой от ST. То есть после прошивки обнавляемся и все. И так к делу. Если вы еще не собрали плату, то дальше читать нет смысла. Для тех кто спаял, смотрим на свое изваяние. Если посмотреть на светодиоды, то рядом с красным можно увидеть два пина. Перед подачей питания на него нужно надеть джампер.

Далее справа от основного разъема есть еще три пина, это Rx, Tx и GND. К ним нужно подключить COM-порт. Эта к стати еще один плюс, данный программатор лишен проблемы курицы и яйца. Для программирования его МК нужен только COM-порт. Какой вы будете использовать, решать вам. Я использовал физический с переходником на TTL. Питание нужно подать 3,3в на 1 пин основного разъема. Если программатор положить светодиодами кверху, то на основном разъеме этот пин будет в левом нижнем углу. Лично я не стал замарачиватся и запитал от USB. У меня есть USB-хаб с возможностью подключить внешнее питание, вот через него я и запитал. То есть питание от USB пришло, а пины для данных не активны.

После того как подключили питание, если все спаяно нормально и без ошибок, МК должен быть готов к прошиванию. Далее запускаем программу Да кстати вот архив со всем что нужно. Распаковать в корень диска.

Жмем Next. Видим как идет общение с МК.

Когда все успокоится снова жмем Next.

В этом окне нужно указать загружаемый файл. Выбираем из архива файл STLinkV2.J16.S4 и жмем Next. После загрузки окно будет выглядеть так.

Теперь снимаем джампер и отключаем COM-порт. Следующим шагом устанавливаем драйвер st-link_v2_usbdriver . На момент написания статьи драйвер самый последний. Если время прошло много, то можно более свежий драйвер скачать на сайте ST. После установки драйвера подключаем программатор к USB. Если все до этого момента было сделано правильно, windows увидит девайс и установит для него драйвер.

Если все установилось удачно, то запускаем программу ST-LinkUpgrade с бабочкой. Появится окно с тетенькой у которой взгляд "Не скажу куда гляжу". Интересно кто такую нашел. Все же это лицо компании. Ну дело не в этом.

Жмем Device Connect. Если программа увидит программатор, а это должно произойти, то активируется кнопка.

Жмем на кнопку Yes >>>> и ждем пока не появится уведомление о удачном обновлении.

Собственно все. Программатор работает. Осталась выпилить отверстия в корпусе и напечатать этикетку. Вот что у меня получилось.



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: