Чем отличается информация от данных в информатике. Разница между информацией и данными

  • · Информация - знания, касающиеся понятий и объектов (факты, события, вещи, процессы, идеи) в человеческом мозге;
  • · Данные - представление переработанной информации, пригодной для передачи, толкования, или обработки (компьютерные файлы, бумажные документы, записи в информационной системе).
  • 1. Данные и информация тесно взаимосвязаны.
  • 2. Данные фиксированы, они реально существуют в каждую единицу времени. Информация возникает только при переработке этих данных.
  • 3. Данные после преобразования становятся информацией. Многократно проверенная информация - знания.
  • 4. Информация, в отличие от данных, субстанция измеряемая.

Моделирование процесса принятия управленческих решений позволяет сделать значительный шаг в сторону количественных оценок и количественного анализа результатов принимаемых решений. Создание и использование моделей процесса принятия решений позволяет даже качественно оцениваемые управленческие ситуации оценивать количественно с помощью специально вводимых вербальночисловых шкал.

Использование моделирования процесса принятия управленческих решений позволяет поднять его на качественно новый уровень, разработать и внедрить в практику принятия управленческих решений современные технологии. Именно профессиональное использование моделей процесса принятия решения позволяет руководителю организации контролировать свою интуицию и обеспечивать большую степень непротиворечивости, согласованности и надежности принимаемых управленческих решений. Но с другой стороны, использование моделей позволяет более полно реализовать интуицию, опыт и знания лица, принимающего решение. Необходимо понимать, что модель позволяет найти рациональное решение лишь для того упрощенного варианта ситуации принятия решения, которое используется в модели.

Выделяют три базовых типа моделей: физическая, аналоговая и математическая

Физическая (описательная или портретная) - изображает предмет или ситуацию, показывая как она выглядит. Например: копии автомобилей, самолетов, уменьшенное чертежи завода и т др.

Аналоговая - изображение предмета, или ситуации другими средствами Например: озеро на карте - голубым цветом организационная схема; графики соотношение различных показателей деятельности предприятия

Математическая (символьная) - использование символов для характеристики объекта в виде математических уравнений

На основе этих базовых моделей разрабатываются различные типы моделей и методов принятия управленческих решений. Рассмотрим самые распространенные из них

Теория игр - используется для оценки влияния принятого решения на конкурентов. В бизнесе игровые модели используются для прогнозирования реакции конкурентов на изменение цен, сбыта, новую продукцию Эта модель рустоваться достаточно редкий.

Теория очередей, или оптимального обслуживания - используется для определения оптимального количества каналов обслуживания потребителей относительно их потребностям. Принципиальной проблемой считается уравновешивания расходов на дополнительные каналы обслуживаниями и потерь от обслуживания на уровне ниже, чем оптимальная.

Модель управления запасами - используются для определения времени размещения заказов на ресурсы и их количества, а также массы готовой продукции на складах Цель модели - сведение к минимуму потерь от недостачи или чрезмерного с обеспечения запасами.

Модель линейного программирования - используют для определения оптимального способа распределения дефицитных ресурсов при наличии конкурирующих потребностей (планирование дифференциации услуг, распределение работников и т.д.)

Имитационное моделирование - имитация конкретного процесса или модели, ее экспериментальное использование для определения изменений реальной ситуации

Экономический анализ - оценка издержек, прибыли и рентабельности предприятия часто используют метод безубыточности, т.е. определение момента с которого предприятие становится безубыточным

Данные - это тоже знания, однако знания совершенно особого рода. В первом приближении данные -это результат языковой фиксации единичного наблюдения, эксперимента, факта или ситуации . Примерами данных могут быть:

а) «такого-то числа, такого-то года, в момент t в определенной местности шел дождь» (метеорологическое данное)";

б) «цена деловой древесины в такой-то день такого-то года, по сведениям такой-то биржи, составляла столько-то долларов за тонну» (торговое данное);

в) «дефицит государственного бюджета в такой-то стране составлял в таком-то году столько-то миллиардов долларов» (финансовое данное);

г) «в такой-то момент времени автоматическая лаборатория, направляющаяся к Юпитеру, отклонилась от расчетной траектории на столько-то градусов, столько-то тысяч километров в таком-то направлении» (данные из сферы космической технологии).

С технологической точки зрения некоторые специалисты понятие «данные», как правило, определяют как информацию, которая хранится в базах данных и обрабатывается прикладными программами, или информация, представленная в виде последовательности символов и предназначенная для обработки в ЭВМ , т.е. данные включают только ту часть знаний, которые формализованы в такой степени, что над ними могут осуществляться процедуры формализованной обработки с помощью различных технических средств.

Данные - это информация, представленная в формализованном виде, пригодном для автоматической обработки при возможном участии человека . Данные - это информация, записанная (закодированная) на языке машины . Данные - это отдельные факты, характеризующие объекты, процессы и явления в предметной области, а также их свойства .

Между информацией и данными существует различие; Данные могут рассматриваться как признаки или записанные наблюдения, которые по каким-то причинам не используются, а только хранятся. Следовательно, в данный момент времени они не оказывают воздействия на поведение, на принятие решений. Однако данные превращаются в информацию, если такое воздействие существует.

Например, основной массив данных для ЭВМ состоит из таких признаков, которые не воздействуют на поведение. Пока эти данные не организованы соответствующим образом и не отражаются в виде выходного результата, чтобы руководитель действовал в соответствии с ними, они не являются информацией. Они остаются данными до тех пор, пока сотрудник не обратился к ним в связи с осуществлением тех или иных действий или в связи с некоторым решением, которое он обязан принять.

Данные превращаются в информацию, когда осознается их значение. Можно также сказать, что в том случае, когда появляется возможность использовать данные для уменьшения неопределенности о чем-либо, данные превращаются в информацию.

Циклы жизни данных

Подобно веществу и энергии, данные можно собирать, обрабатывать, хранить, изменять их формы. Однако у них есть некоторые особенности. Прежде всего, данные могут создаваться и исчезать. Так, например, данные о некотором вымершем животном могут исчезнуть, когда сжигается кусок угля с его отпечатками. Данные могут стираться, терять точность и т.д. Данные могут быть охарактеризованы циклом жизни (рис. 1.9), в котором основное значение имеют три аспекта - зарождение, обработка, хранение и поиск .

Воспроизведение и использование данных может осуществляться в различные моменты их цикла жизни и поэтому на схеме не показаны.

Рис. 1.9. Цикл «жизни» данных

При обработке на ЭВМ данные трансформируются, условно проходя следующие этапы:

1) данные как результат измерений и наблюдений:

2) данные на материальных носителях информации (таблицы, протоколы, справочники);

3) модели (структуры) данных в виде диаграмм, графиков, функций;

4) данные в компьютере на языке описания данных;

5) базы данных на машинных носителях.

Модели данных

Модель данных является ядром любой базы данных. Появление этого термина в начале 70-х годов двадцатого столетия связывается с работами американского кибернетика Э.Ф. Кодда, в которых отражался математический аспект модели данных, употребляемой в смысле структуры данных. В связи с потребностями развития технологии обработки данных в теории автоматизированных банков информации (АБИ) во второй половине 70-х годов появился инструментальный аспект модели данных, в содержание этого термина были включены ограничения, налагаемые на структуры данных и операции с ними.

В современной трактовке модель данных определяется как совокупность правил порождения структур данных в базах данных, операций над ними, а также ограничений целостности, определяющей допустимые связи и значения данных, последовательности их изменения .

Таким образом, модель данных представляет собой множество структур данных, ограничений целостности и операций манипулирования данными. Исходя из этого, можно сформулировать следующее рабочее определение: модель данных – это совокупность структур данных и операций их обработки.

В настоящее время различают" три основных типа моделей данных: иерархическая, сетевая и реляционная. Иерархическая модель данных организует данные в виде древовидной структуры и является реализацией логических связей: родовидовых отношений или отношений «целое - часть». Например, структура высшего учебного заведения - это многоуровневая иерархия (см. рис. 1.10).

Рис. 1.10. Пример иерархической структуры

Иерархическая (древовидная) БД состоит из упорядоченного набора деревьев; более точно, из упорядоченного набора нескольких экземпляров одного типа дерева. В этой модели исходные элементы порождают другие элементы, причем эти элементы в свою очередь порождают следующие элементы. Каждый порожденный элемент имеет только один порождающий элемент. Организационные структуры, списки материалов, оглавление в книгах, планы проектов, расписание встреч и многие другие совокупности данных могут быть представлены в иерархическом виде.

Основными недостатком данной модели является: а) сложность отображения связи между объектами типа «многие ко многим»; б) необходимость использования той иерархии, которая была заложена в основу БД при проектировании. Потребность в постоянной реорганизации данных (а часто невозможность этой реорганизации) привели к созданию более общей модели – сетевой.

Сетевой подход к организации данных является расширением иерархического подхода. Данная модель отличается от иерархической тем, что каждый порожденный элемент может иметь более одного порождающего элемента. Пример сетевой модели данных приведен на рис 1.11.

Поскольку сетевая БД может представлять непосредственно все виды связей, присущих данным соответствующей организации, по этим данным можно перемещаться, исследовать и запрашивать их всевозможными способами, т.е. сетевая модель не связана всего лишь одной иерархией. Однако для того, чтобы составить запрос к сетевой БД, необходимо достаточно глубоко вникнуть в её структуру (иметь под рукой схему этой БД) и выработать свой механизм навигации по базе данных, что является существенным недостатком этой модели БД.

Рис. 1.11. Пример сетевой структуры

Одним из недостатков рассмотренных выше моделей данных является то, что в некоторых случаях при иерархическом и сетевом представлении рост базы данных может привести к нарушению логического представления данных. Такие ситуации возникают при появлении новых пользователей, новых приложений и видов запросов, при учете других логических связей между элементами данных. Эти недостатки позволяет избежать реляционная модель данных.

Реляционной считается такая база данных, в которой все данные представлены для пользователя в виде прямоугольных таблиц значений данных, и все операции над базой данных сводятся к манипуляциям с таблицами.

Таблица состоит из столбцов (полей) и строк (записей); имеет имя, уникальное внутри базы данных. Таблица отражает тип объекта реального мира (сущность), а каждая ее строка - конкретный объект. Так, таблица Спортивная секция содержит сведения обо всех детях, занимающихся в данной -спортивной секции, а ее строки представляют собой набор значений атрибутов каждого конкретного ребёнка. Каждый столбец таблицы - это совокупность значений конкретного атрибута объекта. Столбец Вес, например, представляет собой совокупность всех весовых категорий детей, занимающихся в секции. В столбце Пол могут содержаться только два различных значения: «муж.» и «жен.». Эти значения выбираются из множества всех возможных значений атрибута объекта, которое называется доменом. Так, значения в столбце Вес выбираются из множества всех возможных весов детей.

Каждый столбец имеет имя, которое обычно записывается в верхней части таблицы. Эти столбцы называются полями таблицы. При проектировании таблиц в рамках конкретной СУБД имеется возможность выбрать для каждого поля его тип, т.е. определить для него набор правил по его отображению, а также определить те операции, которые можно, выполнять над данными, хранящимися в этом поле. Наборы типов могут различаться у разных СУБД.

Имя поля должно быть уникальным в таблице, однако различные таблицы могут иметь поля с одинаковыми именами. Любая таблица должна иметь, по крайней мере, одно поле; поля расположены в таблице в соответствии с порядком следования их имен при ее создании. В отличие от полей, строки не имеют имен; порядок их следования в таблице не определен, а количество логически не ограничено. Строки называются записями таблицы.

Так как строки в таблице не упорядочены, невозможно выбрать строку по ее позиции - среди них не существует "первой", "второй", "последней". Любая таблица имеет один или несколько столбцов, значения в которых однозначно идентифицируют каждую ее строку. Такой столбец (или комбинация столбцов) называется первичным ключом. В таблице Спортивная секция первичный ключ - это столбец Ф.И.О. (рис. 1.12).

Такой выбор первичного ключа имеет существенный недостаток: невозможно записать в секцию двух детей с одним и тем же значением поля Ф.И.О., что на практике встречается не так уж редко. Именно поэтому, часто вводят искусственное поле для нумерации записей в таблице. Таким полем, например, может быть номер в журнале для каждого ребёнка, который сможет обеспечить уникальность каждой записи в таблице. Если таб.лица удовлетворяет этому требованию, она называется отношением (relation).

Рис. 1.12. Реляционная модель данных

Реляционные модели данных обычно могут поддерживать четыре типа связей между таблицами:

1) Один к Одному (пример: в одной таблице хранятся сведения о школьниках, в другой сведения о прохождении школьниками прививок).

2) Один ко Многим (пример: в одной таблице хранятся сведения об учителях, в другой сведения о школьниках, у которых эти учителя являются классными руководителями).

3) Много к Одному (в качестве примера можно предложить предыдущий случай, рассматривая его с другой стороны, а именно со стороны таблицы, в которой хранятся сведения о школьниках).

4) Много ко Многим (пример: в одной таблице хранятся заказы на поставку товаров, а в другой - фирмы, исполняющие эти заказы, причем для выполнения одного заказа могут объединяться несколько фирм/

Реляционное представление данных имеет целый ряд преимуществ. Оно понятно пользователю, не являющемуся специалистом в области программирования, позволяет легко добавлять новые описания объектов и их характеристики, обладает большой гибкостью при обработке запросов.

Вопросы и задания

1. Дайте определение понятию «данные».

2. Что называется циклом жизни данных?

3. Какие модели данных вы знаете?

4. Укажите преимущества и недостатки каждой модели данных.


ИНФОРМАЦИОННЫЕ ПРОЦЕССЫ

Прежде чем продолжить рассмотрение проблематики управления знаниями важно определиться с ключевыми понятиями этой области: «данные», «информация», «знания».

В литературе, посвященной управлению знаниями, представлены различные подходы к их трактовке. Не претендуя на полномасштабный анализ, попробуем обозначить некоторые важные моменты.

Под данными понимаются неупорядоченные наблюдения, числа, слова, звуки, изображения. Это – набор дискретных, объективных факторов о событиях. При этом в организационном контексте данные трактуются как структурированные записи об актах деятельности. Организации обычно хранят данные в информационных системах, в которые они поступают из различных подразделений и служб.

Когда данные организованы, упорядочены, сгруппированы категоризированы, они становятся информацией . Она трактуется как совокупность данных, упорядоченная с определенной целью, придающей им смысл.

Сообщение - это текст, цифровые данные, изображения, звук, графика, таблицы и др

Сведения – практически синоним понятия “Сообщения”. Они чаще всего носят бытовой характер.

Знание же трактуется как информация, готовая к продуктивному применению, действенная, снабженная смыслом. Оно представляет собой совокупность оформленного опыта, ценностей, контекстуальной информации, экспертного понимания, составляющих основу для оценки и интеграции нового опыта и информации. Оно формируется и применяется в умах людей, а в организациях зачастую оказывается закрепленным не только в документах и в хранилищах, но также в организационных процедурах, процессах, способах выполнения работы и нормах.

В таблице на основе обзора литературных источников приводятся различные определения знания.

В большинстве рассмотренных определений подчеркивается, что знания – понятие более широкое, глубокое и богатое по сравнению с информацией. Они представляют собой подвижное соединение разных элементов – опыта, ценностей, информации и экспертного понимания - и постоянно меняются; они интуитивны; характерны для людей и являются неотъемлемой частью человеческой сущности с ее непредсказуемостью.

Рассуждая над вопросом отличия информации от данных, невольно задумываешься, а есть ли у них что-то общее?

Мы так часто в речи заменяем одно слово другим, что не замечаем, как наши высказывания становятся абсурдными. Чтобы не попадать в глупую ситуацию, следует разобраться, что каждое из них обозначает.

Между данными и информацией существует настольно тесная связь, что существование одного без другого либо невозможно, либо просто бессмысленно.

Данные являются основой информации. По сути, они представляют собой просто набор символов. Но после того, как они прошли операцию интерпретации некой воспринимающей системой, данные становятся информацией.

Условие возникновения

Итак, информация возникает только в том случае, если имеется в наличии некий источник, содержащий данные, и, непосредственно, получатель. Данные могут преобразовываться в информацию несколькими путями: посредством подсчета, коррекции, сжатия, контекстуализации и разбития на категории.

Данные являются зафиксированными на каком-либо источнике сведениями. В последнее время количество данных достигло невероятного роста. Это было вызвано быстрым ростом сети Интернет.

Измерение

Данные измерить нельзя. Как только мы станем подсчитывать данные, начнется процесс обработки. А значит, данные автоматически перейдут в разряд «информации». Информацию измерить можно. Для этого достаточно оценить уровень знаний до поступления информации и после нее.

Результат преобразования

Человеческий мозг, подобно самому совершенному компьютеру, обрабатывает полученные нами данные и выдает некую информацию. А когда возникает необходимость ее применить для другого мыслительного процесса, то для него эта информация в свою очередь становится данными, из которых будет получена новая информация.

Конечной стадией преобразования информации, прошедшей многократную обработку в течении некоторого промежутка времени, становятся знания.

Выводы сайт

  1. Данные и информация тесно взаимосвязаны.
  2. Данные фиксированы, они реально существуют в каждую единицу времени. Информация возникает только при переработке этих данных.
  3. Данные после преобразования становятся информацией. Многократно проверенная информация — знания.
  4. Информация, в отличие от данных, субстанция измеряемая.

Понятие, структура, классификация, особенности интеллектуальных систем.

Система называется интеллектуальной, если в ней реализованы 3 базовые функции:

1. Представление и обработка знаний.

2. Рассуждение.

3. Общение.

Пользователь


Функциональные механизмы База знаний

Структурные знания – знания об операционной среде. Метознания – знания о свойствах знаний.

1. Биохимическое (все, что связано с мозгом);

2. Программно-прагматическое направление (написание программ, заменяющих функции).

1. Локальный (задачный) подход: для каждой задачи специальные программы, достигающие результаты не хуже человека.

2. Системный подход, основанный на знаниях –создание средств автоматизации, создание самих программ.

3. Подход использующий метод процедурного программирования – создание алгоритмов на естественных языках.

Основные разделы ИИТ:

1. Управление знаниями.

2. Формальные языки и семантика.

3. Квантовая семантика.

4. Когнитивное моделирование.

5. Конвергентные (сходящиеся) системы поддержки решений.

6. Эволюционные генетические алгоритмы.

7. Нейронные сети.

8. Муравьиные и иммунные алгоритмы.

9. Экспертные системы.

10. Нечеткие множества и вычисления.

11. Немонотонные логики.

12. Активные многоагентные системы.

13. Естественное языковое общение и перевод.

14. Распознавание образов, игра в шахматы.

Характеристики проблемных областей, где необходимо применение ИИС:

1. Качество и оперативность принятия решений.

2. Нечеткость целей.

3. Хаотичность, флюктуируемость и квантованность поведения среды.

4. Множественность взаимозаменяющих друг на друга факторов.

5. Слабая формализуемость.

6. Уникальность (нестереотипность) ситуации.

7. Латентность (скрытость) информации.

8. Девиантность реализации планов, а так же значимость малых действий.

9. Парадоксальность логики решений.

Неустойчивость, нецеленаправленность, хаотичность среды


Понятие данных, информации и знаний. Свойства знаний и отличие их от данных.

Информация – это:

· любые сведения, принимаемые и передаваемые, сохраняемые различными источниками;

· это вся совокупность сведений об окружающем нас мире, о всевозможных протекающих в нем процессах, которые могут быть восприняты живыми организмами, электронными машинами и другими информационными системами;

· это значимые сведения о чём-либо, когда форма их представления также является информацией, то есть имеет форматирующую функцию в соответствии с собственной природой;

· это все то, чем могут быть дополнены наши знания и предположения.

Данными называют информацию фактического характера, описывающую объекты, процессы и явления предметной области, а также их свойства. В процессах компьютерной обработки данные проходят следующие этапы преобразований:

· исходная форма существования данных (результаты наблюдений и измерений, таблицы, справочники, диаграммы, графики и т.д.);

· представление на специальных языках описания данных, предназначенных для ввода и обработки исходных данных в ЭВМ;

· базы данных на машинных носителях информации.

Знание - в теории искусственного интеллекта и экспертных систем - совокупность информации и правил вывода (у индивидуума, общества или системы ИИ) о мире, свойствах объектов, закономерностях процессов и явлений, а также правилах использования их для принятия решений. Главное отличие знаний от данных состоит в их структурности и активности, появление в базе новых фактов или установление новых связей может стать источником изменений в принятии решений.

Для того чтобы поместить знания в информационную систему, их необходимо представить определенными структурами данных, соответствующих выбранной среде разработки интеллектуальной системы. Поэтому при разработке информационной системы сначала осуществляются накопление и представление знаний, причем на этом этапе обязательно участие человека, а затем знания представляются определенными структурами данных, удобными для хранения и обработки в ЭВМ.

Знания в ИС существуют в следующих формах:

· исходные знания (правила, выведенные на основе практического опыта, математические и эмпирические зависимости, отражающие взаимные связи между фактами; закономерности и тенденции, описывающие изменение фактов с течением времени; функции, диаграммы, графы и т. д.);

· описание исходных знаний средствами выбранной модели представления знаний (множество логических формул или продукционных правил, семантическая сеть, иерархии фреймов и т. п.);

· представление знаний структурами данных, которые предназначены для хранения и обработки в ЭВМ;

· базы знаний на машинных носителях информации.

Знания являются более сложной категорией по сравнению с данными. Знания описывают не только отдельные факты, но и взаимосвязи между ними, поэтому знания иногда называют структурированными данными. Знания представляют собой результат мыслительной деятельности человека, направленной на обобщение его опыта, полученного в результате практической деятельности.

Знания получаются в результате применения к исходным данным некоторых методов обработки, подключения внешних процедур.

ДАННЫЕ + ПРОЦЕДУРА ОБРАБОТКИ = ИНФОРМАЦИЯ

ИНФОРМАЦИЯ + ПРОЦЕДУРА ОБРАБОТКИ = ЗНАНИЯ

Характерная особенность знаний состоит в том, что они не содержаться в исходной системе. Знания возникают в результате сопоставления информационных единиц, нахождения и разрешения противоречий между ними, т.е. знания активны их появление или недостача приводит к реализации некоторых действий или появлению новых знания. Знания отличаются от данных наличием следующих свойств.

Свойства знаний (из лекций):

· Внутренняя интерпритируемость (данные+методанные). Методанные -структурированные данные, представляющие собой характеристики описываемых сущностей для целей их идентификации, поиска, оценки, управления ими

· Наличие связей (внутренних, внешних), структура связи

· Возможность шкалирования (оценка соотношения между информационными единицами) – количественная

· Наличие семантической метрики (средства оценки плохо формализуемых информационных единиц)

· Наличие активности (неполнота, неточность побуждает их к развитию, пополнению).


Классификация знаний

Знание – форма существования и систематизации результатов познавательной деятельности человека. Знание помогает людям рационально организовывать свою деятельность и решать различные проблемы, возникающие в её процессе.

Знание (в теории искусственного интеллекта и экспертных систем) – совокупность информации и правил вывода (у индивидуума, общества или системы ИИ) о мире, свойствах объектов, закономерностях процессов и явлений, а также правилах использования их для принятия решений.

Главное отличие знаний от данных состоит в их структурности и активности, появление в базе новых фактов или установление новых связей может стать источником изменений в принятии решений.

Выделяют различные виды знания:

Научное,

Вненаучное,

Обыденно-практическое (обыденное, здравый смысл),

Интуитивное,

Религиозное, и др.

Обыденно-практическое знание носит несистемный, бездоказательный, бесписьменный характер. Обыденное знание служит основой ориентации человека в окружающем мире, основой его повседневного поведения и предвидения, но обычно содержит ошибки, противоречия. Научное знание, основанное на рациональности, характеризуется объективностью и универсальностью, и претендует на общезначимость. Его задача – описать, объяснить и предсказать процесс и явление действительности. Вненаучное знание продуцируется определённым интеллектуальным сообществом по отличным от рационалистических нормам, эталонам, имеют свои источники и средства познания.

Классификация знаний

I. по природе. Знания могут быть декларативные и процедурные .

Декларативные знания содержат в себе лишь представление о структуре неких понятий. Эти знания приближены к данным, фактам. Например: высшее учебное заведение есть совокупность факультетов, а каждый факультет, в свою очередь, есть совокупность кафедр. Процедурные же знания имеют активную природу. Они определяют представления о средствах и путях получения новых знаний, проверки знаний. Это алгоритмы разного рода. Например: метод мозгового штурма для поиска новых идей.

II. по степени научности. Знания могут быть научными и вненаучными .Научные знания могут быть:

1) эмпирическими (на основе опыта или наблюдения);

2) теоретическими (на основе анализа абстрактных моделей, аналогий, схем, отображающих структуру и природу процессов, т.е. обобщение эмпирических данных).

Вненаучные знания могут быть:

 паранаучными знаниями – учения или размышления о феноменах, объяснение которых не является убедительным с точки зрения критериев научности.

 лженаучными – сознательно эксплуатирующие домыслы и предрассудки.

 квазинаучными – они ищут себе сторонников и приверженцев, опираясь на методы насилия и принуждения. Квазинаучное знание, как правило, расцветает в условиях строго иерархированной науки, где невозможна критика власть предержащих, где жестко проявлен идеологический режим. (В истории России периоды «триумфа квазинауки» хорошо известны: лысенковщина; фиксизм, и т.д.)

 антинаучными – как утопичные и сознательно искажающие представления о действительности.

 псевдонаучными – представляют собой интеллектуальную активность, спекулирующую на совокупности популярных теорий (истории о древних астронавтах, о снежном человеке, о чудовище из озера Лох-Несс)

 обыденно-практическими – доставлявшими элементарные сведения о природе и окружающей действительности. Обыденное знание включает в себя и здравый смысл, и приметы, и назидания, и рецепты, и личный опыт, и традиции. Оно хотя и фиксирует истину, но делает это не систематично и бездоказательно.

 личностными – зависящими от способностей того или иного субъекта и от особенностей его интеллектуальной познавательной деятельности. Коллективное же знание общезначимо (надличностно), предполагает наличие общей для всей системы понятий, способов, приёмов и правил построения. III. по местонахождению

Выделяют личностные (неявные, скрытые, пока неформализованные) знания и формализованные (явные) знания.

Неявные знания – знания людей, которые ещё не формализованы и не могут быть переданы другим людям.

Формализованные на некотором языке (явные) знания:

 знания в документах;

 знания на компакт-дисках;

 знания в персональных компьютерах;

 знания в Интернете;

 знания в базах знаний;

 знания в экспертных системах, извлечённые из неявных знаний людей-экспертов.

Отличительные характеристики знания все ещё являются предметом неопределённости в философии. Согласно большинству мыслителей, для того чтобы нечто считалось знанием, это нечто должно удовлетворять трем критериям:

a) быть подтверждаемым,

b) быть истинным,

c) заслуживающим доверия.


Похожая информация.




Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: