H Примитивные типы в Java в черновиках Tutorial. Программирование: Java

Давайте сегодня по-быстрому разберемся с типами в Java. Все типы в Java делятся на две группы — это примитивные и ссылочные типы.

Здесь будем разбираться с примитивными типами.

Ну пожалуй самый примитивный тип — это логический тип данных. Он же boolean — самый простой тип данных. Переменная такого типа может хранить лишь два значения: true (истина) или false (ложь). С переменными такого типа можно проводить следующие опреации: «!» — отрицание (not), «&&» — логическое И (and), «||» — логическое ИЛИ (or), «^» — исключающе ИЛИ (xor). Таблицы истинности для этих операций можно .

Дальше целочисленные типы данных. К ним в Java относятся следующие типы: byte , short , int и long . Каждый из этих типов принимает разный диапазон значений, объединяет их только то, что все значения всегда целочисленные. Так для типа byte интеравал от?128 до 127, для типа short от?32768 до 32767, для типа int от?2147483648 до 2147483647 ну и для типа long интервал от?9.2·10 18 до 9.2·10 18 . C ними все просто вычитаем, складываем, делим, умножаем…

Ну и конечно есть типы данных с плавающей запятой, дробные типы. Это float и тип с двойной точностью double . float принимает значения в диапазоне приблизительно от?3.4·10 38 до 3.4·10 38 , а double в диапазоне от?1.8·10 308 до 1.8·10 308 . Помимо этого, для этих типов существуют особые значения +? — плюс бесконечность, -? — минус бесконечность и NaN — не число (например при делении на 0).

Итак, если мы хотим объявить переменную какого-то типа, мы должны указать сначала ее тип, а потом ее имя:

Int i; float f;

Так же сразу можно указать начальное значение:

Int i = 0; float f = 3.5;

В Java используется неявное преобразование типов. Что это такое? Ну например вы хотите сложить две переменные одна типа int а другая типа float. Тогда ваша переменная типа int будет преобразована к типу float и только после этого произойдет сложение. Соответственно и результат получится типа float. При этом меньший тип всегда преобразуется к бльшему, а целое к дробному. Ну например вот это будет работать:

Int a = 3; float b = 4.5, c; с = a + b;

а вот это нет:

Int a = 3, c; float b = 4.5; с = a + b;

Здесь переменная в которую записывается результат имеет тип int, а сам результат получится типа float. Конечно можно привести один тип к другому вручную. Делается это вот так:

Int a = 3, c; float b = 4.5; c = (int) (a + b);

здесь с помошью записи (int) мы приводим сумму a и b к типу int. Однако понятно, что в целочисленной переменной с не может храниться значение 7.5. При приведении дробных типов к целым дробная часть просто откидывается . Это может послужить причиной некотороых ошибок, поэтому об этом не стоит забывать.

Мы уже и использовали переменные в наших примерах, поскольку без них было бы очень затруднительно объяснить примитивные типы данных в Java, но не акцентировали на этом внимания, так как это не большая и не сложная тема. О константах в Java мы вообще пока не говорили. И вот настало время! Ну погнали!

Переменная — основной компонент хранения данных в Java-программе. Переменная определяется комбинацией идентификатора, типа и необязательного начального значения. Кроме того, все переменные имеют область определения, которая задает их видимость для других объектов и время существования .

В Java все переменные должны быть объявлены до их использования. Объявить переменную можно в любом месте программы. Основная форма объявления переменных выглядит следующим образом:

тип идентификатор [=значение][, идентификатор [=значение] ...] ;

  • тип — это один из элементарных типов Java либо имя класса или интерфейса.
  • идентификатор — это имя переменной

Переменной можно присвоить начальное значение (инициализировать ее), указывая знак равенства и значение. Следует помнить, что выражение инициализации должно возвращать значение того же (или совместимого) типа, который указан для переменной. Для объявления более одной переменной указанного типа можно использовать список с разделителями-запятыми.

Несколько примеров объявления переменных различных типов приведено ниже. Обратите внимание, что некоторые объявления осуществляют инициализацию переменных.

a , b , c ; // объявление трех переменных типа int: a, b и c
int d = 3 , e , f = 5 ; // объявление еще трех переменных типа int с инициализацией d и f
byte z = 22 ; // инициализация переменной z
double pi = 3.14159 ; // объявление приблизительного значения переменной pi
char x = "x" ; // присваивание значения "x" переменной x

Использовать неинициализированную переменную в выражениях нельзя, поэтому переменную надо инициализировать либо при ее объявлении, либо до ее использования в каком либо выражении. Например, приведенный ниже фрагмент кода будет признан ошибочным уже на этапе компиляции.

vacationDays ;
System . out . println ( vacationDays ) ; // ОШИБКА! Переменная не инициализирована

Как правильно именовать переменные мы уже обсуждали.

Динамическая инициализация переменных

Java допускает динамическую инициализацию переменных посредством любого выражения, допустимого в момент объявления переменной. Например:

a = 3.0 , b = 4.0 ;
// динамическая инициализация переменной c
double c = Math . sqrt ( a * a + b * b ) ;
System . out . println ( "Гипотенуза равна " + c ) ;

Область действия и время существования переменных

Это достаточно важный вопрос и его надо рассмотреть поподробнее. И для этого сперва надо рассмотреть использование блоков кода в Java.

Использование блоков кода

Java позволяет группировать один и более оператора в блоки кода, называемые также кодовыми блоками. Это выполняется путем помещения операторов в фигурные скобки. Сразу после создания блок кода становится логическим модулем, который можно использовать в тех же местах, что и отдельный оператор. Например, блок может служить в качестве цели для операторов if и for. Рассмотрим следующий оператор if:

( x < y ) { // начало блока
x = y;
y = 0 ;
} // конец блока

В этом примере, если x меньше y, программа выполнит оба оператора, расположенные внутри блока. Таким образом, оба оператора внутри блока образуют логический модуль, и выполнение одного оператора невозможно без одновременного выполнения и второго. Основная идея этого подхода состоит в том, что во всех случаях, когда требуется логически связать два или более оператора, это делается посредством создания блока.

Java допускает объявление переменных внутри любого блока. Блок начинается открывающей фигурной скобкой и завершается закрывающей фигурной скобкой. Блок задает область определения. Таким образом, приоткрытии каждого нового блока мы создаем новую область действия . Область действия задает то, какие объекты видимы другим частям программы. Она определяет также время существования этих объектов.

Основное правило, которое следует запомнить: переменные, объявленные внутри области действия, не видны (т.е. недоступны) коду, который находится за пределами этой области. Таким образом, объявление переменной внутри области действия ведет к ее локализации и защите от несанкционированного доступа и/или изменений.

Области действия могут быть вложенными . Например, при каждом создании блока кода мы создаем новую, вложенную область действия. В этих случаях внешняя область действия заключает в себя внутреннюю область . Это означает, что объекты, объявленные во внешней области, будут видны коду, определенному во внутренней области . Тем не менее, обратное не верно. Объекты, которые объявлены во внутренней области действия, не будут видны за ее пределами . Это может пояснить следующий пример:

Переменная y , определенная внутри своей области действия ограниченной фигурными скобками, доступна только в ней. За ее пределами переменная y уже не доступна, а переменная x доступна, и во области действия переменной y .

Следует запомнить еще один важный нюанс: переменные создаются при входе в их область действия и уничтожаются при выходе из нее.

Это означает, что переменная утратит свое значение сразу по выходу из области действия.

Хотя блоки могут быть вложенными, во внутреннем блоке нельзя объявлять переменные с тем же именем, что и во внешней области .

Код приведенный на примере слева, выдаст ошибку компиляции.

Такие трюки возможные в C и C++ в Java не проходят.

Константы в Java

В Java для обозначения констант служит ключевое слово final . Ключевое слово final означает, что присвоить данной переменной какое-нибудь значение можно лишь один раз, после чего изменить его уже нельзя. Рекомендуется использовать для именования констант прописные буквы, хоть это и не является обязательным, но такой стиль способствует удобочитаемости кода. Пример объявления константы:

double CM_PER_INCH = 2.54 ;

Константу можно и не инициализировать при ее объявлении, но необходимо инициализировать до ее использования в каком-либо выражении, точно так же как и переменную, но сделать это можно только один раз. Причем это можно сделать и в условных операторах, то есть инициализировать значение константы в зависимости от каких либо условий. Компилятор проверит все возможные варианты, и если будет хоть один, где константа может быт не инициализирована, то он выдаст ошибку.

Java является объектно-ориентированным языком, которому свойственна абстракция, однако для прикладных задач всегда приходится оперировать известными параметрами. В программировании они называются переменными. Чем java переменная отличается от объекта?

Всё просто – переменная является ячейкой в памяти, где хранится её значение. Любое действие – прямая работа с этим участком памяти. Объект же является более комплексной величиной. Он занимает определённый диапазон памяти, взаимодействие осуществляется через некую передаточную функцию (методы), выраженную в параметрах объекта.
В данной статье мы поговорим именно о переменных, здесь это совсем не тривиальное понятие.

Объявляются переменные java так:

тип_данных имя_переменной;

Здесь же при объявлении можно присвоить значение.

тип_данных имя_переменной = значение_переменной;

Также можно объявить одновременно несколько переменных, просто перечисляя их через запятую.

тип_данных имя_переменной1, имя_переменной2…;

Классификация по принадлежности

Выделяется четыре типа java переменных:

  • переменные экземпляра (instance variables);
  • переменные класса (class variables);
  • локальные переменные (local variables);
  • параметры (parameters).

Пусть у нас есть несколько объектов одного класса Automobile(). Помимо общих параметров у них есть уникальные, скажем, максимальная скорость maxSpeed(). Их можно инициировать в теле программы, а можно хранить в нестатических полях класса (объявленных без добавления слова static). Таким образом, каждый экземпляр будет обладать индивидуальным параметром, не зависящим от скоростей других объектов.

public class Automobile { public String name; private double maxSpeed ; public Automobile (String autoName ){ name = autoName; }}

Переменная класса, или статическая переменная java, напротив, объявляется исключительно с применением слова static. В данном случае её значение будет одинаковым для всех экземпляров. В случае того же автомобиля, введём параметр gearsNum – число передач. Для всех экземпляров оно будет равно 6.

Необязательный модификатор final позволяет присвоить значение переменной только один раз. За соблюдением этого следит компилятор.

public class Automobile { public String model ; private double maxSpeed ; public static final int gearsNum = 6 ; }

Локальные переменные и методы в java неизменно связаны. В последних часто фигурируют вспомогательные параметры, которые в дальнейшем коде не нужны. Для объявления локальной переменной нет особой формы инициализации, границы её действия зависят лишь от места объявления. В данном случае - в фигурных скобках внутри метода. При выходе из него переменная будет уничтожена, поэтому обратиться к ней будет уже нельзя.

Крайний случай локальных переменных - это параметры. В частности, классический пример «Hello, World!»:

class HelloWorld { public static void main (String args ) { System . out. println("Hello World!" ); } }

Здесь сразу два параметра. Первая - собственно, «Hello, World!», вторая - аргумент строки args в main.

Классификация по видимости

На основании описанного выше, можно проследить ещё одно деление – по видимости переменных. Существует 4 группы:

  • Public. Данный модификатор переменных доступен всем классам и объектам программы. Объявляется при помощи ключевого слова public в начале строки.
  • Protected. Области видимости java переменных в этом случае ограничены текущим пакетом и подклассами. Объявляется аналогично - ключевым словом protected.
  • Package protected. Модификатор переменных, доступных только внутри пакета. Объявления не требуется, отсутствие ключевых слов указывает на package protected.
  • Private. Переменные, доступные исключительно внутри класса. В данном случае, определить тип переменной можно по ключевому слову private.

Несмотря на то, что приватные элементы доступны внутри класса, вопрос: «как обращаться к private java переменным?» всё же имеет ответ. Для того, чтобы иметь возможность извне поменять значение приватного параметра, достаточно внутри того же класса создать публичный метод. Например так:

class Drive { private int gears; public void setGears (int val ) { gears = val; } }

Таким образом, в случае необходимости вы легко сможете изменить значение private переменной.

Указатели - ещё один вариант глобальных переменных. Вспомните, для создания экземпляра объекта мы используем следующую запись:

класс_объекта имя_указателя = new класс_объекта;

Такие переменные называются ссылочными переменными.

Числовые типы - это типы, предназначенные для хранения чисел. Когда вы выполняете математические операции, вы имеете дело с числовыми значениями. Существует два вида числовых типов. Те, которые предназначены для хранения чисел без дробной части, называются целыми типами, а те, в которых может храниться и дробная часть числа - вещественными, или типами с плавающей точкой.

В языке Java понятие беззнаковых чисел отсутствует. Все числовые типы этого языка - знаковые. Например, если значение переменной типа byte равно в шестнадцатиричном виде 0x80, то это число -1.

2.1.1.1. Целые типы

Отсутствие в Java беззнаковых чисел вдвое сокращает количество целых типов. В языке имеется 4 целых типа, занимающих 1, 2, 4 и 8 байтов в памяти. Для каждого типа - byte, short, int и long - есть свои естественные области применения.

Тип byte

Тип byte - это знаковый 8-битовый тип. Его диапазон - от -128 до 127. Он лучше всего подходит для хранения произвольного потока байтов, загружаемого из сети или из файла,

byte b;
byte с = 11;

Если речь не идет о манипуляциях с битами, использования типа byte, как правило, следует избегать. Для нормальных целых чисел, используемых в качестве счетчиков и в арифметических выражениях, гораздо лучше подходит тип int.

Тип short

Short - это знаковый 16-битовый тип. Его диапазон - от -32768 до 32767. Это, вероятно, наиболее редко используемый в Java тип, поскольку он определен как тип, в котором старший байт стоит первым,

short s;
short t= 129;
Тип int

Тип int служит для представления 32-битных целых чисел со знаком. Диапазон допустимых для этого типа значений - от -2147483648 до 2147483647. Чаще всего этот тип данных используется для хранения обычных целых чисел со значениями, достигающими двух миллиардов. Этот тип прекрасно подходит для использования при обработке массивов и для счетчиков. В ближайшие годы этот тип будет прекрасно соответствовать машинным словам не только 32-битовых процессоров, но и 64-битовых с поддержкой быстрой конвейеризации для выполнения 32-битного кода в режиме совместимости. Всякий раз, когда в одном выражении фигурируют переменные типов byte, short, int и целые литералы, тип всего выражения перед завершением вычислений приводится к int.

int j = 1000;
Тип long

Тип long предназначен для представления 64-битовых чисел со знаком. Его диапазон допустимых значений достаточно велик даже для таких задач, как подсчет числа атомов во вселенной,

long m;
long n = 123;

He надо отождествлять разрядность целочисленного типа с занимаемым им количеством памяти. Исполняющий код Java может использовать для ваших переменных то количество памяти, которое сочтет нужным, лишь бы только их поведение соответствовало поведению типов, заданных вами.

Таблица 2.1. Таблица разрядностей и допустимых диапазонов для различных типов целых чисел

Разрядность

Диапазон

-9, 223, 372,036, 854, 775, 808 ... 9, 223, 372, 036, 854, 775, 807

-2, 147, 483, 648 .... 2, 147, 483, 647

-32,768 .... 32, 767

-128 ... 127

2.1.1.2. Числа с плавающей точкой

Числа с плавающей точкой, часто называемые в других языках вещественными числами, используются при вычислениях, в которых требуется использование дробной части. В Java реализован стандартный (IEEE-754) набор типов для чисел с плавающей точкой - float и double и операторов для работы с ними.

Таблица 2.2. Характеристики типов чисел с плавающей точкой

Разрядность

Диапазон

1.7e-308 .... 1 .7e+ 308

3.4e-038 .... 3.4e+ 038

Тип float

В переменных с обычной, или одинарной точностью, объявляемых с помощью ключевого слова float, для хранения вещественного значения используется 32 бита,

float f;
float f2 = 3.14;
Тип double

В случае двойной точности, задаваемой с помощью ключевого слова double, для хранения значений используется 64 бита. Все трансцендентные математические функции, такие как sin, cos, sqrt, возвращают результат типа double,

double d;
double pi = 3.14159265358979323846;

Примитивные типы в Java — важная, часто используемая часть языка, которая требует особого обращения. В этой публикации попробуем ответить на все вопросы связанные с примитивными типами, механизмом их работы, обработкой. Статья предназначена как для новичков, которые только стали на тернистый путь изучения Java (к ним отношусь и я), так и для людей, достаточно знакомым с языком, которые смогут освежить знания и, надеюсь, найдут что-то интересное для себя.

Примитивные типы

Примитивные типы немного нарушают объектную ориентированность языка Java, так так представляют одиночные (простые) значения. Эта особенность объясняется желанием обеспечить максимальную эффективность. Создавать объект простой переменной с помощью new недостаточно эффективно, так как new перемещает объект в кучу. Вместо этого создается «автоматическая» переменная, которая не является ссылкой на объект. Переменная хранит единственное значение и располагается в стеке. Стек — это область хранения данных, расположена в RAM. Процессор имеет прямой доступ до этой области через указатель на стек, поэтому стек — очень быстрый и эффективный способ хранения данных. По скорости стек уступает только регистрам (логично, так как регистры расположены внутри процессора).
Все размеры примитивных типов строго фиксированы и не зависят от машинной архитектуры. Это одна с причин улучшенной переносимости Java-программ.
В Java определено восемь примитивных типов, которые можно разбить на четыре группы:

Целые числа

Для целых чисел определены четыре примитивных типа: byte , short , int , long . Все эти типы представляют целочисленные значения со знаком: положительные или отрицательные. В Java нет положительных целочисленных значений без знака (unsigned ). Как было сказано раньше, все размеры примитивных типов фиксированы:
Наименьшим целочисленным типом является byte . Переменные этого типа очень удобны для работы с потоками ввода-вывода и при манипулировании двоичными данными. Далее идет тип short , который применяется реже всех остальных типов. Наиболее часто употребляемым типом является int . Его постоянно используют в циклах, для индексации массивов. Может показаться, что использование типов byte и short в местах, где не требуется широкий диапазон значений, будет более эффективным чем использование int . Но это не так, потому что при вычислении выражений значения типа byte или short будут преобразованы в int (мы еще вернемся к этому вопросу). Когда длины типа int недостаточно для хранения значения, нужно использовать long . Его диапазон значений достаточно велик, что делает long удобным при работе с большими целыми числами.

Числа с плавающей точкой

Числа с плавающей точкой (или действительные числа) представлены типами float и double . Используются для хранения значений с точностью до определенного знака после десятичной точки.
Тип float определяет числовое значение с плавающей точкой одинарной точности. Этот тип используется, когда нужно числовое значение с дробной частью, но без особой точности. Тип double используется для хранений значений с плавающей точкой двойной точности. Обработка значений двойной точности выполняется быстрее, чем обработка значений одинарной точности. Поэтому большинство математических функций класса java.lang.Math возвращают значения типа double . Эффективнее всего использовать double , когда требуется сохранить точность многократно повторяющихся вычислений или манипулировать большими числами.

Символы

В спецификации примитивный тип char принадлежит к целочисленным типам (или integral types ), но поскольку он играет немного другую роль, можно выделить для него собственную категорию. Его роль — представлять символы Unicode . Для хранения символов требуется 16 бит. Странно, ведь для представления символов основных языков (например, английского, французского, испанского) достаточно 8 бит. Но такая цена интернационализации. Unicode использует полный набор международных символов на всех известных языках мира.

Логические азначения

Примитивный тип boolean предназначен для хранения логических значений. Данный тип может принимать одно из двух возможных значений: true (истина) или false (ложь). Значения boolean возвращаются со всех логических операций (например, операции сравнения). Является обязательным при построении циклов, операторов (например, for, if).

Литералы

Значения примитивных типов данных в большинстве случаев инициализируются с помощью литералов. Рассмотрим их.

Целочисленные литералы

Наиболее часто используемые литералы. Любое целочисленное значение является числовым литералом (например, -10 , 10 — десятичные значения). Можно использовать восьмеричные, шестнадцатеричные и двоичные литералы:

// десятичный литерал, числа , не начинается с 0 int decimal = 10; // 10 // восьмеричный литерал начинается с 0, далее числа int octal = 010; // 8 // шестнадцатеричный литерал начинается с 0x или 0Х, далее числа и символы int hexadecimal = 0x10; // 16 // двоичный литерал начинается с Оb или 0B, далее числа int binary = 0b10; // 2
Все целочисленные литералы представляют значения int . Если значение литерала лежит в диапазоне byte , short или char , то его можно присвоить переменной этого типа без приведения типов. Для создания литерала типа long , необходимо явно указать компилятору, дополнив литерал буквой "l " или "L ":

Byte b1 = 127; byte b2 = 128; // ошибка short s1 = -32768; short s2 = -32769; // ошибка char c1 = 0; char c2 = -1; // ошибка long l1 = 10l; long l2 = 0x7fffffffffffffffL; // максимальное значение типа long

Литералы с плавающей точкой

Существует две формы записи литеров с плавающей точкой: стандартная и экспоненциальная:

// стандартная форма double d1 = 0.; // эквивалентно.0 или 0.0; double d2 = 0.125; // экспоненциальная форма - используется символ "e" или "E" // после него степень числа 10, на которую следует умножить данное число double d3 = 125E+10; // если степень положительная, "+" можно упустить double d4 = 1.25e-10;
Всех литералам с плавающей точкой по-умолчанию присваивается тип double . Поэтому чтобы создать литерал типа float , нужно после литерала указать букву "f " или "F ". К литералам также можно добавлять букву "d " или "D ", сообщая, что это литерал типа double, но зачем?

Double d1 = 0.125; float f2 = 0.125f;
Можно использовать шестнадцатеричные литералы с плавающей точкой, например:

// P - двоичный порядок, что обозначает степень числа 2, на которое следует умножить данное число double d = 0x10.P10d; // конечно, можно и без "d" float f = 0x20.P10f;
Для удобности чтения длинных литералов в 7 версии языка была добавлена возможность использовать символ "_" внутри литерала:

// можно делать любые комбинации с использованием любого количества символов "_" int phone = 111__111__111; int bin = 0b1000_1000_1000; double dollars = 23_000.450__500; // не допускается использовать символ "_" в конце или начале литерала, также не можно разрывать "0x" и "0b"

Символьные литералы

Символьные литералы заключаются в одинарные кавычки. Все отображаемые символы можно задавать таким способом. Если символ нельзя ввести непосредственно, используют управляющее последовательности начинающиеся с символа "\ ". Хотя все эти последовательности можно заменить соответствующим Unicode кодом. Также символьный литерал можно создать используя восьмеричную ("\xxx") и шестнадцатеричную форму ("\uxxxx").

Char h = "a"; // стандартная форма char a = "\001"; // восьмеричная форма char c = "\u0001"; // шестнадцатеричная форма
Существуют также строковые литералы. Информацию о них можно получить .

Логические литералы

С логическими операторами все просто. Существует только два логических литерала:

Boolean yes = true; // истина boolean no = false; // ложь
Логические литералы можно присваивать только переменным типа boolean . Также важно понимать, что false не равен 0 , а true не равен 1 . Преобразовать переменную типа boolean в другие примитивные типы не выйдет.

Операции

Над целочисленными типами

  • операторы сравнения (> , < , >= , <= ) и равенства (== , != )
  • унарные операторы (+ , - )
  • мультипликативные (* , / , % ) и аддитивные (+ , - ) операторы
  • инкремент (++ ) и декремент (-- ) в префиксной и постфиксной формах
  • знаковые (>> , << ) и без знаковые (>>> ) операторы сдвига
  • побитовые операторы (~ , & , ^ , | )
  • условный оператор (? : )
  • оператор приведения типов

Над Floating-Point типами

Над числами с плавающей точкой можно проводить все те же операции, что и с целыми числами, за исключением побитовых операторов и операторов сдвига.

Над логическим типом

  • операторы равенства (== и != )
  • логические операторы (! ,& , | , ^ )
  • условные логические операторы (&& , || )
  • условный оператор (? : )

Преобразование

Существует три типа преобразований:
  • расширяющее преобразование (widening )
  • суживающее преобразование (narrowing )
  • widening + narrowing (преобразование byte к char , сначала byte преобразовываем в int , а потом int — в char )

Расширяющее преобразование

Если оба типа совместимы и длина целевого типа больше длины исходного типа выполняется расширяющее преобразование (например byte преобразуется в int ). Следующая таблица демонстрирует все возможные расширяющее преобразования. Курсовом помечены типы, преобразования в которые, возможно, приведут к потери данных.

Суживающее преобразование

При суживающем преобразовании возможна потеря информации об общей величине числового значения, также можно потерять точность и диапазон. Все возможные суживающее преобразования показаны в таблице:
short byte, char
char byte, short
int byte, short, char
long int, byte, short, char
float long, int, byte, short, char
double float, long, int, byte, short, char

Чтобы выполнить преобразование двух несовместимых типов необходимо воспользоваться приведением (casting ). Если значения исходного целочисленного типа больше допустимого диапазона значений целевого типа, то оно будет сведено к результату деления по модулю на диапазон целевого типа. Если же значения типа с плавающей точкой приводится к значению целочисленного типа, то происходит усечение (отбрасывается дробная часть).

Byte a = (byte)128; // - 128 byte b = (byte)42; // привидение возможно, но, в данном случаи, в нем нет необходимости int i1 = (int)1e20f; // 2147483647 int i2 = (int)Float.NaN; // 0 float f1 = (float)-1e100; // -Infinity float f2 = (float)1e-50; // 0.0

Продвижение

Когда требуемая точность промежуточного значения выходит за пределы допустимого диапазона значений любого с операндов в выражении используется автоматическое продвижение типов.

Int a = 100; float b = 50.0f; double c = 50.0; double result = a - b + c; // 100.0 // на самом деле: result = (double)((float)a - b) + c;
Правила продвижения хорошо демонстрирует следующая диаграмма:

Классы-обертки

Для представления примитивных типов как объектов было сделаны классы-обертки (wrapper classes ). Какие преимущества дают нам классы-обертки?
  • возможность использования объектов классов-оберток в качестве параметров к методам или как generic-параметры
  • возможность использования констант, которые отвечают за границы соответствующего типа данных (MIN_VALUE и MAX_VALUE )
  • возможность использования методов для преобразования в другие примитивные типы, конвертации между системами счисления
Wrapper-классов восемь, по одному на каждый примитивный тип:
Почти все классы (кроме Boolean и Character ) унаследованы от абстрактного класса Number и являются сравнимыми (реализуют интерфейс Comparable ). Иерархия, примерно, такая:


// существует несколько способов создания Integer i1 = new Integer("10"); Integer i2 = new Integer(10); Integer i3 = Integer.valueOf(10); Integer i4 = Integer.valueOf("10", 10); // можно указать систему счисления, только для оберток целочисленных примитивных типов Character c1 = new Character("c"); // тут только один способ // получаем значения примитивных типов int i5 = i1.intValue(); char c2 = c1.charValue();

Автоупаковка и распаковка

В версии JDK 5 были введены два важных средства:
  • Автоупаковка (autoboxing ) — процесс автоматического инкапсулирования примитивного типа в соответствующий класс-обертку. Отпадает необходимость явно создавать объект.
  • Распаковка (unboxing ) — процесс автоматического извлечения примитивного типа с соответствующего класса-обертки. Отпадает необходимость явного вызова метода для получения примитивного типа.
Эти средства облегчают создания объектов, получения примитивных типов, упрощают работу с коллекциями.

Public static void main(String... s) { Integer i1 = 10; // автоупаковка - Integer.valueOf(10) int i2 = i1; // распаковка - i1.intValue() method(10); // автоупаковка в объект класса Integer - Integer.valueOf(10) ++i1; // распаковка - i1.intValue(), автоупаковка - Integer.valueOf(i1.intValue() + 1) } private static int method(Integer i) { return i; // распаковка объекта, принятого как параметр - i.intValue() }

Некоторые полезные методы

Integer i1 = 128; i1.compareTo(5); // 1, то есть i.intValue() > Integer.valueOf(5) Integer.decode("0xabc"); // не работает с двоичными литералами Integer.parseInt("10", 3); // работает с любой системой счисления // метод преобразования i1.byteValue(); // (byte)i.intValue() // методы проверки Float f = 20.5f; Boolean badFloat = f.isInfinite() || f.isNaN(); // false, автоупаковка boolean // преобразование в строку f.toString();
Спасибо за внимание. Все дополнения, уточнения и критика приветствуются.

Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: