Самые эффективные солнечные батареи: КПД, мощность и показатели напряжения. Баланс эффективности солнечных батарей

Солнечной панелью принято считать источник электрической энергии, который работает непосредственно от светового потока. Если говорить о конструктивном исполнении, любая гелиопанель представляет определенный набор фотоячеек, соединенных между собой, помещенных в защитный корпус и закрытых передней панелью из стекла.

Что собой представляет фотоячейка

Фотоячейка является полупроводниковым элементом, который объединяет в себе два типа проводимости, отличающиеся недостатком или избытком электронов:

  • n — проводимость;
  • p — проводимость.

Она состоит из двух полупроводников, в которых электроны исходного материала поглощают энергию, получаемую из солнечного потока, что придает им дополнительный импульс. Покидая свою орбиту, направленный поток электронов генерирует постоянный фототок, который и используется в практических целях.

Применение в повседневной жизни

Сфера применения подобных устройств очень широка и охватывает различные отрасли, среди которых можно отметить следующие направления:

  • Микроэлектроника (часы, калькуляторы).
  • Электроника, используемая в быту (внешние аккумуляторы для смартфонов, планшетов, ноутбуков).
  • Обеспечение электроэнергией как отдельно стоящих зданий, так и удаленных районов.
  • Использование в передвижных средствах связи и различных комплексах.
  • Автомобильная промышленность (электромобили).
  • Космическая отрасль (космические станции).

Преимущества использования

Среди прочих альтернативных источников энергии солнечные панели обладают рядом неоспоримых преимуществ, а именно:

  • Являются энергонезависимым источником энергии, не нуждаются в сложном обслуживании и замене агрегатных узлов или соединений. Максимальный уход заключается в очистке стеклянного покрытия от возникающих загрязнений.
  • Работают независимо, не требуют коммутирующих включений и выключений и всегда находятся в рабочем состоянии. Также отличаются бесшумностью действия и абсолютно экологически безопасны.
  • Небольшой период окупаемости.
  • Срок службы приравнивается к 25 годам, при этом в процессе работы не происходит снижения мощности элементов. По заявлениям производителей, снижение выходной мощности должно быть не более 5%.
  • При их использовании существует возможность конфигурирования конечной установки в зависимости от требуемой мощности и напряжения, что проблематично осуществить с другими источниками энергии.

Виды используемых устройств

Как уже было сказано, все они имеют в своем составе фотоэлементы, которые могут быть представлены следующими полупроводниками:

Кремниевые гелиопанели

В настоящее время для производства фотоячеек используется монокристаллический, поликристаллический и аморфный кремний.

  • Из монокристаллического кремния. Как видно из названия, основным материалом в данных приборах считается очищенный кремний. По внешнему виду они выполнены в виде пчелиных сот, соединенных в единую структуру. Конструктивно очищенный монокристаллический кремний представляет собой тончайшие пластины (до 300 микрон), связанные электродной сеткой. Главным преимуществом признана их высокая эффективность, которая может составлять до 20%.
  • Поликристаллические элементы. Подобные виды значительно дешевле предыдущего варианта в связи с более простой технологией изготовления (охлаждения кремниевой субстанции). Заметим, что образование внутри поликристаллов приводит к тому, что стабильность работы становится значительно ниже, а показатели конечного коэффициента полезного действия не превышают 18%.
  • Гелиопанели из аморфного кремния. Можно отнести как к пленочным, так и к кремниевым, так как основным полупроводниковым материалом в них является силан (или кремневодород). Тонкая пленка силана наносится на специально подготовленную подожку, которая и образует фотоячейку. Не смотря на то, что КПД составляет всего порядка 5%, данный тип нашел широкое применение. Фотоячейки обладают хорошим светопоглощением, благодаря чему несмотря на малый КПД, способны работать при отсутствии прямого солнца и в пасмурную погоду. В связи с этим применяют сочетание монокристаллических (или поликристаллических) ячеек с аморфными, так как сборные секции способны работать в любых погодных условиях.

Пленочные гелиопанели

Бывают двух видов:

  • На основе теллурида кадмия. Имеют низкий КПД (до 10%) и ядовитое вещество в своем составе, но не смотря на это низкая стоимость обуславливает их популярность. На основе селенида меди-индия. Основные материалы, применяемые для создания ячеек – медь, селен и индий. Также являются достаточно дешевыми, однако имеют эффективность порядка 20%.
  • Полимерные. В настоящий момент являются более популярными в связи с их дешевизной и доступностью. В качестве полупроводников используется полифенилен или фталоцианин меди. Эффективность составляет всего 5%, однако в связи с их доступностью, легкостью установки и монтажа, а также экологической безопасностью, они применяются не только в промышленных, но и в бытовых целях.

Эффективность работы

В самом начале, еще на этапе появления солнечных батарей на рынке, коэффициент полезного действия был достаточно невелик, но на сегодняшний момент их производительность поднялась на довольно высокий уровень. Сейчас для монокристаллических кремниевых батарей она доходит до 24%, для поликристаллических – 20%, кремниевых тонкопленочных – 15%, а для тонкопленочных на основе арсенида галлия – 24%. Для многослойных гелиопанелей КПД доходит до 30%.

Если обратиться к производителям подобных устройств, то лучшие солнечные батареи с высоким КПД представлены следующими компаниями:

  • Панели, созданные институтом Soitec & Fraunhofer Institute на сегодняшний день являются лидером по эффективности использования. КПД достигает невероятных 46%, однако ввиду колоссальной стоимости они используются только в научно-космической сфере.
  • Компания Sharp — безусловный лидер с 55-ти летним стажем. Выпускают солнечные батареи практически для всех отраслей, начиная от калькуляторов и заканчивая космическими станциями. Сейчас КПД производимых ими солнечных панелей доходит до 19.8%. В своих разработках компании удалось достигнуть производительности в 44,4%, однако эти технологии сейчас крайне дорогостоящие и не предлагаются на рынке.
  • На третьем месте испанский институт IES (Spanish solar research institute). Им удалось добиться эффективности в 32,6%.

Однако вернемся на землю, цифры выше – из области высоких технологий, которые пока недоступны для использования для коммерческих или жилых объектов. При выборе гелиосистемы для дома – самые эффективные солнечные панели из тех, что Вы сможете найти на рынке, вряд ли превысят КПД в 20%. Со своей стороны можем порекомендовать Вам обратить внимание на таких производителей как Amonix, Sun Power, SunTech Power, Q-Cells, Sanyo и First Solar.

Как правильно рассчитать количество гелиопанелей

Для того чтобы определиться с количеством устанавливаемых батарей в быту, необходимо принимать во внимание следующие факторы:

  • Рассчитать необходимое количество электроэнергии в доме.
  • В зависимости от местоположения (региона) уточнить уровень солнечной радиации в течение года. Как правило, данные имеются у местных метеорологических служб.
  • Рассчитать мощность в сутки. При этом необходимо учитывать потери на зарядку аккумулятора (не более 20%) – W.
  • С учетом летних и зимних коэффициентов получить мощность (выработку) одной секции в сутки N, при этом летний поправочный коэффициент – 0,5, зимний – 0,7.
  • Разделив W на N, получим необходимое количество батарей, требуемых для обеспечения потребности в электроэнергии.

При расчете можно прикинуть, что для регионов средней полосы России количество необходимых панелей, обеспечивающих требуемую электроэнергию, в зимний период в несколько раз больше, чем летом.

При этом на выработку влияет не только мощность отдельной секции, но и угол ее наклона, наличие или отсутствие поворотных приводов и концентрирующих устройств. В любом случае, при недостаточной выработке электроэнергии количество секций можно увеличить, что поможет решить проблему.

Повышение эффективности работы солнечных панелей

С учетом того, что их коэффициент полезного действия достаточно низок, перед производителями, как и перед пользователями остро стоит проблема его повышения. Эффективность работы солнечных батарей зависит от множества факторов, потому для увеличения КПД и производительности следует придерживаться основных пунктов:

  • Правильный выбор материала. В отличие от поликристаллических моделей, индий-галлиевые или же ячейки из кадмий-теллура способны значительно повысить производительность.
  • Правильное расположение поверхности секции под прямым углом к световому потоку, что достигается установкой специальных приводов и датчиков, реагирующих на направление света.
  • Как и для любого другого прибора, перегрев крайне опасен, потому вместе с установкой панелей необходимо предусмотреть систему их вентиляции и охлаждения.
  • Исключить падение тени от стоящих неподалеку высоких объектов, так как это может понизить производительность установки в несколько раз.
  • Условия эксплуатации, правильное и своевременное обслуживание всех узлов, входящих в состав управления панелями (приводы, контроллеры, инверторы, аккумуляторы и прочее).

Конечно, установка гелиопанелей не решит полностью проблему по автономному питанию необходимым количеством электроэнергии, но поможет поднять ее выработку для запитки хотя бы части электроприборов.

Мне интересно встречаться с людьми, которые находятся в постоянном поиске. Среди них, мой коллега Александр, фанат электромобилей. Информацию о его разработках и становлении парка электромобилей в Украине вы найдете здесь. Но, как ни странно, кроме электрокара его еще интересуют солнечные панели с высоким КПД.

После заданного им вопроса, мне пришлось немного попотеть, и вот что из этого вышло.

Кремниевые кристаллические фотомодули

Коэффициент полезного действия ячеек кремниевых модулей на сегодня порядка 15 – 20% (поликристаллы — монокристаллы). Этот показатель скоро может быть увеличен на несколько процентов. Например, компания SunTech Power, один из крупнейших мировых производителей модулей из кристаллического кремния, заявила о своем намерении в течение двух лет выпустить на рынок фотомодули с КПД 22%.

Существующие же лабораторные образцы монокристаллических ячеек показывают производительность 25%, поликристаллических – 20,5%. Теоретический максимальный КПД у кремниевых однопереходных (p-n) элементов – 33,7%. Пока он не достигнут, и основная задача производителей, кроме увеличения эффективности ячеек – усовершенствование технологии производства, удешевление фотомодулей.

Отдельно позиционируются фотомодули компании Sanyo, произведенные по технологии HIT (Heterojunction with Intrinsic Thin layer) с использованием нескольких слоев кремния, аналогично тандемным многослойным ячейкам. КПД таких элементов из монокристаллического C-Si и нескольких слоев нано кристаллического nc-Si — 23%. Это самый высокий на сегодня КПД ячеек серийных кристаллических модулей.

Тонкопленочные солнечные батареи

Под таким названием разработано несколько различных технологий, о производительности которых можно сказать следующее.

Сегодня существует три основных типа неорганических пленочных солнечных элементов – кремниевые пленки на основе аморфного кремния (a-Si), пленки на основе теллурида кадмия (CdTe) и пленки селенида меди-индия-галлия (CuInGaSe2, или CIGS).

КПД современных тонкопленочных солнечных батарей на основе аморфного кремния около 10%, фотомодулей на основе теллурида кадмия — 10-11% (производитель компания First Solar), на основе селенида меди-индия-галлия – 12-13% (японские солнечные модули SOLAR FRONTIER). Показатели эффективности серийных элементов: CdTe имеют КПД 15.7% (модули MiaSole), а CIGS элементов, производимых в Швейцарии — 18,7% (ЕМРА).

КПД отдельных тонкопленочных солнечных батарей значительно выше, например, данные по производительности лабораторных образцов элементов из аморфного кремния – 12,2% (компания United Solar), CdTe элементов – 17,3% (First Solar), CIGS элементов – 20,5% (ZSW). Пока солнечные преобразователи на основе тонких пленок аморфного кремния лидируют по объемам производства среди других тонкопленочных технологий – объем мирового рынка тонкопленочных Si элементов около 80%, солнечных ячеек на основе теллурида кадмия – около 18% рынка, и селенид меди-индия-галлия – 2% рынка.

Это связано, в первую очередь, со стоимостью и доступностью сырья, а так же более высокой стабильностью характеристик, чем в многослойных структурах. Отметим, что кремний – один из самых распространенных элементов в земной коре, индий же (элементы CIGS) и теллур (элементы CdTe) рассеяны и добываются в малом количестве. Кроме того, кадмий (элементы CdTe) токсичен, хотя большинство производителей таких солнечных панелей гарантируют полную утилизацию своей продукции.

Дальнейшее развитие фотоэлектрических преобразователей на основе неорганических тонких пленок связано с усовершенствованием технологии производства и стабилизации их параметров.

И все-таки, исходя из стабильности характеристик и относительно недорогой цены, предпочтение отдается солнечным батареям, изготавливаемые на основе аморфного кремния. Но КПД как мы видим, у них не более 12,2%.

Более высокие результаты достигнуты пока в лабораторных условиях. В качестве примера можно привести разработку инженеров из Швейцарской национальной лаборатории материалов, наук и технологий EMPA, которым удалось достигнуть высокого показателя КПД (20,4%) работая с новым поколением тонкопленочных солнечных панелей. В основе новых панелей лежат гибкие полимеры из комплексного соединения CIGS или copper indium gallium (di)selenid (медь-индий-галлий-(ди) селенид).

Постоянно осваивая все новые рубежи, солнечная энергетика движется вперед, поднимая значение КПД на новые уровни. Не секрет, что производительность, которую выдают , не может соперничать с устоявшимися источниками энергии . Виной всему низкая производительность существующих панелей.

Влияние на производительность различных факторов

Повышение коэффициента полезного действия - головная боль всех исследователей, работающих в данном направлении. На сегодняшний день КПД подобных устройств находится в пределах от 15 до 25 %. Процент очень низкий. Солнечные батареи являются крайне прихотливым устройством, стабильная работа которых зависит от множества причин.

К основным факторам, которые могут двояко влиять на производительность, можно отнести:

  • Материал основы солнечных батарей. Самым слабым в этом плане является поликристаллические солнечные батареи, имеющие КПД до 15 %. Перспективными же можно считать модули на основе индий-галлия или кадмий-теллура, имеющие до 20% производительности.
  • Ориентация приемника солнечного потока. В идеале, солнечные батареи своей рабочей поверхностью должны быть обращены к солнцу под прямым углом. В таком положении они должны находиться как можно больший период времени. Для увеличения продолжительности правильного позиционирования модулей в области солнца, более дорогие аналоги имеют в своем арсенале устройство слежения за солнцем, которое поворачивает батареи вслед за движением светила.
  • Перегрев установок. Повышенная температура негативно сказывается на выработке электроэнергии, поэтому при установке необходимо обеспечить достаточную вентиляцию и охлаждение панелей. Этого добиваются устройством вентилируемого зазора между панелью и поверхностью установки.
  • Тень отбрасываемая любым предметом, может значительно испортить показатели КПД всей системы.

Выполнив все требования, и по возможности установив панели в нужном положении, можно получить солнечные батареи с высоким КПД. Именно высоким, а не максимальным. Дело в том, что расчетный, или теоретический КПД, это величина, выведенная в лабораторных условиях, при средних параметрах продолжительности светового дня и количества пасмурных дней.

На практике, конечно же, процент полезного действия будет ниже.

Подбирая солнечные батареи для своего дома, лучше ориентироваться на нижний предел производительности, а не на верхний. Выбрав, таким образом, солнечные модули и все надлежащие для работы компоненты, можно быть уверенным в достаточной мощности устанавливаемой установки. Выбрав нижний предел производительности при расчетах, можно сэкономить на покупке дополнительных панелей, которые покупаются для перестраховки, на случай нехватки мощности.

Обнадеживающие перспективы развития

На сегодняшний день абсолютный рекорд КПД в солнечной энергетике принадлежит Американским разработчикам и составляет 42,8 %. Это значение на 2 % выше предыдущего рекорда 2010 года. Рекордное количество энергии удалось добиться при усовершенствовании солнечной батареи из кристаллического кремния. Уникальностью такого исследования служит тот факт, что все замеры были проведены исключительно в рабочих условиях, то есть не в лабораторных и тепличных помещениях, а в реальных местах предполагаемой установки.

В кулуарах все тех же технических лабораторий не прекращаются работы по увеличению последнего рекорда. Следующая цель разработчиков - граница КПД солнечных модулей в 50 %. С каждым днем человечество все ближе приближается к тому моменту, когда солнечная энергия полностью заменит вредные и дорогие, используемые в настоящее время, источники энергии, и станет в один ряд с такими гигантами как гидроэлектростанции.

Институт Fraunhofer по изучению систем солнечной энергии, Soitec, CEA-Leti и Берлинский центр Гельмгольца объявили, что достигли нового мирового рекорда эффективности преобразования энергии Солнца в электрическую энергию, использовав новую структуру солнечных элементов с четырьмя слоями. Как и некоторые другие многослойные фотоэлементы, эта микросхема предназначена для работы с концентратором, который концентрирует поток солнечных лучей в 297,3 раза, то есть площадь линз концентратора примерно в 300 раз больше площади фотоэлемента. КПД 44,7% относится к широкому спектру солнечного излучения: от ультрафиолета до инфракрасного. Энергия волн длиной 200-1800 нм забирается четырьмя слоями ячейки. Это важный шаг к удешевлению использования солнечной электроэнергии и приближение к важному рубежу в 50% эффективности.

Солнечные элементы, составленные из четырех слоев из соединенных прямым способом III-IV полупроводников, достигли эффективности в 44,7%.


В мае 2013 года немецко-французская команда из Fraunhofer ISE, Soitec, CEA-Leti и Helmholtz Center Berlin уже объявляла о создании солнечных элементов с эффективностью в 43,6%. На базе этого результата и благодаря дальнейшей интенсивной исследовательской работе и шагов по оптимизации и была получена эффективность 44,7%.
Эти солнечные элементы используются в фотоэлектрическом концентраторе (ФЭК), технологии, эффективность которой более чем вдвое превышает эффективность обычных фотоэлектрических станций в богатых солнечными лучами местах. Использование полупроводников III-V, которые изначально использовалась в космических технологиях, помогло реализовать высокую эффективность для преобразования солнечного света в электричество. При этом соединении солнечных элементов, ячейки, сделанные из полупроводников III-V, уложены друг на друга. Каждый слой поглощает волны различной длины из солнечного спектра.


Внешняя квантовая эффективность четырехэлементной солнечной батареи (для каждого из четырех слоев – свой цвет).



Вольтамперная характеристика для поставивших рекорд солнечных элементов.


"Мы невероятно гордимся нашей командой, которая уже в течение трех лет работает над этим солнечным элементом", – говорит Франк Димрот, заведующий отделом и руководитель проекта, отвечающий за развитие этого направления в Институте Fraunhofer. “Этот вид соединения солнечных элементов усовершенствовался на протяжении нескольких лет, в результате тщательной экспериментальной работы. Помимо улучшенных материалов и оптимизации структуры, важную роль играет и новая технология "пластинная связка". С помощью этой технологии мы имеем возможность соединить два полупроводниковых кристалла, которые нельзя вырастить один поверх другого, сохраняя при этом их высокое качество. Таким образом, мы можем создать оптимальное сочетание, чтобы достичь высокой эффективности солнечных элементов”.
"Этот мировой рекорд, увеличивший уровень эффективности более чем на 1% менее чем за 4 месяца, демонстрирует крайне высокий потенциал нового вида соединения солнечных элементов ячейки." – говорит Андре-Жак Обертон-Эрве, председатель и исполнительный директор Soitec. "Новое достижение подтверждает тенденцию к достижению более высокой эффективности, что играет ключевую роль в конкурентоспособности наших собственных систем солнечных элементов. Мы очень гордимся этим достижением, и оно демонстрирует успешность нашего сотрудничества".
"Новый рекорд укрепляет доверие к такому способу, как прямая связь полупроводников. Этот способ был разработан в рамках нашего сотрудничества с Soitec и Институтом Fraunhofer. Мы очень гордимся этим новым результатом, открывающим широкие перспективы для “солнечных” технологий, основанных на новом виде соединения элементов", – сказал генеральный директор Leti Лоран Малье.
Модули концентратора производятся Soitec (проект начинался в 2005 году под названием "Concentrix Solar" и был ответвлением похожего проекта Института Fraunhofer). Эта эффективная технология используется в электростанциях, расположенных в местах с высокой долей прямого солнечного излучения. На данный момент у Soitec есть установки в 18 странах, в том числе в Италии, Франции, Южной Африке и штате Калифорния.

Невысокий КПД солнечных батарей – один из основных недостатков современных гелиосистем. На сегодняшний день один квадратный метр фотоэлемента способен вырабатывать около 15-20 % от мощности падающего на него излучения.

Такая выработка требует установку батарей больших размеров для полноценного электроснабжения. Более того, чтобы достичь необходимого выходного напряжения, соединяются между собой последовательно или параллельно. Их площадь при этом может достигать от нескольких квадратных метров.

КПД солнечных панелей зависит от целого ряда причин:

  • материал фотоэлемента;
  • плотность солнечного потока;
  • время года;
  • температура;
  • и др.

Давайте подробнее поговорим о каждом факторе.

Материал фотоэлемента

Делятся на три вида, в зависимости от метода образования атома кремния:

  • поликристаллические;
  • монокристаллические;
  • панели из аморфного кремния.

Поликристаллические панели изготовлены из чистого кремния и отличаются сравнительно высоким КПД – 14-17%.

Монокристаллические панели менее эффективны в преобразовании солнечной энергии. Их коэффициент полезного действия около 10-12 %. Но невысокие энергозатраты на изготовление таких преобразователей делает их более доступными.

Панели из аморфного кремния (или тонкопленочные) просты и недороги в производстве, как следствие, доступны по цене. Однако, эффективность их значительно ниже, чем у предыдущих двух видов – 5-6%. К тому же элементы тонкопленочных преобразователей из кремния со временем утрачивают свои свойства.

Тонкопленочные батареи также изготавливают с нанесением частиц меди, индия, галлия и селена. Это немного увеличивает их производительность.

Работа в любую погоду

График зависимости мощности от погодных условий Данный показатель зависит от географического расположения панели: чем ближе к экватору, тем выше плотность солнечного излучения.

Зимой производительность фотоэлементов может снизиться от 2 до 8 раз. Это объясняется, прежде всего, скоплением на них снега, сокращением продолжительности и количества солнечных дней.

Важно помнить: в зимнее время следить за наклоном панелей т. к. солнце находится ниже обычного.

Условия эффективной работы

Чтобы батарея работала эффективно, нужно учесть несколько нюансов:

  • угол наклона батареи к солнцу;
  • температуру;
  • отсутствие тени.

Угол между рабочей поверхностью преобразователя и солнечными лучами должен быть близок к прямому. В таком случае эффективность фотоэлементов при прочих равных условиях будет максимальна. Чтобы увеличить КПД дополнительно к ним устанавливают систему слежения за солнцем, которая меняет наклон относительно положения светила. Но подобное встречается нечасто из-за дороговизны оборудования.



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: