Как позвонить в индию на мобильный. Купить виртуальный номер индии для эффективного бизнеса

Сам я не очень люблю заголовки вроде «Покемоны в собственном соку для чайников\кастрюль\сковородок», но это кажется именно тот случай - говорить будем о базовых вещах, работа с которыми довольно часто приводить к купе набитых шишек и уйме потерянного времени вокруг вопроса - «Почему же оно не работает?». Если вы до сих пор боитесь и\или не понимаете Юникода - прошу под кат.

Зачем?

Главный вопрос новичка, который встречается с впечатляющим количеством кодировок и на первый взгляд запутанными механизмами работы с ними (например, в Python 2.x). Краткий ответ - потому что так сложилось:)

Кодировкой, кто не знает, называют способ представления в памяти компьютера (читай - в нулях-единицах\числах) цифр, буков и всех остальных знаков. Например, пробел представляется как 0b100000 (в двоичной), 32 (в десятичной) или 0x20 (в шестнадцатеричной системе счисления).

Так вот, когда-то памяти было совсем немного и всем компьютерам было достаточно 7 бит для представления всех нужных символов (цифры, строчный\прописной латинский алфавит, куча знаков и так называемые управляемые символы - все возможные 127 номеров были кому-то отданы). Кодировка в это время была одна - ASCII . Шло время, все были счастливы, а кто не был счастлив (читай - кому не хватало знака " " или родной буквы «щ») - использовали оставшиеся 128 знаков на свое усмотрение, то есть создавали новые кодировки. Так появились и ISO-8859-1 , и наши (то есть кириличные) cp1251 и KOI8 . Вместе с ними появилась и проблема интерпретации байтов типа 0b1******* (то есть символов\чисел от 128 и до 255) - например, 0b11011111 в кодировке cp1251 это наша родная «Я», в тоже время в кодировке ISO-8859-1 это греческая немецкая Eszett (подсказывает ) "ß". Ожидаемо, сетевая коммуникация и просто обмен файлами между разными компьютерами превратились в чёрт-знает-что, несмотря на то, что заголовки типа "Content-Encoding" в HTTP протоколе, email-письмах и HTML-страницах немного спасали ситуацию.

В этот момент собрались светлые умы и предложили новый стандарт - Unicode . Это именно стандарт, а не кодировка - сам по себе Юникод не определяет, как символы будут сохранятся на жестком диске или передаваться по сети. Он лишь определяет связь между символом и некоторым числом, а формат, согласно с которым эти числа будут превращаться в байты, определяется Юникод-кодировками (например, UTF-8 или UTF-16). На данный момент в Юникод-стандарте есть немного более 100 тысяч символов, тогда как UTF-16 позволяет поддерживать более одного миллиона (UTF-8 - и того больше).

Полней и веселей по теме советую почитать у великолепного Джоеля Спольски The Absolute Minimum Every Software Developer Absolutely, Positively Must Know About Unicode and Character Sets .

Ближе к делу!

Естественно, есть поддержка Юникода и в Пайтоне. Но, к сожалению, только в Python 3 все строки стали юникодом, и новичкам приходиться убиваться об ошибки типа:

>>> with open("1.txt") as fh: s = fh.read() >>> print s кощей >>> parser_result = u"баба-яга" # присвоение для наглядности, представим себе, что это результат работы какого-то парсера >>> ", line 1, in parser_result + s UnicodeDecodeError: "ascii" codec can"t decode byte 0xea in position 0: ordinal not in range(128)
или так:
>>> str(parser_result) Traceback (most recent call last): File "", line 1, in str(parser_result) UnicodeEncodeError: "ascii" codec can"t encode characters in position 0-3: ordinal not in range(128)
Давайте разберемся, но по порядку.

Зачем кто-то использует Юникод?
Почему мой любимый html-парсер возвращает Юникод? Пусть возвращает обычную строку, а я там уже с ней разберусь! Верно? Не совсем. Хотя каждый из существующих в Юникоде символов и можно (наверное) представить в некоторой однобайтовой кодировке (ISO-8859-1, cp1251 и другие называют однобайтовыми, поскольку любой символ они кодируют ровно в один байт), но что делать если в строке должны быть символы с разных кодировок? Присваивать отдельную кодировку каждому символу? Нет, конечно, надо использовать Юникод.
Зачем нам новый тип «unicode»?
Вот мы и добрались до самого интересного. Что такое строка в Python 2.x? Это просто байты . Просто бинарные данные, которые могут быть чем-угодно. На самом деле, когда мы пишем что-нибудь вроде: >>> x = "abcd" >>> x "abcd" интерпретатор не создает переменную, которая содержит первые четыре буквы латинского алфавита, но только последовательность ("a", "b", "c", "d") с четырёх байт, и латинские буквы здесь используются исключительно для обозначения именно этого значения байта. То есть "a" здесь просто синоним для написания "\x61", и ни чуточку больше. Например:

>>> "\x61" "a" >>> struct.unpack(">4b", x) # "x" - это просто четыре signed/unsigned char-а (97, 98, 99, 100) >>> struct.unpack(">2h", x) # или два short-а (24930, 25444) >>> struct.unpack(">l", x) # или один long (1633837924,) >>> struct.unpack(">f", x) # или float (2.6100787562286154e+20,) >>> struct.unpack(">d", x * 2) # ну или половинка double-а (1.2926117739473244e+161,)
И всё!

И ответ на вопрос - зачем нам «unicode» уже более очевиден - нужен тип, который будет представятся символами, а не байтами.

Хорошо, я понял чем есть строка. Тогда что такое Юникод в Пайтоне?
«type unicode» - это прежде всего абстракция, которая реализует идею Юникода (набор символов и связанных с ними чисел). Объект типа «unicode» - это уже не последовательность байт, но последовательность собственно символов без какого либо представления о том, как эти символы эффективно сохранить в памяти компьютера. Если хотите - это более высокой уровень абстракции, чем байтовый строки (именно так в Python 3 называют обычные строки, которые используются в Python 2.6).
Как пользоваться Юникодом?
Юникод-строку в Python 2.6 можно создать тремя (как минимум, естественно) способами:
  • u"" литерал: >>> u"abc" u"abc"
  • Метод «decode» для байтовой строки: >>> "abc".decode("ascii") u"abc"
  • Функция «unicode»: >>> unicode("abc", "ascii") u"abc"
ascii в последних двух примерах указывается в качестве кодировки, что будет использоваться для превращения байтов в символы. Этапы этого превращения выглядят примерно так:

"\x61" -> кодировка ascii -> строчная латинская "a" -> u"\u0061" (unicode-point для этой буквы) или "\xe0" -> кодировка c1251 -> строчная кириличная "a" -> u"\u0430"

Как из юникод-строки получить обычную? Закодировать её:

>>> u"abc".encode("ascii") "abc"

Алгоритм кодирования естественно обратный приведенному выше.

Запоминаем и не путаем - юникод == символы, строка == байты, и байты -> что-то значащее (символы) - это де-кодирование (decode), а символы -> байты - кодирование (encode).

Не кодируется:(
Разберем примеры с начала статьи. Как работает конкатенация строки и юникод-строки? Простая строка должна быть превращена в юникод-строку, и поскольку интерпретатор не знает кодировки, от использует кодировку по умолчанию - ascii. Если этой кодировке не удастся декодировать строку, получим некрасивую ошибку. В таком случае нам нужно самим привести строку к юникод-строке, используя правильную кодировку:

>>> print type(parser_result), parser_result баба-яга >>> s = "кощей" >>> parser_result + s Traceback (most recent call last): File "", line 1, in parser_result + s UnicodeDecodeError: "ascii" codec can"t decode byte 0xea in position 0: ordinal not in range(128) >>> parser_result + s.decode("cp1251") u"\xe1\xe0\xe1\xe0-\xff\xe3\xe0\u043a\u043e\u0449\u0435\u0439" >>> print parser_result + s.decode("cp1251") баба-ягакощей >>> print "&".join((parser_result, s.decode("cp1251"))) баба-яга&кощей # Так лучше:)

«UnicodeDecodeError» обычно есть свидетельством того, что нужно декодировать строку в юникод, используя правильную кодировку.

Теперь использование «str» и юникод-строк. Не используйте «str» и юникод строки:) В «str» нет возможности указать кодировку, соответственно кодировка по умолчанию будет использоваться всегда и любые символы > 128 будут приводить к ошибке. Используйте метод «encode»:

>>> print type(s), s кощей >>> str(s) Traceback (most recent call last): File "", line 1, in str(s) UnicodeEncodeError: "ascii" codec can"t encode characters in position 0-4: ordinal not in range(128) >>> s = s.encode("cp1251") >>> print type(s), s кощей

«UnicodeEncodeError» - знак того, что нам нужно указать правильную кодировку во время превращения юникод-строки в обычную (или использовать второй параметр "ignore"\"replace"\"xmlcharrefreplace" в методе «encode»).

Хочу ещё!
Хорошо, используем бабу-ягу из примера выше ещё раз:

>>> parser_result = u"баба-яга" #1 >>> parser_result u"\xe1\xe0\xe1\xe0-\xff\xe3\xe0" #2 >>> print parser_result áàáà-ÿãà #3 >>> print parser_result.encode("latin1") #4 баба-яга >>> print parser_result.encode("latin1").decode("cp1251") #5 баба-яга >>> print unicode("баба-яга", "cp1251") #6 баба-яга
Пример не совсем простой, но тут есть всё (ну или почти всё). Что здесь происходит:

  1. Что имеем на входе? Байты, которые IDLE передает интерпретатору. Что нужно на выходе? Юникод, то есть символы. Осталось байты превратить в символы - но ведь надо кодировку, правда? Какая кодировка будет использована? Смотрим дальше.
  2. Здесь важной момент: >>> "баба-яга" "\xe1\xe0\xe1\xe0-\xff\xe3\xe0" >>> u"\u00e1\u00e0\u00e1\u00e0-\u00ff\u00e3\u00e0" == u"\xe1\xe0\xe1\xe0-\xff\xe3\xe0" True как видим, Пайтон не заморачивается с выбором кодировки - байты просто превращаются в юникод-поинты:
    >>> ord("а") 224 >>> ord(u"а") 224
  3. Только вот проблема - 224-ый символ в cp1251 (кодировка, которая используется интерпретатором) совсем не тот, что 224 в Юникоде. Именно из-за этого получаем кракозябры при попытке напечатать нашу юникод-строку.
  4. Как помочь бабе? Оказывается, что первые 256 символов Юникода те же, что и в кодировке ISO-8859-1\latin1, соответственно, если используем её для кодировки юникод-строки, получим те байты, которые вводили сами (кому интересно - Objects/unicodeobject.c , ищем определение функции «unicode_encode_ucs1»):
    >>> parser_result.encode("latin1") "\xe1\xe0\xe1\xe0-\xff\xe3\xe0"
  5. Как же получить бабу в юникоде? Надо указать, какую кодировку использовать:
    >>> parser_result.encode("latin1").decode("cp1251") u"\u0431\u0430\u0431\u0430-\u044f\u0433\u0430"
  6. Способ с пункта #5 конечно не ахти, намного удобней использовать использовать built-in unicode .
На самом деле не всё так плохо с «u""» литералами, поскольку проблема возникает только в консоле. Ведь в случае использования non-ascii символов в исходном файле Пайтон будет настаивать на использовании заголовка типа "# -*- coding: -*-" (PEP 0263), и юникод-строки будут использовать правильную кодировку.

Есть ещё способ использования «u""» для представления, например, кириллицы, и при этом не указывать кодировку или нечитабельные юникод-поинты (то есть «u"\u1234"»). Способ не совсем удобный, но интересный - использовать unicode entity codes:

>>> s = u"\N{CYRILLIC SMALL LETTER KA}\N{CYRILLIC SMALL LETTER O}\N{CYRILLIC SMALL LETTER SHCHA}\N{CYRILLIC SMALL LETTER IE}\N{CYRILLIC SMALL LETTER SHORT I}" >>> print s кощей

Ну и вроде всё. Основные советы - не путать «encode»\«decode» и понимать различия между байтами и символами.

Python 3
Здесь без кода, ибо опыта нет. Свидетели утверждают, что там всё значительно проще и веселее. Кто возьмется на кошках продемонстрировать различия между здесь (Python 2.x) и там (Python 3.x) - респект и уважуха.

Полезно

Раз уж мы о кодировках, порекомендую ресурс, который время-от-времени помогает побороть кракозябры - http://2cyr.com/decode/?lang=ru .

Теги:

  • python
  • unicode
  • encoding
Добавить метки

Сегодня мы поговорим с вами про то, откуда берутся кракозябры на сайте и в программах, какие кодировки текста существуют и какие из них следует использовать. Подробно рассмотрим историю их развития, начиная от базовой ASCII, а также ее расширенных версий CP866, KOI8-R, Windows 1251 и заканчивая современными кодировками консорциума Юникод UTF 16 и 8. Оглавление:

  • Расширенные версии Аски - кодировки CP866 и KOI8-R
  • Windows 1251 - вариация ASCII и почему вылезают кракозябры
Кому-то эти сведения могут показаться излишними, но знали бы вы, сколько мне приходит вопросов именно касаемо вылезших кракозябров (не читаемого набора символов). Теперь у меня будет возможность отсылать всех к тексту этой статьи и самостоятельно отыскивать свои косяки. Ну что же, приготовьтесь впитывать информацию и постарайтесь следить за ходом повествования.

ASCII - базовая кодировка текста для латиницы

Развитие кодировок текстов происходило одновременно с формированием отрасли IT, и они за это время успели претерпеть достаточно много изменений. Исторически все начиналось с довольно-таки не благозвучной в русском произношении EBCDIC, которая позволяла кодировать буквы латинского алфавита, арабские цифры и знаки пунктуации с управляющими символами. Но все же отправной точкой для развития современных кодировок текстов стоит считать знаменитую ASCII (American Standard Code for Information Interchange, которая по-русски обычно произносится как «аски»). Она описывает первые 128 символов из наиболее часто используемых англоязычными пользователями - латинские буквы, арабские цифры и знаки препинания. Еще в эти 128 знаков, описанных в ASCII, попадали некоторые служебные символы навроде скобок, решеток, звездочек и т.п. Собственно, вы сами можете увидеть их:
Именно эти 128 символов из первоначального вариант ASCII стали стандартом, и в любой другой кодировке вы их обязательно встретите и стоять они будут именно в таком порядке. Но дело в том, что с помощью одного байта информации можно закодировать не 128, а целых 256 различных значений (двойка в степени восемь равняется 256), поэтому вслед за базовой версией Аски появился целый ряд расширенных кодировок ASCII , в которых можно было кроме 128 основных знаков закодировать еще и символы национальной кодировки (например, русской). Тут, наверное, стоит еще немного сказать про системы счисления, которые используются при описании. Во-первых, как вы все знаете, компьютер работает только с числами в двоичной системе, а именно с нулями и единицами («булева алгебра», если кто проходил в институте или в школе). Один байт состоит из восьми бит, каждый из которых представляет из себя двойку в степени, начиная с нулевой, и до двойки в седьмой:
Не трудно понять, что всех возможных комбинаций нулей и единиц в такой конструкции может быть только 256. Переводить число из двоичной системы в десятичную довольно просто. Нужно просто сложить все степени двойки, над которыми стоят единички. В нашем примере это получается 1 (2 в степени ноль) плюс 8 (два в степени 3), плюс 32 (двойка в пятой степени), плюс 64 (в шестой), плюс 128 (в седьмой). Итого получает 233 в десятичной системе счисления. Как видите, все очень просто. Но если вы присмотритесь к таблице с символами ASCII, то увидите, что они представлены в шестнадцатеричной кодировке. Например, «звездочка» соответствует в Аски шестнадцатеричному числу 2A. Наверное, вам известно, что в шестнадцатеричной системе счисления используются кроме арабских цифр еще и латинские буквы от A (означает десять) до F (означает пятнадцать). Ну так вот, для перевода двоичного числа в шестнадцатеричное прибегают к следующему простому и наглядному способу. Каждый байт информации разбивают на две части по четыре бита, как показано на приведенном выше скриншоте. Т.о. в каждой половинке байта двоичным кодом можно закодировать только шестнадцать значений (два в четвертой степени), что можно легко представить шестнадцатеричным числом. Причем, в левой половине байта считать степени нужно будет опять начиная с нулевой, а не так, как показано на скриншоте. В результате, путем нехитрых вычислений, мы получим, что на скриншоте закодировано число E9. Надеюсь, что ход моих рассуждений и разгадка данного ребуса вам оказались понятны. Ну, а теперь продолжим, собственно, говорить про кодировки текста.

Расширенные версии Аски - кодировки CP866 и KOI8-R с псевдографикой

Итак, мы с вами начали говорить про ASCII, которая являлась как бы отправной точкой для развития всех современных кодировок (Windows 1251, юникод, UTF 8). Изначально в нее было заложено только 128 знаков латинского алфавита, арабских цифр и еще чего-то там, но в расширенной версии появилась возможность использовать все 256 значений, которые можно закодировать в одном байте информации. Т.е. появилась возможность добавить в Аски символы букв своего языка. Тут нужно будет еще раз отвлечься, чтобы пояснить - зачем вообще нужны кодировки текстов и почему это так важно. Символы на экране вашего компьютера формируются на основе двух вещей - наборов векторных форм (представлений) всевозможных знаков (они находятся в файлах со шрифтами, которые установлены на вашем компьютере) и кода, который позволяет выдернуть из этого набора векторных форм (файла шрифта) именно тот символ, который нужно будет вставить в нужное место. Понятно, что за сами векторные формы отвечают шрифты, а вот за кодирование отвечает операционная система и используемые в ней программы. Т.е. любой текст на вашем компьютере будет представлять собой набор байтов, в каждом из которых закодирован один единственный символ этого самого текста. Программа, отображающая этот текст на экране (текстовый редактор, браузер и т.п.), при разборе кода считывает кодировку очередного знака и ищет соответствующую ему векторную форму в нужном файле шрифта, который подключен для отображения данного текстового документа. Все просто и банально. Значит, чтобы закодировать любой нужный нам символ (например, из национального алфавита), должно быть выполнено два условия - векторная форма этого знака должна быть в используемом шрифте и этот символ можно было бы закодировать в расширенных кодировках ASCII в один байт. Поэтому таких вариантов существует целая куча. Только лишь для кодирования символов русского языка существует несколько разновидностей расширенной Аски. Например, изначально появилась CP866 , в которой была возможность использовать символы русского алфавита и она являлась расширенной версией ASCII. Т.е. ее верхняя часть полностью совпадала с базовой версией Аски (128 символов латиницы, цифр и еще всякой лабуды), которая представлена на приведенном чуть выше скриншоте, а вот уже нижняя часть таблицы с кодировкой CP866 имела указанный на скриншоте чуть ниже вид и позволяла закодировать еще 128 знаков (русские буквы и всякая там псевдографика):
Видите, в правом столбце цифры начинаются с 8, т.к. числа с 0 до 7 относятся к базовой части ASCII (см. первый скриншот). Т.о. русская буква «М» в CP866 будет иметь код 9С (она находится на пересечении соответствующих строки с 9 и столбца с цифрой С в шестнадцатеричной системе счисления), который можно записать в одном байте информации, и при наличии подходящего шрифта с русскими символами эта буква без проблем отобразится в тексте. Откуда взялось такое количество псевдографики в CP866 ? Тут все дело в том, что эта кодировка для русского текста разрабатывалась еще в те мохнатые года, когда не было такого распространения графических операционных систем как сейчас. А в Досе, и подобных ей текстовых операционках, псевдографика позволяла хоть как-то разнообразить оформление текстов и поэтому ею изобилует CP866 и все другие ее ровесницы из разряда расширенных версий Аски. CP866 распространяла компания IBM, но кроме этого для символов русского языка были разработаны еще ряд кодировок, например, к этому же типу (расширенных ASCII) можно отнести KOI8-R :
Принцип ее работы остался тот же самый, что и у описанной чуть ранее CP866 - каждый символ текста кодируется одним единственным байтом. На скриншоте показана вторая половина таблицы KOI8-R, т.к. первая половина полностью соответствует базовой Аски, которая показана на первом скриншоте в этой статье. Среди особенностей кодировки KOI8-R можно отметить то, что русские буквы в ее таблице идут не в алфавитном порядке, как это, например, сделали в CP866. Если посмотрите на самый первый скриншот (базовой части, которая входит во все расширенные кодировки), то заметите, что в KOI8-R русские буквы расположены в тех же ячейках таблицы, что и созвучные им буквы латинского алфавита из первой части таблицы. Это было сделано для удобства перехода с русских символов на латинские путем отбрасывания всего одного бита (два в седьмой степени или 128).

Windows 1251 - современная версия ASCII и почему вылезают кракозябры

Дальнейшее развитие кодировок текста было связано с тем, что набирали популярность графические операционные системы и необходимость использования псевдографики в них со временем пропала. В результате возникла целая группа, которая по своей сути по-прежнему являлись расширенными версиями Аски (один символ текста кодируется всего одним байтом информации), но уже без использования символов псевдографики. Они относились к так называемым ANSI кодировкам, которые были разработаны американским институтом стандартизации. В просторечии еще использовалось название кириллица для варианта с поддержкой русского языка. Примером такой может служить Windows 1251 . Она выгодно отличалась от используемых ранее CP866 и KOI8-R тем, что место символов псевдографики в ней заняли недостающие символы русской типографики (окромя знака ударения), а также символы, используемые в близких к русскому славянских языках (украинскому, белорусскому и т.д.):
Из-за такого обилия кодировок русского языка, у производителей шрифтов и производителей программного обеспечения постоянно возникала головная боль, а у нас с вам, уважаемые читатели, зачастую вылезали те самые пресловутые кракозябры , когда происходила путаница с используемой в тексте версией. Очень часто они вылезали при отправке и получении сообщений по электронной почте, что повлекло за собой создание очень сложных перекодировочных таблиц, которые, собственно, решить эту проблему в корне не смогли, и зачастую пользователи для переписки использовали транслит латинских букв, чтобы избежать пресловутых кракозябров при использовании русских кодировок подобных CP866, KOI8-R или Windows 1251. По сути, кракозябры, вылазящие вместо русского текста, были результатом некорректного использования кодировки данного языка, которая не соответствовала той, в которой было закодировано текстовое сообщение изначально. Допустим, если символы, закодированные с помощью CP866, попробовать отобразить, используя кодовую таблицу Windows 1251, то эти самые кракозябры (бессмысленный набор знаков) и вылезут, полностью заменив собой текст сообщения. Аналогичная ситуация очень часто возникает при создании и настройке сайтов, форумов или блогов, когда текст с русскими символами по ошибке сохраняется не в той кодировке, которая используется на сайте по умолчанию, или же не в том текстовом редакторе, который добавляет в код отсебятину не видимую невооруженным глазом. В конце концов такая ситуация с множеством кодировок и постоянно вылезающими кракозябрами многим надоела, появились предпосылки к созданию новой универсальной вариации, которая бы заменила собой все существующие и решила бы, наконец, на корню проблему с появлением не читаемых текстов. Кроме этого существовала проблема языков подобных китайскому, где символов языка было гораздо больше, чем 256.

Юникод (Unicode) - универсальные кодировки UTF 8, 16 и 32

Эти тысячи знаков языковой группы юго-восточной Азии никак невозможно было описать в одном байте информации, который выделялся для кодирования символов в расширенных версиях ASCII. В результате был создан консорциум под названием Юникод (Unicode - Unicode Consortium) при сотрудничестве многих лидеров IT индустрии (те, кто производит софт, кто кодирует железо, кто создает шрифты), которые были заинтересованы в появлении универсальной кодировки текста. Первой вариацией, вышедшей под эгидой консорциума Юникод, была UTF 32 . Цифра в названии кодировки означает количество бит, которое используется для кодирования одного символа. 32 бита составляют 4 байта информации, которые понадобятся для кодирования одного единственного знака в новой универсальной кодировке UTF. В результате чего, один и тот же файл с текстом, закодированный в расширенной версии ASCII и в UTF-32, в последнем случае будет иметь размер (весить) в четыре раза больше. Это плохо, но зато теперь у нас появилась возможность закодировать с помощью ЮТФ число знаков, равное двум в тридцать второй степени (миллиарды символов , которые покроют любое реально необходимое значение с колоссальным запасом). Но многим странам с языками европейской группы такое огромное количество знаков использовать в кодировке вовсе и не было необходимости, однако при задействовании UTF-32 они ни за что ни про что получали четырехкратное увеличение веса текстовых документов, а в результате и увеличение объема интернет трафика и объема хранимых данных. Это много, и такое расточительство себе никто не мог позволить. В результате развития Юникода появилась UTF-16 , которая получилась настолько удачной, что была принята по умолчанию как базовое пространство для всех символов, которые у нас используются. Она использует два байта для кодирования одного знака. Давайте посмотрим, как это дело выглядит. В операционной системе Windows вы можете пройти по пути «Пуск» - «Программы» - «Стандартные» - «Служебные» - «Таблица символов». В результате откроется таблица с векторными формами всех установленных у вас в системе шрифтов. Если вы выберете в «Дополнительных параметрах» набор знаков Юникод, то сможете увидеть для каждого шрифта в отдельности весь ассортимент входящих в него символов. Кстати, щелкнув по любому из них, вы сможете увидеть его двухбайтовый код в формате UTF-16 , состоящий из четырех шестнадцатеричных цифр: Сколько символов можно закодировать в UTF-16 с помощью 16 бит? 65 536 (два в степени шестнадцать), и именно это число было принято за базовое пространство в Юникоде. Помимо этого существуют способы закодировать с помощью нее и около двух миллионов знаков, но ограничились расширенным пространством в миллион символов текста. Но даже эта удачная версия кодировки Юникода не принесла особого удовлетворения тем, кто писал, допустим, программы только на английском языке, ибо у них, после перехода от расширенной версии ASCII к UTF-16, вес документов увеличивался в два раза (один байт на один символ в Аски и два байта на тот же самый символ в ЮТФ-16). Вот именно для удовлетворения всех и вся в консорциуме Unicode было решено придумать кодировку переменной длины. Ее назвали UTF-8. Несмотря на восьмерку в названии, она действительно имеет переменную длину, т.е. каждый символ текста может быть закодирован в последовательность длиной от одного до шести байт. На практике же в UTF-8 используется только диапазон от одного до четырех байт, потому что за четырьмя байтами кода ничего уже даже теоретически не возможно представить. Все латинские знаки в ней кодируются в один байт, так же как и в старой доброй ASCII. Что примечательно, в случае кодирования только латиницы, даже те программы, которые не понимают Юникод, все равно прочитают то, что закодировано в ЮТФ-8. Т.е. базовая часть Аски просто перешла в это детище консорциума Unicode. Кириллические же знаки в UTF-8 кодируются в два байта, а, например, грузинские - в три байта. Консорциум Юникод после создания UTF 16 и 8 решил основную проблему - теперь у нас в шрифтах существует единое кодовое пространство . И теперь их производителям остается только исходя из своих сил и возможностей заполнять его векторными формами символов текста. В приведенной чуть выше «Таблице символов» видно, что разные шрифты поддерживают разное количество знаков. Некоторые насыщенные символами Юникода шрифты могут весить очень прилично. Но зато теперь они отличаются не тем, что они созданы для разных кодировок, а тем, что производитель шрифта заполнил или не заполнил единое кодовое пространство теми или иными векторными формами до конца.

Кракозябры вместо русских букв - как исправить

Давайте теперь посмотрим, как появляются вместо текста кракозябры или, другими словами, как выбирается правильная кодировка для русского текста. Собственно, она задается в той программе, в которой вы создаете или редактируете этот самый текст, или же код с использованием текстовых фрагментов. Для редактирования и создания текстовых файлов лично я использую очень хороший, на мой взгляд, Html и PHP редактор Notepad++ . Впрочем, он может подсвечивать синтаксис еще доброй сотни языков программирования и разметки, а также имеет возможность расширения с помощью плагинов. Читайте подробный обзор этой замечательной программы по приведенной ссылке. В верхнем меню Notepad++ есть пункт «Кодировки», где у вас будет возможность преобразовать уже имеющийся вариант в тот, который используется на вашем сайте по умолчанию:
В случае сайта на Joomla 1.5 и выше, а также в случае блога на WordPress следует во избежании появления кракозябров выбирать вариант UTF 8 без BOM . А что такое приставка BOM? Дело в том, что когда разрабатывали кодировку ЮТФ-16, зачем-то решили прикрутить к ней такую вещь, как возможность записывать код символа, как в прямой последовательности (например, 0A15), так и в обратной (150A). А для того, чтобы программы понимали, в какой именно последовательности читать коды, и был придуман BOM (Byte Order Mark или, другими словами, сигнатура), которая выражалась в добавлении трех дополнительных байтов в самое начало документов. В кодировке UTF-8 никаких BOM предусмотрено в консорциуме Юникод не было и поэтому добавление сигнатуры (этих самых пресловутых дополнительных трех байтов в начало документа) некоторым программам просто-напросто мешает читать код. Поэтому мы всегда при сохранении файлов в ЮТФ должны выбирать вариант без BOM (без сигнатуры). Таким образом, вы заранее обезопасите себя от вылезания кракозябров . Что примечательно, некоторые программы в Windows не умеют этого делать (не умеют сохранять текст в ЮТФ-8 без BOM), например, все тот же пресловутый Блокнот Windows. Он сохраняет документ в UTF-8, но все равно добавляет в его начало сигнатуру (три дополнительных байта). Причем эти байты будут всегда одни и те же - читать код в прямой последовательности. Но на серверах из-за этой мелочи может возникнуть проблема - вылезут кракозябры. Поэтому ни в коем случае не пользуйтесь обычным блокнотом Windows для редактирования документов вашего сайта, если не хотите появления кракозябров. Лучшим и наиболее простым вариантом я считаю уже упомянутый редактор Notepad++, который практически не имеет недостатков и состоит из одних лишь достоинств. В Notepad ++ при выборе кодировки у вас будет возможность преобразовать текст в кодировку UCS-2, которая по своей сути очень близка к стандарту Юникод. Также в Нотепаде можно будет закодировать текст в ANSI, т.е. применительно к русскому языку это будет уже описанная нами чуть выше Windows 1251. Откуда берется эта информация? Она прописана в реестре вашей операционной системы Windows - какую кодировку выбирать в случае ANSI, какую выбирать в случае OEM (для русского языка это будет CP866). Если вы установите на своем компьютере другой язык по умолчанию, то и эти кодировки будут заменены на аналогичные из разряда ANSI или OEM для того самого языка. После того, как вы в Notepad++ сохраните документ в нужной вам кодировке или же откроете документ с сайта для редактирования, то в правом нижнем углу редактора сможете увидеть ее название: Чтобы избежать кракозябров , кроме описанных выше действий, будет полезным прописать в его шапке исходного кода всех страниц сайта информацию об этой самой кодировке, чтобы на сервере или локальном хосте не возникло путаницы. Вообще, во всех языках гипертекстовой разметки кроме Html используется специальное объявление xml, в котором указывается кодировка текста. < ? xml version= "1.0" encoding= "windows-1251" ? > Прежде, чем начать разбирать код, браузер узнает, какая версия используется и как именно нужно интерпретировать коды символов этого языка. Но что примечательно, в случае, если вы сохраняете документ в принятом по умолчанию юникоде, то это объявление xml можно будет опустить (кодировка будет считаться UTF-8, если нет BOM или ЮТФ-16, если BOM есть). В случае же документа языка Html для указания кодировки используется элемент Meta , который прописывается между открывающим и закрывающим тегом Head: < head> . . . < meta charset= "utf-8" > . . . < / head> Эта запись довольно сильно отличается от принятой в стандарте в Html 4.01, но полностью соответствует новому внедряемому потихоньку стандарту Html 5, и она будет стопроцентно правильно понята любыми используемыми на текущий момент браузерами. По идее, элемент Meta с указание кодировки Html документа лучше будет ставить как можно выше в шапке документа , чтобы на момент встречи в тексте первого знака не из базовой ANSI (которые правильно прочитаются всегда и в любой вариации) браузер уже должен иметь информацию о том, как интерпретировать коды этих символов. Ссылка на перво

Юникод - это очень большой и сложный мир, ведь стандарт позволяет ни много ни мало представлять и работать в компьютере со всеми основными письменностями мира. Некоторые системы письма существуют уже более тысячи лет, причём многие из них развивались почти независимо друг от друга в разных уголках мира. Люди так много всего придумали и оно зачастую настолько непохоже друг на друга, что объединить всё это в единый стандарт было крайне непростой и амбициозной задачей.

Чтобы по-настоящему разобраться с Юникодом нужно хотя бы поверхностно представлять себе особенности всех письменностей, с которыми позволяет работать стандарт. Но так ли это нужно каждому разработчику? Мы скажем, что нет. Для использования Юникода в большинстве повседневных задач, достаточно владеть разумным минимумом сведений, а дальше углубляться в стандарт по мере необходимости.

В статье мы расскажем об основных принципах Юникода и осветим те важные практические вопросы, с которыми разработчики непременно столкнутся в своей повседневной работе.

Зачем понадобился Юникод?

До появления Юникода, почти повсеместно использовались однобайтные кодировки, в которых граница между самими символами, их представлением в памяти компьютера и отображением на экране была довольно условной. Если вы работали с тем или иным национальным языком, то в вашей системе были установлены соответствующие шрифты-кодировки, которые позволяли отрисовывать байты с диска на экране таким образом, чтобы они представляли смысл для пользователя.

Если вы распечатывали на принтере текстовый файл и на бумажной странице видели набор непонятных кракозябр, это означало, что в печатающее устройство не загружены соответствующие шрифты и оно интерпретирует байты не так, как вам бы этого хотелось.

У такого подхода в целом и однобайтовых кодировок в частности был ряд существенных недостатков:

  1. Можно было одновременно работать лишь с 256 символами, причём первые 128 были зарезервированы под латинские и управляющие символы, а во второй половине кроме символов национального алфавита нужно было найти место для символов псевдографики (╔ ╗).
  2. Шрифты были привязаны к конкретной кодировке.
  3. Каждая кодировка представляла свой набор символов и конвертация из одной в другую была возможна только с частичными потерями, когда отсутствующие символы заменялись на графически похожие.
  4. Перенос файлов между устройствами под управлением разных операционных систем был затруднителен. Нужно было либо иметь программу-конвертер, либо таскать вместе с файлом дополнительные шрифты. Существование Интернета каким мы его знаем было невозможным.
  5. В мире существуют неалфавитные системы письма (иероглифическая письменность), которые в однобайтной кодировке непредставимы в принципе.

Основные принципы Юникода

Все мы прекрасно понимаем, что компьютер ни о каких идеальных сущностях знать не знает, а оперирует битами и байтами. Но компьютерные системы пока создают люди, а не машины, и для нас с вами иногда бывает удобнее оперировать умозрительными концепциями, а затем уже переходить от абстрактного к конкретному.

Важно! Одном из центральных принципов в философии Юникода является чёткое разграничение между символами, их представлением в компьютере и их отображением на устройстве вывода.

Вводится понятие абстрактного юникод-символа, существующего исключительно в виде умозрительной концепции и договорённости между людьми, закреплённой стандартом. Каждому юникод-символу поставлено в соответствие неотрицательное целое число, именуемое его кодовой позицией (code point).

Так, например, юникод-символ U+041F - это заглавная кириллическая буква П. Существует несколько возможностей представления данного символа в памяти компьютера, ровно как и несколько тысяч способов отображения его на экране монитора. Но при этом П, оно и в Африке будет П или U+041F.

Это хорошо нам знакомая инкапсуляция или отделение интерфейса от реализации - концепция, отлично зарекомендовавшая себя в программировании.

Получается, что руководствуясь стандартом, любой текст можно закодировать в виде последовательности юникод-символов

Привет U+041F U+0440 U+0438 U+0432 U+0435 U+0442

записать на листочке, упаковать в конверт и переслать в любой конец Земли. Если там знают о существовании Юникода, то текст будет воспринят ими ровно так же, как и нами с вами. У них не будет ни малейших сомнений, что предпоследний символ - это именно кириллическая строчная е (U+0435), а не скажем латинская маленькая e (U+0065). Обратите внимание, что мы ни слова не сказали о байтовом представлении.

Кодовое пространство Юникода

Кодовое пространство Юникода состоит из 1 114 112 кодовых позиций в диапазоне от 0 до 10FFFF. Из них к девятой версии стандарта значения присвоены лишь 128 237. Часть пространства зарезервирована для частного использования и консорциум Юникода обещает никогда не присваивать значения позициям из этих специальный областей.

Ради удобства всё пространство поделено на 17 плоскостей (сейчас задействовано шесть их них). До недавнего времени было принято говорить, что скорее всего вам придётся столкнуться только с базовой многоязыковой плоскостью (Basic Multilingual Plane, BMP), включающей в себя юникод-символы от U+0000 до U+FFFF. (Забегая немного вперёд: символы из BMP представляются в UTF-16 двумя байтами, а не четырьмя). В 2016 году этот тезис уже вызывает сомнения. Так, например, популярные символы Эмодзи вполне могут встретиться в пользовательском сообщении и нужно уметь их корректно обрабатывать.

Кодировки

Если мы хотим переслать текст через Интернет, то нам потребуется закодировать последовательность юникод-символов в виде последовательности байтов.

Стандарт Юникода включает в себя описание ряда юникод-кодировок, например UTF-8 и UTF-16BE/UTF-16LE, которые позволяют кодировать всё пространство кодовых позиций. Конвертация между этими кодировками может свободно осуществляться без потерь информации.

Также никто не отменял однобайтные кодировки, но они позволяют закодировать свой индивидуальный и очень узкий кусочек юникод-спектра - 256 или менее кодовых позиций. Для таких кодировок существуют и доступны всем желающим таблицы, где каждому значению единственного байта сопоставлен юникод-символ (см. например CP1251.TXT). Несмотря на ограничения, однобайтные кодировки оказываются весьма практичными, если речь идёт о работе с большим массивом моноязыковой текстовой информации.

Из юникод-кодировок самой распространённой в Интернете является UTF-8 (она завоевала пальму первенства в 2008 году), главным образом благодаря её экономичности и прозрачной совместимости с семибитной ASCII. Латинские и служебные символы, основные знаки препинания и цифры - т.е. все символы семибитной ASCII - кодируются в UTF-8 одним байтом, тем же, что и в ASCII. Символы многих основных письменностей, не считая некоторых более редких иероглифических знаков, представлены в ней двумя или тремя байтами. Самая большая из определённых стандартом кодовых позиций - 10FFFF - кодируется четырьмя байтами.

Обратите внимание, что UTF-8 - это кодировка с переменной длиной кода. Каждый юникод-символ в ней представляется последовательностью кодовых квантов с минимальной длиной в один квант. Число 8 означает битовую длину кодового кванта (code unit) - 8 бит. Для семейства кодировок UTF-16 размер кодового кванта составляет, соответственно, 16 бит. Для UTF-32 - 32 бита.

Если вы пересылаете по сети HTML-страницу с кириллическим текстом, то UTF-8 может дать весьма ощутимый выигрыш, т.к. вся разметка, а также JavaScript и CSS блоки будут эффективно кодироваться одним байтом. К примеру главная страница Хабра в UTF-8 занимает 139Кб, а в UTF-16 уже 256Кб. Для сравнения, если использовать win-1251 с потерей возможности сохранять некоторые символы, то размер сократится всего на 11Кб.

Для хранения строковой информации в приложениях часто используются 16-битные юникод-кодировки в силу их простоты, а так же того факта, что символы основных мировых систем письма кодируются одним шестнадцатибитовым квантом. Так, например, Java для внутреннего представления строк успешно применяет UTF-16. Операционная система Windows внутри себя также использует UTF-16.

В любом случае, пока мы остаёмся в пространстве Юникода, не так уж и важно, как хранится строковая информация в рамках отдельного приложения. Если внутренний формат хранения позволяет корректно кодировать все миллион с лишним кодовых позиций и на границе приложения, например при чтении из файла или копировании в буфер обмена, не происходит потерь информации, то всё хорошо.

Для корректной интерпретации текста, прочитанного с диска или из сетевого сокета, необходимо сначала определить его кодировку. Это делается либо с использованием метаинформации, предоставленной пользователем, записанной в тексте или рядом с ним, либо определяется эвристически.

В сухом остатке

Информации много и имеет смысл привести краткую выжимку всего, что было написано выше:

  • Юникод постулирует чёткое разграничение между символами, их представлением в компьютере и их отображением на устройстве вывода.
  • Кодовое пространство Юникода состоит из 1 114 112 кодовых позиций в диапазоне от 0 до 10FFFF.
  • Базовая многоязыковая плоскость включает в себя юникод-символы от U+0000 до U+FFFF, которые кодируются в UTF-16 двумя байтами.
  • Любая юникод-кодировка позволяет закодировать всё пространство кодовых позиций Юникода и конвертация между различными такими кодировками осуществляется без потерь информации.
  • Однобайтные кодировки позволяют закодировать лишь небольшую часть юникод-спектра, но могут оказаться полезными при работе с большим объёмом моноязыковой информации.
  • Кодировки UTF-8 и UTF-16 обладают переменной длиной кода. В UTF-8 каждый юникод-символ может быть закодирован одним, двумя, тремя или четырьмя байтами. В UTF-16 - двумя или четырьмя байтами.
  • Внутренний формат хранения текстовой информации в рамках отдельного приложения может быть произвольным при условии корректной работы со всем пространством кодовых позиций Юникода и отсутствии потерь при трансграничной передаче данных.

Краткое замечание про кодирование

С термином кодирование может произойти некоторая путаница. В рамках Юникода кодирование происходит дважды. Первый раз кодируется набор символов Юникода (character set), в том смысле, что каждому юникод-символу ставится с соответствие кодовая позиция. В рамках этого процесса набор символов Юникода превращается в кодированный набор символов (coded character set). Второй раз последовательность юникод-символов преобразуется в строку байтов и этот процесс также называется кодирование.

В англоязычной терминологии существуют два разных глагола to code и to encode, но даже носители языка зачастую в них путаются. К тому же термин набор символов (character set или charset) используется в качестве синонима к термину кодированный набор символов (coded character set).

Всё это мы говорим к тому, что имеет смысл обращать внимание на контекст и различать ситуации, когда речь идёт о кодовой позиции абстрактного юникод-символа и когда речь идёт о его байтовом представлении.

В заключение

В Юникоде так много различных аспектов, что осветить всё в рамках одной статьи невозможно. Да и ненужно. Приведённой выше информации вполне достаточно, чтобы не путаться в основных принципах и работать с текстом в большинстве повседневных задач (читай: не выходя за рамки BMP). В следующих статьях мы расскажем о нормализации, дадим более полный исторический обзор развития кодировок, побеседуем о проблемах русскоязычной юникод-терминологии, а также сделаем материал о практических аспектах использования UTF-8 и UTF-16.

Юникод - это очень большой и сложный мир, ведь стандарт позволяет ни много ни мало представлять и работать в компьютере со всеми основными письменностями мира. Некоторые системы письма существуют уже более тысячи лет, причём многие из них развивались почти независимо друг от друга в разных уголках мира. Люди так много всего придумали и оно зачастую настолько непохоже друг на друга, что объединить всё это в единый стандарт было крайне непростой и амбициозной задачей.

Чтобы по-настоящему разобраться с Юникодом нужно хотя бы поверхностно представлять себе особенности всех письменностей, с которыми позволяет работать стандарт. Но так ли это нужно каждому разработчику? Мы скажем, что нет. Для использования Юникода в большинстве повседневных задач, достаточно владеть разумным минимумом сведений, а дальше углубляться в стандарт по мере необходимости.

В статье мы расскажем об основных принципах Юникода и осветим те важные практические вопросы, с которыми разработчики непременно столкнутся в своей повседневной работе.

Зачем понадобился Юникод?

До появления Юникода, почти повсеместно использовались однобайтные кодировки, в которых граница между самими символами, их представлением в памяти компьютера и отображением на экране была довольно условной. Если вы работали с тем или иным национальным языком, то в вашей системе были установлены соответствующие шрифты-кодировки, которые позволяли отрисовывать байты с диска на экране таким образом, чтобы они представляли смысл для пользователя.

Если вы распечатывали на принтере текстовый файл и на бумажной странице видели набор непонятных кракозябр, это означало, что в печатающее устройство не загружены соответствующие шрифты и оно интерпретирует байты не так, как вам бы этого хотелось.

У такого подхода в целом и однобайтовых кодировок в частности был ряд существенных недостатков:

  1. Можно было одновременно работать лишь с 256 символами, причём первые 128 были зарезервированы под латинские и управляющие символы, а во второй половине кроме символов национального алфавита нужно было найти место для символов псевдографики (╔ ╗).
  2. Шрифты были привязаны к конкретной кодировке.
  3. Каждая кодировка представляла свой набор символов и конвертация из одной в другую была возможна только с частичными потерями, когда отсутствующие символы заменялись на графически похожие.
  4. Перенос файлов между устройствами под управлением разных операционных систем был затруднителен. Нужно было либо иметь программу-конвертер, либо таскать вместе с файлом дополнительные шрифты. Существование Интернета каким мы его знаем было невозможным.
  5. В мире существуют неалфавитные системы письма (иероглифическая письменность), которые в однобайтной кодировке непредставимы в принципе.

Основные принципы Юникода

Все мы прекрасно понимаем, что компьютер ни о каких идеальных сущностях знать не знает, а оперирует битами и байтами. Но компьютерные системы пока создают люди, а не машины, и для нас с вами иногда бывает удобнее оперировать умозрительными концепциями, а затем уже переходить от абстрактного к конкретному.

Важно! Одном из центральных принципов в философии Юникода является чёткое разграничение между символами, их представлением в компьютере и их отображением на устройстве вывода.

Вводится понятие абстрактного юникод-символа, существующего исключительно в виде умозрительной концепции и договорённости между людьми, закреплённой стандартом. Каждому юникод-символу поставлено в соответствие неотрицательное целое число, именуемое его кодовой позицией (code point).

Так, например, юникод-символ U+041F - это заглавная кириллическая буква П. Существует несколько возможностей представления данного символа в памяти компьютера, ровно как и несколько тысяч способов отображения его на экране монитора. Но при этом П, оно и в Африке будет П или U+041F.

Это хорошо нам знакомая инкапсуляция или отделение интерфейса от реализации - концепция, отлично зарекомендовавшая себя в программировании.

Получается, что руководствуясь стандартом, любой текст можно закодировать в виде последовательности юникод-символов

Привет U+041F U+0440 U+0438 U+0432 U+0435 U+0442
записать на листочке, упаковать в конверт и переслать в любой конец Земли. Если там знают о существовании Юникода, то текст будет воспринят ими ровно так же, как и нами с вами. У них не будет ни малейших сомнений, что предпоследний символ - это именно кириллическая строчная е (U+0435), а не скажем латинская маленькая e (U+0065). Обратите внимание, что мы ни слова не сказали о байтовом представлении.

Хотя юникод-символы и называются символами, они далеко не всегда соответствуют символу в традиционно-наивном понимании, например букве, цифре, пунктуационному знаку или иероглифу. (Подробнее смотри под спойлером.)

Примеры различных юникод-символов

Существуют чисто технические юникод-символы, например:

  • U+0000: нулевой символ;
  • U+D800–U+DFFF: младшие и старшие суррогаты для технического представления кодовых позиций в диапазоне от 10000 до 10FFFF (читай: за пределами БМЯП/BMP) в семействе кодировок UTF-16;
  • и т.д.
Существуют пунктуационные маркеры, например U+200F: маркер смены направления письма справа-налево.

Существует целая когорта пробелов различной ширины и назначения (см. отличную хабра-статью: всё (или почти всё) о пробеле):

  • U+0020 (пробел);
  • U+00A0 (неразрывный пробел, в HTML);
  • U+2002 (полукруглая шпация или En Space);
  • U+2003 (круглая шпация или Em Space);
  • и т.д.
Существуют комбинируемые диакритические знаки (сombining diacritical marks) - всевозможные штрихи, точки, тильды и т.д., которые меняют/уточняют значение предыдущего знака и его начертание. Например:
  • U+0300 и U+0301: знаки основного (острого) и второстепенного (слабого) ударений;
  • U+0306: кратка (надстрочная дуга), как в й;
  • U+0303: надстрочная тильда;
  • и т.д.
Существует даже такая экзотика, как языковые тэги (U+E0001, U+E0020–U+E007E, и U+E007F), которые сейчас находятся в подвешенном состоянии. Они задумывались как возможность маркировать определённые участки текста как относящиеся к тому или иному варианту языку (скажем американский и британский вариант английского), что могло влиять на детали отображения текста.

Что такое символ, чем отличается графемный кластер (читай: воспринимаемое как единое целое изображение символа) от юникод-символа и от кодового кванта мы расскажем в следующий раз.

Кодовое пространство Юникода

Кодовое пространство Юникода состоит из 1 114 112 кодовых позиций в диапазоне от 0 до 10FFFF. Из них к девятой версии стандарта значения присвоены лишь 128 237. Часть пространства зарезервирована для частного использования и консорциум Юникода обещает никогда не присваивать значения позициям из этих специальный областей.

Ради удобства всё пространство поделено на 17 плоскостей (сейчас задействовано шесть их них). До недавнего времени было принято говорить, что скорее всего вам придётся столкнуться только с базовой многоязыковой плоскостью (Basic Multilingual Plane, BMP), включающей в себя юникод-символы от U+0000 до U+FFFF. (Забегая немного вперёд: символы из BMP представляются в UTF-16 двумя байтами, а не четырьмя). В 2016 году этот тезис уже вызывает сомнения. Так, например, популярные символы Эмодзи вполне могут встретиться в пользовательском сообщении и нужно уметь их корректно обрабатывать.

Кодировки

Если мы хотим переслать текст через Интернет, то нам потребуется закодировать последовательность юникод-символов в виде последовательности байтов.

Стандарт Юникода включает в себя описание ряда юникод-кодировок, например UTF-8 и UTF-16BE/UTF-16LE, которые позволяют кодировать всё пространство кодовых позиций. Конвертация между этими кодировками может свободно осуществляться без потерь информации.

Также никто не отменял однобайтные кодировки, но они позволяют закодировать свой индивидуальный и очень узкий кусочек юникод-спектра - 256 или менее кодовых позиций. Для таких кодировок существуют и доступны всем желающим таблицы, где каждому значению единственного байта сопоставлен юникод-символ (см. например CP1251.TXT). Несмотря на ограничения, однобайтные кодировки оказываются весьма практичными, если речь идёт о работе с большим массивом моноязыковой текстовой информации.

Из юникод-кодировок самой распространённой в Интернете является UTF-8 (она завоевала пальму первенства в 2008 году), главным образом благодаря её экономичности и прозрачной совместимости с семибитной ASCII. Латинские и служебные символы, основные знаки препинания и цифры - т.е. все символы семибитной ASCII - кодируются в UTF-8 одним байтом, тем же, что и в ASCII. Символы многих основных письменностей, не считая некоторых более редких иероглифических знаков, представлены в ней двумя или тремя байтами. Самая большая из определённых стандартом кодовых позиций - 10FFFF - кодируется четырьмя байтами.

Обратите внимание, что UTF-8 - это кодировка с переменной длиной кода. Каждый юникод-символ в ней представляется последовательностью кодовых квантов с минимальной длиной в один квант. Число 8 означает битовую длину кодового кванта (code unit) - 8 бит. Для семейства кодировок UTF-16 размер кодового кванта составляет, соответственно, 16 бит. Для UTF-32 - 32 бита.

Если вы пересылаете по сети HTML-страницу с кириллическим текстом, то UTF-8 может дать весьма ощутимый выигрыш, т.к. вся разметка, а также JavaScript и CSS блоки будут эффективно кодироваться одним байтом. К примеру главная страница Хабра в UTF-8 занимает 139Кб, а в UTF-16 уже 256Кб. Для сравнения, если использовать win-1251 с потерей возможности сохранять некоторые символы, то размер, по сравнению с UTF-8, сократится всего на 11Кб до 128Кб.

Для хранения строковой информации в приложениях часто используются 16-битные юникод-кодировки в силу их простоты, а так же того факта, что символы основных мировых систем письма кодируются одним шестнадцатибитовым квантом. Так, например, Java для внутреннего представления строк успешно применяет UTF-16. Операционная система Windows внутри себя также использует UTF-16.

В любом случае, пока мы остаёмся в пространстве Юникода, не так уж и важно, как хранится строковая информация в рамках отдельного приложения. Если внутренний формат хранения позволяет корректно кодировать все миллион с лишним кодовых позиций и на границе приложения, например при чтении из файла или копировании в буфер обмена, не происходит потерь информации, то всё хорошо.

Для корректной интерпретации текста, прочитанного с диска или из сетевого сокета, необходимо сначала определить его кодировку. Это делается либо с использованием метаинформации, предоставленной пользователем, записанной в тексте или рядом с ним, либо определяется эвристически.

В сухом остатке

Информации много и имеет смысл привести краткую выжимку всего, что было написано выше:
  • Юникод постулирует чёткое разграничение между символами, их представлением в компьютере и их отображением на устройстве вывода.
  • Юникод-символы не всегда соответствуют символу в традиционно-наивном понимании, например букве, цифре, пунктуационному знаку или иероглифу.
  • Кодовое пространство Юникода состоит из 1 114 112 кодовых позиций в диапазоне от 0 до 10FFFF.
  • Базовая многоязыковая плоскость включает в себя юникод-символы от U+0000 до U+FFFF, которые кодируются в UTF-16 двумя байтами.
  • Любая юникод-кодировка позволяет закодировать всё пространство кодовых позиций Юникода и конвертация между различными такими кодировками осуществляется без потерь информации.
  • Однобайтные кодировки позволяют закодировать лишь небольшую часть юникод-спектра, но могут оказаться полезными при работе с большим объёмом моноязыковой информации.
  • Кодировки UTF-8 и UTF-16 обладают переменной длиной кода. В UTF-8 каждый юникод-символ может быть закодирован одним, двумя, тремя или четырьмя байтами. В UTF-16 - двумя или четырьмя байтами.
  • Внутренний формат хранения текстовой информации в рамках отдельного приложения может быть произвольным при условии корректной работы со всем пространством кодовых позиций Юникода и отсутствии потерь при трансграничной передаче данных.

Краткое замечание про кодирование

С термином кодирование может произойти некоторая путаница. В рамках Юникода кодирование происходит дважды. Первый раз кодируется набор символов Юникода (character set), в том смысле, что каждому юникод-символу ставится с соответствие кодовая позиция. В рамках этого процесса набор символов Юникода превращается в кодированный набор символов (coded character set). Второй раз последовательность юникод-символов преобразуется в строку байтов и этот процесс также называется кодирование.

В англоязычной терминологии существуют два разных глагола to code и to encode, но даже носители языка зачастую в них путаются. К тому же термин набор символов (character set или charset) используется в качестве синонима к термину кодированный набор символов (coded character set).

Всё это мы говорим к тому, что имеет смысл обращать внимание на контекст и различать ситуации, когда речь идёт о кодовой позиции абстрактного юникод-символа и когда речь идёт о его байтовом представлении.

В заключение

В Юникоде так много различных аспектов, что осветить всё в рамках одной статьи невозможно. Да и ненужно. Приведённой выше информации вполне достаточно, чтобы не путаться в основных принципах и работать с текстом в большинстве повседневных задач (читай: не выходя за рамки BMP). В следующих статьях мы расскажем о нормализации, дадим более полный исторический обзор развития кодировок, побеседуем о проблемах русскоязычной юникод-терминологии, а также сделаем материал о практических аспектах использования UTF-8 и UTF-16.

Юникод - это очень большой и сложный мир, ведь стандарт позволяет ни много ни мало представлять и работать в компьютере со всеми основными письменностями мира. Некоторые системы письма существуют уже более тысячи лет, причём многие из них развивались почти независимо друг от друга в разных уголках мира. Люди так много всего придумали и оно зачастую настолько непохоже друг на друга, что объединить всё это в единый стандарт было крайне непростой и амбициозной задачей.

Чтобы по-настоящему разобраться с Юникодом нужно хотя бы поверхностно представлять себе особенности всех письменностей, с которыми позволяет работать стандарт. Но так ли это нужно каждому разработчику? Мы скажем, что нет. Для использования Юникода в большинстве повседневных задач, достаточно владеть разумным минимумом сведений, а дальше углубляться в стандарт по мере необходимости.

В статье мы расскажем об основных принципах Юникода и осветим те важные практические вопросы, с которыми разработчики непременно столкнутся в своей повседневной работе.

Зачем понадобился Юникод?

До появления Юникода, почти повсеместно использовались однобайтные кодировки, в которых граница между самими символами, их представлением в памяти компьютера и отображением на экране была довольно условной. Если вы работали с тем или иным национальным языком, то в вашей системе были установлены соответствующие шрифты-кодировки, которые позволяли отрисовывать байты с диска на экране таким образом, чтобы они представляли смысл для пользователя.

Если вы распечатывали на принтере текстовый файл и на бумажной странице видели набор непонятных кракозябр, это означало, что в печатающее устройство не загружены соответствующие шрифты и оно интерпретирует байты не так, как вам бы этого хотелось.

У такого подхода в целом и однобайтовых кодировок в частности был ряд существенных недостатков:

  1. Можно было одновременно работать лишь с 256 символами, причём первые 128 были зарезервированы под латинские и управляющие символы, а во второй половине кроме символов национального алфавита нужно было найти место для символов псевдографики (╔ ╗).
  2. Шрифты были привязаны к конкретной кодировке.
  3. Каждая кодировка представляла свой набор символов и конвертация из одной в другую была возможна только с частичными потерями, когда отсутствующие символы заменялись на графически похожие.
  4. Перенос файлов между устройствами под управлением разных операционных систем был затруднителен. Нужно было либо иметь программу-конвертер, либо таскать вместе с файлом дополнительные шрифты. Существование Интернета каким мы его знаем было невозможным.
  5. В мире существуют неалфавитные системы письма (иероглифическая письменность), которые в однобайтной кодировке непредставимы в принципе.

Основные принципы Юникода

Все мы прекрасно понимаем, что компьютер ни о каких идеальных сущностях знать не знает, а оперирует битами и байтами. Но компьютерные системы пока создают люди, а не машины, и для нас с вами иногда бывает удобнее оперировать умозрительными концепциями, а затем уже переходить от абстрактного к конкретному.

Важно! Одном из центральных принципов в философии Юникода является чёткое разграничение между символами, их представлением в компьютере и их отображением на устройстве вывода.

Вводится понятие абстрактного юникод-символа, существующего исключительно в виде умозрительной концепции и договорённости между людьми, закреплённой стандартом. Каждому юникод-символу поставлено в соответствие неотрицательное целое число, именуемое его кодовой позицией (code point).

Так, например, юникод-символ U+041F - это заглавная кириллическая буква П. Существует несколько возможностей представления данного символа в памяти компьютера, ровно как и несколько тысяч способов отображения его на экране монитора. Но при этом П, оно и в Африке будет П или U+041F.

Это хорошо нам знакомая инкапсуляция или отделение интерфейса от реализации - концепция, отлично зарекомендовавшая себя в программировании.

Получается, что руководствуясь стандартом, любой текст можно закодировать в виде последовательности юникод-символов

Привет U+041F U+0440 U+0438 U+0432 U+0435 U+0442
записать на листочке, упаковать в конверт и переслать в любой конец Земли. Если там знают о существовании Юникода, то текст будет воспринят ими ровно так же, как и нами с вами. У них не будет ни малейших сомнений, что предпоследний символ - это именно кириллическая строчная е (U+0435), а не скажем латинская маленькая e (U+0065). Обратите внимание, что мы ни слова не сказали о байтовом представлении.

Хотя юникод-символы и называются символами, они далеко не всегда соответствуют символу в традиционно-наивном понимании, например букве, цифре, пунктуационному знаку или иероглифу. (Подробнее смотри под спойлером.)

Примеры различных юникод-символов

Существуют чисто технические юникод-символы, например:

  • U+0000: нулевой символ;
  • U+D800–U+DFFF: младшие и старшие суррогаты для технического представления кодовых позиций в диапазоне от 10000 до 10FFFF (читай: за пределами БМЯП/BMP) в семействе кодировок UTF-16;
  • и т.д.
Существуют пунктуационные маркеры, например U+200F: маркер смены направления письма справа-налево.

Существует целая когорта пробелов различной ширины и назначения (см. отличную хабра-статью: ):

  • U+0020 (пробел);
  • U+00A0 (неразрывный пробел, в HTML);
  • U+2002 (полукруглая шпация или En Space);
  • U+2003 (круглая шпация или Em Space);
  • и т.д.
Существуют комбинируемые диакритические знаки (сombining diacritical marks) - всевозможные штрихи, точки, тильды и т.д., которые меняют/уточняют значение предыдущего знака и его начертание. Например:
  • U+0300 и U+0301: знаки основного (острого) и второстепенного (слабого) ударений;
  • U+0306: кратка (надстрочная дуга), как в й;
  • U+0303: надстрочная тильда;
  • и т.д.
Существует даже такая экзотика, как языковые тэги (U+E0001, U+E0020–U+E007E, и U+E007F), которые сейчас находятся в подвешенном состоянии. Они задумывались как возможность маркировать определённые участки текста как относящиеся к тому или иному варианту языку (скажем американский и британский вариант английского), что могло влиять на детали отображения текста.

Что такое символ, чем отличается графемный кластер (читай: воспринимаемое как единое целое изображение символа) от юникод-символа и от кодового кванта мы расскажем в следующий раз.

Кодовое пространство Юникода

Кодовое пространство Юникода состоит из 1 114 112 кодовых позиций в диапазоне от 0 до 10FFFF. Из них к девятой версии стандарта значения присвоены лишь 128 237. Часть пространства зарезервирована для частного использования и консорциум Юникода обещает никогда не присваивать значения позициям из этих специальный областей.

Ради удобства всё пространство поделено на 17 плоскостей (сейчас задействовано шесть их них). До недавнего времени было принято говорить, что скорее всего вам придётся столкнуться только с базовой многоязыковой плоскостью (Basic Multilingual Plane, BMP), включающей в себя юникод-символы от U+0000 до U+FFFF. (Забегая немного вперёд: символы из BMP представляются в UTF-16 двумя байтами, а не четырьмя). В 2016 году этот тезис уже вызывает сомнения. Так, например, популярные символы Эмодзи вполне могут встретиться в пользовательском сообщении и нужно уметь их корректно обрабатывать.

Кодировки

Если мы хотим переслать текст через Интернет, то нам потребуется закодировать последовательность юникод-символов в виде последовательности байтов.

Стандарт Юникода включает в себя описание ряда юникод-кодировок, например UTF-8 и UTF-16BE/UTF-16LE, которые позволяют кодировать всё пространство кодовых позиций. Конвертация между этими кодировками может свободно осуществляться без потерь информации.

Также никто не отменял однобайтные кодировки, но они позволяют закодировать свой индивидуальный и очень узкий кусочек юникод-спектра - 256 или менее кодовых позиций. Для таких кодировок существуют и доступны всем желающим таблицы, где каждому значению единственного байта сопоставлен юникод-символ (см. например CP1251.TXT). Несмотря на ограничения, однобайтные кодировки оказываются весьма практичными, если речь идёт о работе с большим массивом моноязыковой текстовой информации.

Из юникод-кодировок самой распространённой в Интернете является UTF-8 (она завоевала пальму первенства в 2008 году), главным образом благодаря её экономичности и прозрачной совместимости с семибитной ASCII. Латинские и служебные символы, основные знаки препинания и цифры - т.е. все символы семибитной ASCII - кодируются в UTF-8 одним байтом, тем же, что и в ASCII. Символы многих основных письменностей, не считая некоторых более редких иероглифических знаков, представлены в ней двумя или тремя байтами. Самая большая из определённых стандартом кодовых позиций - 10FFFF - кодируется четырьмя байтами.

Обратите внимание, что UTF-8 - это кодировка с переменной длиной кода. Каждый юникод-символ в ней представляется последовательностью кодовых квантов с минимальной длиной в один квант. Число 8 означает битовую длину кодового кванта (code unit) - 8 бит. Для семейства кодировок UTF-16 размер кодового кванта составляет, соответственно, 16 бит. Для UTF-32 - 32 бита.

Если вы пересылаете по сети HTML-страницу с кириллическим текстом, то UTF-8 может дать весьма ощутимый выигрыш, т.к. вся разметка, а также JavaScript и CSS блоки будут эффективно кодироваться одним байтом. К примеру главная страница Хабра в UTF-8 занимает 139Кб, а в UTF-16 уже 256Кб. Для сравнения, если использовать win-1251 с потерей возможности сохранять некоторые символы, то размер, по сравнению с UTF-8, сократится всего на 11Кб до 128Кб.

Для хранения строковой информации в приложениях часто используются 16-битные юникод-кодировки в силу их простоты, а так же того факта, что символы основных мировых систем письма кодируются одним шестнадцатибитовым квантом. Так, например, Java для внутреннего представления строк успешно применяет UTF-16. Операционная система Windows внутри себя также использует UTF-16.

В любом случае, пока мы остаёмся в пространстве Юникода, не так уж и важно, как хранится строковая информация в рамках отдельного приложения. Если внутренний формат хранения позволяет корректно кодировать все миллион с лишним кодовых позиций и на границе приложения, например при чтении из файла или копировании в буфер обмена, не происходит потерь информации, то всё хорошо.

Для корректной интерпретации текста, прочитанного с диска или из сетевого сокета, необходимо сначала определить его кодировку. Это делается либо с использованием метаинформации, предоставленной пользователем, записанной в тексте или рядом с ним, либо определяется эвристически.

В сухом остатке

Информации много и имеет смысл привести краткую выжимку всего, что было написано выше:
  • Юникод постулирует чёткое разграничение между символами, их представлением в компьютере и их отображением на устройстве вывода.
  • Юникод-символы не всегда соответствуют символу в традиционно-наивном понимании, например букве, цифре, пунктуационному знаку или иероглифу.
  • Кодовое пространство Юникода состоит из 1 114 112 кодовых позиций в диапазоне от 0 до 10FFFF.
  • Базовая многоязыковая плоскость включает в себя юникод-символы от U+0000 до U+FFFF, которые кодируются в UTF-16 двумя байтами.
  • Любая юникод-кодировка позволяет закодировать всё пространство кодовых позиций Юникода и конвертация между различными такими кодировками осуществляется без потерь информации.
  • Однобайтные кодировки позволяют закодировать лишь небольшую часть юникод-спектра, но могут оказаться полезными при работе с большим объёмом моноязыковой информации.
  • Кодировки UTF-8 и UTF-16 обладают переменной длиной кода. В UTF-8 каждый юникод-символ может быть закодирован одним, двумя, тремя или четырьмя байтами. В UTF-16 - двумя или четырьмя байтами.
  • Внутренний формат хранения текстовой информации в рамках отдельного приложения может быть произвольным при условии корректной работы со всем пространством кодовых позиций Юникода и отсутствии потерь при трансграничной передаче данных.

Краткое замечание про кодирование

С термином кодирование может произойти некоторая путаница. В рамках Юникода кодирование происходит дважды. Первый раз кодируется набор символов Юникода (character set), в том смысле, что каждому юникод-символу ставится с соответствие кодовая позиция. В рамках этого процесса набор символов Юникода превращается в кодированный набор символов (coded character set). Второй раз последовательность юникод-символов преобразуется в строку байтов и этот процесс также называется кодирование.

В англоязычной терминологии существуют два разных глагола to code и to encode, но даже носители языка зачастую в них путаются. К тому же термин набор символов (character set или charset) используется в качестве синонима к термину кодированный набор символов (coded character set).

Всё это мы говорим к тому, что имеет смысл обращать внимание на контекст и различать ситуации, когда речь идёт о кодовой позиции абстрактного юникод-символа и когда речь идёт о его байтовом представлении.

В заключение

В Юникоде так много различных аспектов, что осветить всё в рамках одной статьи невозможно. Да и ненужно. Приведённой выше информации вполне достаточно, чтобы не путаться в основных принципах и работать с текстом в большинстве повседневных задач (читай: не выходя за рамки BMP). В следующих статьях мы расскажем о нормализации, дадим более полный исторический обзор развития кодировок, побеседуем о проблемах русскоязычной юникод-терминологии, а также сделаем материал о практических аспектах использования UTF-8 и UTF-16.

Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: