Аналого-цифровое преобразование для начинающих. Аналого-цифровой и цифро-аналоговый преобразователи

Министерство образования и науки Украины

Одесская национальная морская академия

Кафедра морской электроники

по дисциплине «Системы сбора и обработки телеметрической информации»

«Цифро-аналоговые преобразователи»

Выполнил:

к-т ФЭМ и РЭ

группы 3131

Струков С.М.

Проверил: ст. преподаватель

Куделькин И.Н.

Одесса – 2007


1. Введение

2. Общие сведения

3. Последовательные ЦАП

4. Параллельные ЦАП

5. Применение ЦАП

6. Параметры ЦАП

7. Список использованной литературы

ВВЕДЕНИЕ

Последние десятилетия обусловлены широким внедрением в отрасли народного хозяйства средств микроэлектроники и вычислительной техники, обмен информацией с которыми обеспечивается линейными аналоговыми и цифровыми преобразователями (АЦП и ЦАП).

Современный этап характеризуется больших и сверхбольших интегральных схем ЦАП и АЦП обладающими высокими эксплуатационными параметрами: быстродействием, малыми погрешностями, многоразрядностью. Включение БИС ЦАП и АЦП единым, функционально законченным блоком сильно упростило внедрение их в приборы и установки, используемые как в научных исследованиях, так и в промышленности и дало возможность быстрого обмена информацией между аналоговыми и цифровыми устройствами.


Общие сведения

Цифро-аналоговый преобразователь (ЦАП) предназначен для преобразования числа, определенного, как правило, в виде двоичного кода, в напряжение или ток, пропорциональные значению цифрового кода. Схемотехника цифро-аналоговых преобразователей весьма разнообразна. На рис. 1 представлена классификационная схема ЦАП по схемотехническим признакам. Кроме этого, ИМС цифро-аналоговых преобразователей классифицируются по следующим признакам:

o По виду выходного сигнала: с токовым выходом и выходом в виде напряжения.

o По типу цифрового интерфейса: с последовательным вводом и с параллельным вводом входного кода.

o По числу ЦАП на кристалле: одноканальные и многоканальные.

o По быстродействию: умеренного и высокого быстродействия.

Рис. 1. Классификация ЦАП

ПОСЛЕДОВАТЕЛЬНЫЕ ЦАП

ЦАП с широтно-импульсной модуляцией

Очень часто ЦАП входит в состав микропроцессорных систем. В этом случае, если не требуется высокое быстродействие, цифро-аналоговое преобразование может быть очень просто осуществлено с помощью широтно-импульсной модуляции (ШИМ). Схема ЦАП с ШИМ приведена на рис. 1а.

Рис. 1. ЦАП с широтно-импульсной модуляцией

Наиболее просто организуется цифро-аналоговое преобразование в том случае, если микроконтроллер имеет встроенную функцию широтно-импульсного преобразования (например, AT90S8515 фирмы Atmel или 87С51GB фирмы Intel). Выход ШИМ управляет ключом S . В зависимости от заданной разрядности преобразования (для контроллера AT90S8515 возможны режимы 8, 9 и 10 бит) контроллер с помощью своего таймера/счетчика формирует последовательность импульсов, относительная длительность которых g =t и /Т определяется соотношением

где N - разрядность преобразования, а D - преобразуемый код. Фильтр нижних частот сглаживает импульсы, выделяя среднее значение напряжения. В результате выходное напряжение преобразователя

Рассмотренная схема обеспечивает почти идеальную линейность преобразования, не содержит прецизионных элементов (за исключением источника опорного напряжения). Основной ее недостаток - низкое быстродействие.

Последовательный ЦАП на переключаемых конденсаторах

Рассмотренная выше схема ЦАП с ШИМ вначале преобразует цифровой код во временной интервал, который формируется с помощью двоичного счетчика квант за квантом, поэтому для получения N -разрядного преобразования необходимы 2 N временных квантов (тактов). Схема последовательного ЦАП, приведенная на рис. 2, позволяет выполнить цифро-аналоговое преобразование за значительно меньшее число тактов.

В этой схеме емкости конденсаторов С 1 и С 2 равны. Перед началом цикла преобразования конденсатор С 2 разряжается ключом S 4 . Входное двоичное слово задается в виде последовательного кода. Его преобразование осуществляется последовательно, начиная с младшего разряда d 0 . Каждый такт преобразования состоит из двух полутактов. В первом полутакте конденсатор С 1 заряжается до опорного напряжения U оп при d 0 =1 посредством замыкания ключа S 1 или разряжается до нуля при d 0 =0 путем замыкания ключа S 2 . Во втором полутакте при разомкнутых ключах S 1 , S 2 и S 4 замыкается ключ S 3 , что вызывает деление заряда пополам между С 1 и С 2 . В результате получаем

U 1 (0)=U вых (0)=(d 0 /2)U оп

Пока на конденсаторе С 2 сохраняется заряд, процедура заряда конденсатора С 1 должна быть повторена для следующего разряда d 1 входного слова. После нового цикла перезарядки напряжение на конденсаторах будет

Точно также выполняется преобразование для остальных разрядов слова. В результате для N -разрядного ЦАП выходное напряжение будет равно

Если требуется сохранять результат преобразования сколь-нибудь продолжительное время, к выходу схемы следует подключить УВХ. После окончания цикла преобразования следует провести цикл выборки, перевести УВХ в режим хранения и вновь начать преобразование.

Таким образом, представленная схема выполняет преобразование входного кода за 2N квантов, что значительно меньше, чем у ЦАП с ШИМ. Здесь требуется только два согласованных конденсатора небольшой емкости. Конфигурация аналоговой части схемы не зависит от разрядности преобразуемого кода. Однако по быстродействию последовательный ЦАП значительно уступает параллельным цифро-аналоговым преобразователям, что ограничивает область его применения.

Большинство схем параллельных ЦАП основано на суммировании токов, сила каждого из которых пропорциональна весу цифрового двоичного разряда, причем должны суммироваться только токи разрядов, значения которых равны 1. Пусть, например, требуется преобразовать двоичный четырехразрядный код в аналоговый сигнал тока. У четвертого, старшего значащего разряда (СЗР) вес будет равен 2 3 =8, у третьего разряда - 2 2 =4, у второго - 2 1 =2 и у младшего (МЗР) - 2 0 =1. Если вес МЗР I МЗР =1 мА, то I СЗР =8 мА, а максимальный выходной ток преобразователя I вых.макс =15 мА и соответствует коду 1111 2 . Понятно, что коду 1001 2 , например, будет соответствовать I вых =9 мА и т.д. Следовательно, требуется построить схему, обеспечивающую генерацию и коммутацию по заданным законам точных весовых токов. Простейшая схема, реализующая указанный принцип, приведена на рис. 3.

Сопротивления резисторов выбирают так, чтобы при замкнутых ключах через них протекал ток, соответствующий весу разряда. Ключ должен быть замкнут тогда, когда соответствующий ему бит входного слова равен единице. Выходной ток определяется соотношением


При высокой разрядности ЦАП токозадающие резисторы должны быть согласованы с высокой точностью. Наиболее жесткие требования по точности предъявляются к резисторам старших разрядов, поскольку разброс токов в них не должен превышать тока младшего разряда. Поэтому разброс сопротивления в k-м разряде должен быть меньше, чем

Из этого условия следует, что разброс сопротивления резистора, например, в четвертом разряде не должен превышать 3%, а в 10-м разряде - 0,05% и т.д.

Рассмотренная схема при всей ее простоте обладает целым букетом недостатков. Во-первых, при различных входных кодах ток, потребляемый от источника опорного напряжения (ИОН), будет различным, а это повлияет на величину выходного напряжения ИОН. Во-вторых, значения сопротивлений весовых резисторов могут различаться в тысячи раз, а это делает весьма затруднительной реализацию этих резисторов в полупроводниковых ИМС. Кроме того, сопротивление резисторов старших разрядов в многоразрядных ЦАП может быть соизмеримым с сопротивлением замкнутого ключа, а это приведет к погрешности преобразования. В-третьих, в этой схеме к разомкнутым ключам прикладывается значительное напряжение, что усложняет их построение.

Эти недостатки устранены в схеме ЦАП AD7520 (отечественный аналог 572ПА1), разработанном фирмой Analog Devices в 1973 году, которая в настоящее время является по существу промышленным стандартом (по ней выполнены многие серийные модели ЦАП). Указанная схема представлена на рис. 4. В качестве ключей здесь используются МОП-транзисторы.


Рис. 4. Схема ЦАП с переключателями и матрицей постоянного импеданса

В этой схеме задание весовых коэффициентов ступеней преобразователя осуществляют посредством последовательного деления опорного напряжения с помощью резистивной матрицы постоянного импеданса. Основной элемент такой матрицы представляет собой делитель напряжения (рис. 5), который должен удовлетворять следующему условию: если он нагружен на сопротивление R н, то его входное сопротивление R вх также должно принимать значение R н. Коэффициент ослабления цепи a=U 2 /U 1 при этой нагрузке должен иметь заданное значение. При выполнении этих условий получаем следующие выражения для сопротивлений:

При двоичном кодировании a =0,5. Если положить R н =2R, то R s =R и R p =2R в соответствии с рис.4.

Поскольку в любом положении переключателей S k они соединяют нижние выводы резисторов с общей шиной схемы, источник опорного напряжения нагружен на постоянное входное сопротивление R вх =R. Это гарантирует неизменность опорного напряжения при любом входном коде ЦАП.

Согласно рис. 4, выходные токи схемы определяются соотношениями

а входной ток

Поскольку нижние выводы резисторов 2R матрицы при любом состоянии переключателей S k соединены с общей шиной схемы через низкое сопротивление замкнутых ключей, напряжения на ключах всегда небольшие, в пределах нескольких милливольт. Это упрощает построение ключей и схем управления ими и позволяет использовать опорное напряжение из широкого диапазона, в том числе и различной полярности. Поскольку выходной ток ЦАП зависит от U оп линейно (см. (8)), преобразователи такого типа можно использовать для умножения аналогового сигнала (подавая его на вход опорного напряжения) на цифровой код. Такие ЦАП называют перемножающими (MDAC).

Точность этой схемы снижает то обстоятельство, что для ЦАП, имеющих высокую разрядность, необходимо согласовывать сопротивления R 0 ключей с разрядными токами. Особенно это важно для ключей старших разрядов. Например, в 10-разрядном ЦАП AD7520 ключевые МОП-транзисторы шести старших разрядов сделаны разными по площади и их сопротивление R 0 нарастает согласно двоичному коду (20, 40, 80, : , 640 Ом). Таким способом уравниваются (до 10 мВ) падения напряжения на ключах первых шести разрядов, что обеспечивает монотонность и линейность переходной характеристики ЦАП. 12-разрядный ЦАП 572ПА2 имеет дифференциальную нелинейность до 0,025% (1 МЗР).

ЦАП на МОП ключах имеют относительно низкое быстродействие из-за большой входной емкости МОП-ключей. Тот же 572ПА2 имеет время установления выходного тока при смене входного кода от 000...0 до 111...1, равное 15 мкс. 12-разрядный DAC7611 фирмы Burr-Braun имеет время установления выходного напряжения 10 мкс. В то же время ЦАП на МОП-ключах имеют минимальную мощность потребления. Тот же DAC7611 потребляет всего 2,5 мВт. В последнее время появились модели ЦАП рассмотренного выше типа с более высоким быстродействием. Так 12-разрядный AD7943 имеет время установления тока 0,6 мкс и потребляемую мощность всего 25 мкВт. Малое собственное потребление позволяет запитывать такие микромощные ЦАП прямо от источника опорного напряжения. При этом они могут даже не иметь вывода для подключения ИОН, например, AD5321.

ЦАП на источниках тока

ЦАП на источниках тока обладают более высокой точностью. В отличие от предыдущего варианта, в котором весовые токи формируются резисторами сравнительно небольшого сопротивления и, как следствие, зависят от сопротивления ключей и нагрузки, в данном случае весовые токи обеспечиваются транзисторными источниками тока, имеющими высокое динамическое сопротивление. Упрощенная схема ЦАП на источниках тока приведена на рис. 6.


Рис. 6. Схема ЦАП на источниках тока

Весовые токи формируются с помощью резистивной матрицы. Потенциалы баз транзисторов одинаковы, а чтобы были равны и потенциалы эмиттеров всех транзисторов, площади их эмиттеров делают различными в соответствии с весовыми коэффициентами. Правый резистор матрицы подключен не к общей шине, как на схеме рис. 4, а к двум параллельно включенным одинаковым транзисторам VT 0 и VT н, в результате чего ток через VT 0 равен половине тока через VT 1 . Входное напряжение для резистивной матрицы создается с помощью опорного транзистора VT оп и операционного усилителя ОУ1, выходное напряжение которого устанавливается таким, что коллекторный ток транзистора VT оп принимает значение I оп. Выходной ток для N-разрядного ЦАП

Характерными примерами ЦАП на переключателях тока с биполярными транзисторами в качестве ключей являются 12-разрядный 594ПА1 с временем установления 3,5 мкс и погрешностью линейности не более 0,012% и 12-разрядный AD565, имеющий время установления 0,2 мкс при такой же погрешности линейности. Еще более высоким быстродействием обладает AD668, имеющий время установления 90 нс и ту же погрешность линейности. Из новых разработок можно отметить 14-разрядный AD9764 со временем установления 35 нс и погрешностью линейности не более 0,01%. В качестве переключателей тока S k часто используются биполярные дифференциальные каскады, в которых транзисторы работают в активном режиме. Это позволяет сократить время установления до единиц наносекунд. Схема переключателя тока на дифференциальных усилителях приведена на рис. 7.

Дифференциальные каскады VT 1 -VT 3 и VT" 1 -VT" 3 образованы из стандартных ЭСЛ вентилей. Ток I k , протекающий через вывод коллектора выходного эмиттерного повторителя является выходным током ячейки. Если на цифровой вход D k подается напряжение высокого уровня, то транзистор VT 3 открывается, а транзистор VT" 3 закрывается. Выходной ток определяется выражением

Точность значительно повышается, если резистор R э заменить источником постоянного тока, как в схеме на рис. 6. Благодаря симметрии схемы существует возможность формирования двух выходных токов - прямого и инверсного. Наиболее быстродействующие модели подобных ЦАП имеют входные ЭСЛ-уровни. Примером может служить 12-ти разрядный МАХ555, имеющий время установления 4 нс до уровня 0,1%. Поскольку выходные сигналы таких ЦАП захватывают радиочастотный диапазон, они имеют выходное сопротивление 50 или 75 ом, которое должно быть согласовано с волновым сопротивлением кабеля, подключаемого к выходу преобразователя.


ПРИМЕНЕНИЕ ЦАП

Схемы применения цифро-аналоговых преобразователей относятся не только к области преобразования код - аналог. Пользуясь их свойствами можно определять произведения двух или более сигналов, строить делители функций, аналоговые звенья, управляемые от микроконтроллеров, такие как аттенюаторы, интеграторы. Важной областью применения ЦАП являются также генераторы сигналов, в том числе сигналов произвольной формы. Ниже рассмотрены некоторые схемы обработки сигналов, включающие ЦА-преобразователи.

Обработка чисел, имеющих знак

До сих пор при описании цифро-аналоговых преобразователей входная цифровая информация представлялась в виде чисел натурального ряда (униполярных). Обработка целых чисел (биполярных) имеет определенные особенности. Обычно двоичные целые числа представляются с использованием дополнительного кода. Таким путем с помощью восьми разрядов можно представить числа в диапазоне от -128 до +127. При вводе чисел в ЦАП этот диапазон чисел сдвигают до 0...255 путем прибавления 128. Числа, большие 128, при этом считаются положительными, а числа, меньшие 128, - отрицательными. Среднее число 128 соответствует нулю. Такое представление чисел со знаком, называется смещенным кодом. Прибавление числа, составляющего половину полной шкалы данной разрядности (в нашем примере это 128), можно легко выполнить путем инверсии старшего (знакового) разряда. Соответствие рассмотренных кодов иллюстрируется табл. 1.


Таблица 1

Связь между цифровыми и аналоговыми величинами

Чтобы получить выходной сигнал с правильным знаком, необходимо осуществить обратный сдвиг путем вычитания тока или напряжения, составляющего половину шкалы преобразователя. Для различных типов ЦАП это можно сделать разными способами. Например, у ЦАП на источниках тока, диапазон изменения опорного напряжения ограничен, причем выходное напряжение имеет полярность обратную полярности опорного напряжения. В этом случае биполярный режим наиболее просто реализуется включением дополнительного резистора смещения R см между выходом ЦАП и входом опорного напряжения (рис. 8а). Резистор R см изготавливается на кристалле ИМС. Его сопротивление выбрано таким, чтобы ток I см составлял половину максимального значения выходного тока ЦАП.

В принципе, аналогично можно решить задачу смещения выходного тока и для ЦАП на МОП-ключах. Для этого нужно проинвертировать опорное напряжение, а затем сформировать из -U оп ток смещения, который следует вычесть из выходного тока ЦАП. Однако для сохранения температурной стабильности лучше обеспечить формирование тока смещения непосредственно в ЦАП. Для этого в схему на рис. 8а вводят второй операционный усилитель и второй выход ЦАП подключают ко входу этого ОУ (рис. 8б).


Второй выходной ток ЦАП,

На входе ОУ1 ток I" вых суммируется с током I мр, соответствующим единице младшего разряда входного кода.

Суммарный ток инвертируется. Ток, протекающий через резистор обратной связи R ос ОУ2, составляет

Или

При

а при

Это в случае N=8 с точностью до множителя 2 совпадает с данными табл. 6, с учетом того, что для преобразователя на МОП-ключах максимальный выходной ток

.

Если резисторы R 2 хорошо согласованы по сопротивлению, то абсолютное изменение их величины при колебаниях температуры не влияет на выходное напряжение схемы.

У цифро-аналоговых преобразователей с выходным сигналом в виде напряжения, построенных на инверсной резистивной матрице (см. рис. 9), можно более просто реализовать биполярный режим (рис. 8в). Как правило, такие ЦАП содержат на кристалле выходной буферный усилитель. Для работы ЦАП в униполярном включении свободный вывод нижнего по схеме резистора R не подключают, либо подключают к общей точке схемы для удвоения выходного напряжения. Для работы в биполярном включении свободный вывод этого резистора соединяют со входом опорного напряжения ЦАП. ОУ в этом случае работает в дифференциальном включении и его выходное напряжение

Как уже указывалось выше, ЦА-преобразователи на МОП-ключах, допускают изменение опорного напряжения в широких пределах, в том числе и смену полярности. Выходное напряжение ЦАП пропорционально произведению опорного напряжения на входной цифровой код. Это обстоятельство позволяет непосредственно использовать такие ЦАП для перемножения аналогового сигнала на цифровой код.

При униполярном включении ЦАП выходной сигнал пропорционален произведению двухполярного аналогового сигнала на однополярный цифровой код. Такой перемножитель называют двухквадрантным. При биполярном включении ЦАП (рис. 8б и 8в) выходной сигнал пропорционален произведению двухполярного аналогового сигнала на двухполярный цифровой код. Эта схема может работать как четырехквадрантный перемножитель.

Деление входного напряжения на цифровой масштаб M D =D/2 N выполняется с помощью схемы двухквадрантного делителя (рис. 9).

В схеме на рис. 9а преобразователь на МОП-ключах с токовым выходом работает как преобразователь "напряжение-ток", управляемый кодом D и включенный в цепь обратной связи ОУ. Входное напряжение подается на свободный вывод резистора обратной связи ЦАП, размещенного на кристалле ИМС.

В этой схеме выходной ток ЦАП

,

что при выполнении условия R ос =R дает

.

Следует отметить, что при коде "все нули" обратная связь размыкается. Предотвратить этот режим можно, либо запретив такой код программно, либо включив между выходом и инвертирующим входом ОУ резистор с сопротивлением, равным R·2 N+1 .

Схема делителя на основе ЦАП с выходом в виде напряжения, построенном на инверсной резистивной матрице и включающем буферный ОУ, приведена на рис. 9б. Выходное и входное напряжения этой схемы связаны уравнением

Отсюда следует .

В данной схеме усилитель охвачен как положительной, так и отрицательной обратными связями. Для преобладания отрицательной обратной связи (иначе ОУ превратится в компаратор) необходимо выполнение условия D<2 N-1 или M D <1/2. Это ограничивает значение входного кода нижней половиной шкалы.


ПАРАМЕТРЫ ЦАП

При последовательном возрастании значений входного цифрового сигнала D(t) от 0 до 2 N -1 через единицу младшего разряда (ЕМР) выходной сигнал U вых (t) образует ступенчатую кривую. Такую зависимость называют обычно характеристикой преобразования ЦАП. В отсутствие аппаратных погрешностей средние точки ступенек расположены на идеальной прямой 1 (рис. 10), которой соответствует идеальная характеристика преобразования. Реальная характеристика преобразования может существенно отличаться от идеальной размерами и формой ступенек, а также расположением на плоскости координат. Для количественного описания этих различий существует целый ряд параметров.

Рис. 10 Статическая характеристика преобразования ЦАП

Статические параметры

Разрешающая способность - приращение U вых при преобразовании смежных значений D j , т.е. отличающихся на ЕМР. Это приращение является шагом квантования. Для двоичных кодов преобразования номинальное значение шага квантования h=U пш /(2 N -1), где U пш - номинальное максимальное выходное напряжение ЦАП (напряжение полной шкалы), N - разрядность ЦАП. Чем больше разрядность преобразователя, тем выше его разрешающая способность. Погрешность полной шкалы - относительная разность между реальным и идеальным значениями предела шкалы преобразования при отсутствии смещения нуля.

.

Является мультипликативной составляющей полной погрешности. Иногда указывается соответствующим числом ЕМР.

Погрешность смещения нуля - значение U вых, когда входной код ЦАП равен нулю. Является аддитивной составляющей полной погрешности. Обычно указывается в милливольтах или в процентах от полной шкалы:

.

Нелинейность - максимальное отклонение реальной характеристики преобразования U вых (D) от оптимальной (линия 2 на рис. 10). Оптимальная характеристика находится эмпирически так, чтобы минимизировать значение погрешности нелинейности. Нелинейность обычно определяется в относительных единицах, но в справочных данных приводится также и в ЕМР. Для характеристики, приведенной на рис. 10

.

Дифференциальная нелинейность - максимальное изменение (с учетом знака) отклонения реальной характеристики преобразования U вых (D) от оптимальной при переходе от одного значения входного кода к другому смежному значению. Обычно определяется в относительных единицах или в ЕМР. Для характеристики, приведенной на рис. 10,

.

Монотонность характеристики преобразования - возрастание (уменьшение) выходного напряжения ЦАП U вых при возрастании (уменьшении) входного кода D. Если дифференциальная нелинейность больше относительного шага квантования h/U пш, то характеристика преобразователя немонотонна.

Температурная нестабильность ЦА-преобразователя характеризуется температурными коэффициентами погрешности полной шкалы и погрешности смещения нуля.

Погрешности полной шкалы и смещения нуля могут быть устранены калибровкой (подстройкой). Погрешности нелинейности простыми средствами устранить нельзя.

Динамические параметры ЦАП определяются по изменению выходного сигнала при скачкообразном изменении входного кода, обычно от величины "все нули" до "все единицы" (рис.11).


Рис. 11. Переходная характеристика ЦАП

Время установления - интервал времени от момента изменения входного кода (на рис. 11 t=0) до момента, когда в последний раз выполняется равенство

|U вых -U пш |=d/2,

причем d/2 обычно соответствует ЕМР.

Скорость нарастания - максимальная скорость изменения U вых (t) во время переходного процесса. Определяется как отношение приращения DU вых ко времени Dt, за которое произошло это приращение. Обычно указывается в технических характеристиках ЦАП с выходным сигналом в виде напряжения. У ЦАП с токовым выходом этот параметр в большой степени зависит от типа выходного ОУ.

Для перемножающих ЦАП с выходом в виде напряжения часто указываются частота единичного усиления и мощностная полоса пропускания, которые в основном определяются свойствами выходного усилителя.


СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

1. Федерков Б.Г., Телец В.А., Микросхемы ЦАП и АЦП: функционирование, параметры, применение. М.: Энергоиздат, 1990. –320с.

2. Валах В.В., Григорьев В.Ф., Быстродействующие АЦП для измерения формы случайных сигналов М.: Приборы и техника эксперемента. 1987. №4 с.86-90

3. Быстродействующие интегральные микросхемы ЦАП и АЦП и измерение их параметров. Под редакцией Марцинкявючеса. М.: Радио и связь. 1988 –224с.©

ЦАП – цифро-аналоговые преобразователи – устройства, предназначенные для преобразования дискретного (цифрового) сигнала в непрерывный (аналоговый) сигнал. Преобразование производится пропорционально двоичному коду сигнала.

Классификация ЦАП

По виду выходного сигнала : с токовым выходом и выходом в виде напряжения;

По типу цифрового интерфейса : с последовательным вводом и с параллельным вводом входного кода;

По числу ЦАП на кристалле : одноканальные и многоканальные;

По быстродействию : умеренного быстродействия и высокого быстродействия.

Основные параметры ЦАП:

1. N – разрядность.

2. Максимальный выходной ток.

4. Величина опорного напряжения.

5. Разрешающая способность.

6. Уровни управляющего напряжения (ТТЛ или КМОП).

7. Погрешности преобразования (погрешность смещения нуля на выходе, абсолютная погрешность преобразования, нелинейность преобразования, дифференциальная нелинейность). 8. Время преобразования – интервал времени с момента предъявления (подачи) кода до момента появления выходного сигнала.

9. Время установления аналогового сигнала

Основными элементами ЦАП служат:

Резистивные матрицы (набор делителей с определенным ТКС, с определенным отклонением 2%, 5% и менее) могут быть встроены в ИМС;

Ключи (на биполярных или МОП-транзисторах);

Источник опорного напряжения.

Основные схемы построения ЦАП.


21. Ацп. Общие положения. Частота дискретизации. Классификация ацп. Принцип работы ацп параллельного действия.

По быстродействию АЦП делят на:

1. АЦП параллельного преобразования (параллельные АЦП) – быстродействующие АЦП, имеют сложное аппаратное использование единицы ГГц.разрешение N = 8-12 бит, Fg = десятки МГц

2. АЦП последовательного приближения (последовательного счета) до 10МГц.разрешение N = 10-16 бит, Fg = десятки кГц

3. Интегрирующие АЦП сотни Гц.разрешение N = 16-24 бит, Fg = десятки

4. Сигма-дельта АЦП единицы МГц.разрешение N = 16-24 бит, Fg = сотни Гц

22. Ацп последовательного счета. Принцип действия.

23. АЦП последовательных приближений. Принцип действия.

Этот код с выхода РПП подается на ЦАП, который выдает соответствующее напряжение 3/4Uвхmах, которое сравнивается с Uвх (на СС) и результат записывается в тот же разряд четвертым тактовым импульсом. Далее процесс продолжается до тех пор, пока не будут проанализированы все разряды.

Время преобразования АЦП последовательного приближения:

tпр = 2nTG, где TG – период следования импульсов генератора; n – разрядность АЦП.

Такие АЦП уступают по быстродействию АЦП параллельного типа, однако они более дешевые и потребляют меньшую мощность. Пример: 1113ПВ1.

24. Принцип работы ацп интегрирующего типа.

В основе принципа работы интегрирующего АЦП лежат два основных принципа:

1. Преобразование входного напряжения в частоту или в длительность (время) импульсов

Uвх → f (ПНЧ – преобразователь напряжение-частота)

2. Преобразование частоты или длительности (времени) в цифровой код

f → N; T→ N.

Основную погрешность вносят ПНЧ.

АЦП данного типа осуществляют преобразование в два этапа.

На первом этапе входной аналоговый сигнал интегрируетися и это проинтегрированное значение преобразуется в импульсную последовательность. Частота следования импульсов в этой последовательности или их длительность бывает промодулирована проинтегрированным значением входного сигнала.

На втором этапе эта последовательность импульсов преобразуется в цифровой код - измеряется ее частота или длительность импульсов.

Иногда складывается впечатление, что цифровой мир практически полностью сливается с реальным. Но несмотря на появление таких систем как «gigaFLOPS», «22 nm» и многих других реальный мир упорно остается аналоговым и никак не цифровым, а мы по-прежнему должны работать с нашими цифровым системами, которые в современном мире присутствуют практически везде.

Цифро-аналоговый преобразователь ЦАП преобразовывает входной цифровой сигнал в аналоговый выходной. Понятие «точность» может варьироваться (в зависимости от производителя), но мы опишем цифро-аналоговые преобразователи с разрешением от 8 до 16 бит и скоростью до 10 Мвыборок/с. Данные цифро-аналоговые преобразователи ЦАП используются в различных системах – аудио- и видео аппаратуре, управление процессором, измерительные приборы, системы автоматизации, системы электропривода и многих других. У каждой отдельной системы существуют индивидуальные требования к ЦАП, например, разрешение, статические и динамические характеристики, потребляемая мощность и другие.

В параметрах и техническом описании указываются погрешность смещения, дифференциальная нелинейность (DNL), интегральная нелинейность (INL) и другие параметры, необходимые для обеспечения хорошей производительности в системах постоянного тока, например таких, как управления электроприводом или каким-то технологическим процессом.

Некоторые приложения, например, для генерации сигнала на экране монитора, подчеркивают необходимость хорошей производительности на переменном токе, который в техническом описании указывается в таких параметрах как время отставания, шумы и полоса частот пропускания. Сделать само устройство с применением ЦАП значительно сложнее, чем выбрать цифро-аналоговый преобразователь из каталога, ведь в систему помимо ЦАП будет входить еще много электронных компонентов, влияние которых также нужно учитывать. Ниже мы попытаемся это рассмотреть.
Содержание:

Три основные архитектуры для точных ЦАП

При выборе точности цифро-аналогового преобразователя для вашей системы необходимо, чтоб спецификация ЦАП соответствовала требованиям системы. По сравнению с изобилием архитектур аналого-цифровых преобразователей АЦП выбор цифро-аналогового преобразователя может показаться легкой задачей, так как в ЦАП имеется всего три основных архитектуры. Но это только кажется что задача легкая, ведь различие в производительности каждой из архитектур довольно существенны.

В ЦАП используют три основные архитектуры – струнная (последовательная), R-2R, умножающий ЦАП (multiplying DAC (MDAC)).

Струнный цифро-аналоговый преобразователь

Концепция, лежащая в основе струнного цифро-аналогового преобразователя, исходит от Лорда Кельвина с середины 1800 годов:

Входной декодер имеет несколько переключателей, по одному для каждой комбинации битов. Каждый цифровой вход подключается к соответствующему напряжению усилителя выходного напряжения.

N – битовый ЦАП состоит из последовательности 2 N соответствующих резисторов, а также источника напряжения на одном конце, и «земли» на другом. Трехбитный ЦАП (рисунок выше) требует восемь резисторов и семь переключателей, но эти цифры растут очень сильно с повышением разрядности и для 16 битного ЦАП необходимо уже 65536 резисторов!!! Это число очень большое, даже для современных систем. Для уменьшения количества резисторов используют интерполяционные усилители и ответвления на отдельные резисторы.

Струнные или последовательные цифро-аналоговые преобразователи вполне подходят для большинства точных приложений таких как, контроль перемещений, системы автоматического управления (в сервоприводах и при управлении электроприводом).

Выходное напряжение струнных ЦАП изначально монотонное с хорошей дифференциальной нелинейность (DNL), но его интегральная нелинейность (INL) не очень хороша, так как напрямую зависит от погрешности резистора. С точки зрения систем переменного тока струнные ЦАП демонстрируют более низкую производительность в сравнении с другими архитектурами, так как обладает довольно высоким уровнем шумов, что вызвано большим полным сопротивлением резисторов, а структура коммутации приводит к замедлению обработки сигналов при переходах, ограничивая при этом скорость обновлений.

Архитектура R-2R

Данная архитектура наиболее распространена среди цифро-аналоговых преобразователей и схема ее показана ниже:

Данная архитектура использует только резисторы с двумя различными сопротивлениями, соотношения между которыми определяются как 2 к 1.

При установке конкретного бита соответствующий 2R резистор переключается в положение V REF — H , в противном случае он устанавливается в положение V REF — L (земля). В результате получаем выходное напряжение, которое будет являться суммой всех лестничных напряжений 2R.

Архитектура R-2R хорошо подходит для применения в промышленных установках и устройствах. Они более точны, чем струнные цифро-аналоговые преобразователи, имеют более низкий уровень шумов из-за наличия меньшего результирующего сопротивления, а также у них лучше INL и DNL производительность.

Преобразование сигнала в преобразователе с архитектурой R-2R представляет собой переключение ножки 2R между V REF — H и V REF — L . Внутренние резисторы и переключатели внутри устройства не совпадают идеально, что может приводить к определенным сбоям в процессе переключения.

Умножающий цифро-аналоговый преобразователь MDAC

Умножающий преобразователь MDAC тоже использует архитектуру R-2R, но с опорным напряжением V REF . Схема ниже:

Когда бит установлен, соответствующий 2R резистор подключается к виртуальной «земле» — суммирующий операционный усилитель. Именно поэтому умножающий цифро-аналоговый преобразователь выдает не напряжение, а ток, при этом опорное напряжение V REF может превышать номинальное или вовсе быть отрицательным.

Источник V REF «видит» в MDAC постоянное сопротивление, равное R, поэтому имеет всегда постоянный выходной ток, что повышает производительность во время быстрых переходов, так как нет необходимости ждать пока восстановится величина опорного напряжения. В зависимости от цифрового кода текущий поток разделяется на выходной контакт, и контакт заземления. Это значит, что выходной импеданс будет различен, а это несколько затрудняет выбор внешнего операционного усилителя ОУ.

Для повышения производительности выхода MDAC включают в качестве обратной связи внутренний резистор с тепловой реакцией, примерно соответствующей внутреннему резистору ступени. Внутренний шум из умножающего цифро-аналогового преобразователя исходит как от сопротивлений ступеней, так и от сопротивления обратной связи. Поскольку выходное сопротивление является кодозависимым, то от него зависит и коэффициент усиления шумов, хотя уровень шумов у MDAC значительно ниже, чем у последовательных (струнных) ЦАП. Стоит отметить, что внешний операционный усилитель ОУ может быть с низким уровнем шумов.

Одним из недостатков является то, что входной сигнал является обратным выходному, что в свою очередь требует дополнительной операции инвертирования.

Понимание параметров производительности переменного тока

Для получения максимальной производительности при работе цифро-аналогового преобразователя на переменном токе нужно понять определенные тонкости, а также возможные шаги, которые можно сделать для оптимизации.

Время, необходимое для выхода операционного усилителя ОУ на окончательное значение, является одним из основных показателей качества ЦАП. Ниже показаны участки времени срабатывания цифро-аналогового преобразователя:

  • Мертвое время (Dead time ): это время, необходимое для достижения 10% от требуемого значения выходного аналогового сигнала, начиная с момента, когда цифровой код поступил на цифро-аналоговый преобразователь;
  • Время нарастания выходного сигнала(Slew time ): время, необходимое для возрастания аналогового выходного сигнала с 10% до 90%;
  • Время восстановления и установления(Recovery time, linear settling time ): перерегулирование и установление аналогового сигнала заданной формы;

После установления значения выходного аналогового сигнала в диапазоне допустимой ошибки процесс считается завершенным даже в случае, если сигнал все еще колеблется, но не выходит за пределы допустимой ошибки.

Ниже показан переходный процесс реального 18 битного, одноканального, R-2R цифро-аналогового преобразователя DAC988:

Время установления сигнала измеряется от момента перехода сигнала LDAC на низкий уровень, после чего начался переходный процесс в системе. Обратите внимание на то, что процесс убывания сигнала самый длительный, с долгим процессом восстановления и несущественным влиянием на него статического сигнала.

Ошибки переключения

Идеальное изменение выходного сигнала ЦАП – это монотонное его нарастание или спадания, но в реальности это не так, а изменения сигнала происходят скачкообразно. В отличии от времени установления, ошибка переключения вызвана не соответствием внутренних переключений (доминирующий фактор), или же емкостными связями между входными цифровыми и выходными аналоговыми сигналами:

Ошибка характеризуется площадью под положительным и отрицательным ложным импульсом и измеряется в вольт-секундах (чаще всего в мкВ∙с или нВ∙с).

С возрастанием количества параллельных переключателей возрастает и ошибка. Это один из недостатков архитектуры R-2R. Ошибки в архитектуре R-2R наиболее заметна при изменении всех битов или при переключении наиболее значащих битов, при переключении из 0x7FFF в 0x8000 (для 16-битных ЦАП).

Если уменьшить количество переключающихся последовательных резисторов нельзя, то применяют на выходе преобразователя, схемы показаны ниже:

На рисунке а) показан самый простой RC фильтр, который устанавливается на выходе и позволяет несколько снизить уровень амплитуды выходной ошибки, однако тем самым он затягивает скорость нарастания сигнала, чем увеличивает время отставания. На рисунке b) представлен вариант с добавлением выборки и удержанием цепи. Да, это позволяет снизить ошибку практически до нуля, однако реализовать такую схему чрезвычайно сложно, так как она накладывает жесткие требования к временным показателям срабатывания, а также жесткую синхронизацию с частотой обновления ЦАП.

Источники шума

Шум – один из важнейших компонентов производительности современного цифро-аналогового преобразователя на переменном токе. Существует три основных источника шума – внутренняя цепь резисторов, внутренние и внешние усилители, источники опорного напряжения. Влияние внутренних резисторов на шумы преобразователя рассматривалось ранее в этой статье, поэтому рассмотрим остальные два источника шумов.

Шум внешнего операционного усилителя ОУ

Выход усилителя ЦАП является еще одним источником шумов. MDAC использует внешний операционный усилитель, но другие архитектуры используют внутренний ОУ, чем влияют на общий коэффициент выходных шумов.

Шум в схеме операционных усилителей имеет три основных составляющих:

  • 1/f шума или фликкер-шум;
  • Шумы широкополосного напряжения или белый шум;
  • Шумы напряжений и токов на резисторах;

Первые два считаются внутренними свойствами самого операционного усилителя ОУ, а полоса пропускания ограничивается самим цифро-аналоговым преобразователем, что значительно снижает влияние широкополосных шумов. Для лучшей производительности на переменном токе следует обратить внимание на операционные усилители с низким уровнем 1/f шумов.

Шумы от внешнего опорного напряжения V REF

Выходные шумы ЦАП напрямую зависят от шумов в опорном напряжении, которое может быть как внешним, так и внутренним. Для обеспечения максимальной производительности и минимального уровня шумов необходимо использовать качественные источники опорного напряжения. Существует огромный выбор источников опорного напряжения от нескольких производителей.

Вывод

Получение максимальной производительности переменного тока от прецизионного ЦАП представляет собой сочетание понимания технических характеристик, выбора правильной архитектуры и добавления нужных внешних компонентов, и, конечно же, следование проверенным методикам выбора и расчета электронных компонентов.

    ЦАП с широтно-импульсной модуляцией

    Последовательный ЦАП на переключаемых конденсаторах

Параллельные ЦАП

  • ЦАП с cуммированием весовых токов

    ЦАП на источниках тока

    Формирование выходного сигнала в виде напряжения

    Параллельный ЦАП на переключаемых конденсаторах

    ЦАП с суммированием напряжений

Интерфейсы цифро-аналоговых преобразователей

  • ЦАП с последовательным интерфейсом входных данных

    ЦАП с параллельным интерфейсом входных данных

Применение ЦАП

  • Обработка чисел, имеющих знак

    Перемножители и делители функций

    Аттенюаторы и интеграторы на ЦАП

    Системы прямого цифрового синтеза сигналов

Параметры ЦАП

Цифро-аналоговые преобразователи

Цифро-аналоговый преобразователь (ЦАП) предназначен для преобразования числа, определенного, как правило, в виде двоичного кода, в напряжение или ток, пропорциональные значению цифрового кода. Схемотехника цифро-аналоговых преобразователей весьма разнообразна. На рис. 1 представлена классификационная схема ЦАП по схемотехническим признакам. Кроме этого, ИМС цифро-аналоговых преобразователей классифицируются по следующим признакам:

  • По виду выходного сигнала: с токовым выходом и выходом в виде напряжения

    По типу цифрового интерфейса: с последовательным вводом и с параллельным вводом входного кода

    По числу ЦАП на кристалле: одноканальные и многоканальные

    По быстродействию: умеренного и высокого быстродействия

Рис. 1. Классификация ЦАП

Цап с cуммированием весовых токов

Большинство схем параллельных ЦАП основано на суммировании токов, сила каждого из которых пропорциональна весу цифрового двоичного разряда, причем должны суммироваться только токи разрядов, значения которых равны 1. Пусть, например, требуется преобразовать двоичный четырехразрядный код в аналоговый сигнал тока. У четвертого, старшего значащего разряда (СЗР) вес будет равен 2 3 =8, у третьего разряда – 2 2 =4, у второго – 2 1 =2 и у младшего (МЗР) – 2 0 =1. Если вес МЗРI МЗР =1 мА, тоI СЗР =8 мА, а максимальный выходной ток преобразователяI вых.макс =15 мА и соответствует коду 1111 2 . Понятно, что коду 1001 2 , например, будет соответствоватьI вых =9 мА и т.д. Следовательно, требуется построить схему, обеспечивающую генерацию и коммутацию по заданным законам точных весовых токов. Простейшая схема, реализующая указанный принцип, приведена на рис. 3.

Сопротивления резисторов выбирают так, чтобы при замкнутых ключах через них протекал ток, соответствующий весу разряда. Ключ должен быть замкнут тогда, когда соответствующий ему бит входного слова равен единице. Выходной ток определяется соотношением

При высокой разрядности ЦАП токозадающие резисторы должны быть согласованы с высокой точностью. Наиболее жесткие требования по точности предъявляются к резисторам старших разрядов, поскольку разброс токов в них не должен превышать тока младшего разряда. Поэтому разброс сопротивления в k -м разряде должен быть меньше, чем

R / R =2 – k

Из этого условия следует, что разброс сопротивления резистора, например, в четвертом разряде не должен превышать 3%, а в 10-м разряде – 0,05% и т.д.

Рассмотренная схема при всей ее простоте обладает целым букетом недостатков. Во-первых, при различных входных кодах ток, потребляемый от источника опорного напряжения (ИОН), будет различным, а это повлияет на величину выходного напряжения ИОН. Во-вторых, значения сопротивлений весовых резисторов могут различаться в тысячи раз, а это делает весьма затруднительной реализацию этих резисторов в полупроводниковых ИМС. Кроме того, сопротивление резисторов старших разрядов в многоразрядных ЦАП может быть соизмеримым с сопротивлением замкнутого ключа, а это приведет к погрешности преобразования. В-третьих, в этой схеме к разомкнутым ключам прикладывается значительное напряжение, что усложняет их построение.

Эти недостатки устранены в схеме ЦАП AD7520 (отечественный аналог 572ПА1), разработанном фирмой Analog Devices в 1973 году, которая в настоящее время является по существу промышленным стандартом (по ней выполнены многие серийные модели ЦАП). Указанная схема представлена на рис. 4. В качестве ключей здесь используются МОП-транзисторы.

Рис. 4. Схема ЦАП с переключателями и матрицей постоянного импеданса

В этой схеме задание весовых коэффициентов ступеней преобразователя осуществляют посредством последовательного деления опорного напряжения с помощью резистивной матрицы постоянного импеданса. Основной элемент такой матрицы представляет собой делитель напряжения (рис. 5), который должен удовлетворять следующему условию: если он нагружен на сопротивление R н, то его входное сопротивление R вх также должно принимать значение R н. Коэффициент ослабления цепи =U 2 /U 1 при этой нагрузке должен иметь заданное значение. При выполнении этих условий получаем следующие выражения для сопротивлений:

в соответствии с рис.4.

Поскольку в любом положении переключателей S k они соединяют нижние выводы резисторов с общей шиной схемы, источник опорного напряжения нагружен на постоянное входное сопротивление R вх =R . Это гарантирует неизменность опорного напряжения при любом входном коде ЦАП.

Согласно рис. 4, выходные токи схемы определяются соотношениями

а входной ток

Поскольку нижние выводы резисторов 2R матрицы при любом состоянии переключателей S k соединены с общей шиной схемы через низкое сопротивление замкнутых ключей, напряжения на ключах всегда небольшие, в пределах нескольких милливольт. Это упрощает построение ключей и схем управления ими и позволяет использовать опорное напряжение из широкого диапазона, в том числе и различной полярности. Поскольку выходной ток ЦАП зависит от U оп линейно (см. (8)), преобразователи такого типа можно использовать для умножения аналогового сигнала (подавая его на вход опорного напряжения) на цифровой код. Такие ЦАП называют перемножающими (MDAC).

Точность этой схемы снижает то обстоятельство, что для ЦАП, имеющих высокую разрядность, необходимо согласовывать сопротивления R 0 ключей с разрядными токами. Особенно это важно для ключей старших разрядов. Например, в 10-разрядном ЦАП AD7520 ключевые МОП-транзисторы шести старших разрядов сделаны разными по площади и их сопротивление R 0 нарастает согласно двоичному коду (20, 40, 80, … , 640 Ом). Таким способом уравниваются (до 10 мВ) падения напряжения на ключах первых шести разрядов, что обеспечивает монотонность и линейность переходной характеристики ЦАП. 12-разрядный ЦАП 572ПА2 имеет дифференциальную нелинейность до 0,025% (1 МЗР).

Лекция №3

«Аналого-цифровое и цифро-аналоговое преобразование».

В микропроцессорных системах роль импульсного элемента выполняет аналого-цифровой преобразователь (АЦП), а роль экстраполятора – цифро-аналоговый преобразователь (ЦАП).

Аналого-цифровое преобразование заключается в преобразовании информации, содержащейся в аналоговом сигнале, в цифровой код. Цифро-аналоговое преобразование призвано выполнять обратную задачу, т.е. преобразовывать число, представленное в виде цифрового кода, в эквивалентный аналоговый сигнал.

АЦП, как правило, устанавливаются в цепях обратных связей цифровых систем управления для преобразования аналоговых сигналов обратных связей в коды, воспринимаемые цифровой частью системы. Т.о. АЦП выполняют несколько функций, таких как: временная дискретизация, квантование по уровню, кодирование. Обобщенная структурная схема АЦП представлена на рис.3.1.


На вход АЦП подается сигнал в виде тока или напряжения, который в процессе преобразования квантуется по уровню. Идеальная статическая характеристика 3-разрядного АЦП приведена на рис.3.2.


Входные сигналы могут принимать любые значения в диапазоне от – U max до U max , а выходные соответствуют восьми (2 3) дискретным уровням. Величина входного напряжения, при которой происходит переход от одного зачения выходного кода АЦП к другому соседнему значению, называется напряжением межкодового перехода . Разность между двумя смежными значениями межкодовых переходов называется шагом квантования или единицей младшего значащего разряда (МЗР) .Начальной точкой характеристики преобразования называется точка, определяемая значением входного сигнала, определяемого как

(3.1),

где U 0,1 – напряжение первого межкодового перехода, U LSB – шаг квантования (LSB – Least Significant Bit ). преобразования соответствует входному напряжению, определяемому соотношением

(3.2).

Область значений входного напряжения АЦП, ограниченная значениями U 0,1 и U N-1,N называется диапазоном входного напряжения .

(3.3).

Диапазон входного напряжения и величину младшего разряда N -разрядного АЦП и ЦАП связывает соотношение

(3.4).

Напряжение

(3.5)

называется напряжением полной шкалы (FSR – Full Scale Range ). Как правило, этот параметропределяется уровнем выходного сигнала источника опорного напряжения, подключенного к АЦП. Величина шага квантования или единицы младшего разряда т.о. равна

(3.6),

а величина единицы старшего значащего разряда

(3.7).

Как видно из рис.3.2, в процессе преобразования возникает ошибка, не превышающая по величине половины величины младшего разряда U LSB /2.

Существуют различные методы аналого-цифрового преобразования, различающиеся между собой по точности и быстродействию. В большинстве случаев эти характеристики антогонистичны друг другу. В настоящее время большое распространение получили такие типы преобразователей как АЦП последовательных приближений (поразрядного уравновешивания), интегрирующие АЦП, параллельные (Flash ) АЦП, «сигма-дельта» АЦП и др.

Структурная схема АЦП последовательных приближений представлена на рис.3.3.



Основными элементами устройства являются компаратор (К), цифро-аналоговый преобразователь (ЦАП) и схема логического управления. Принцип преобразования основан на последовательном сравнении уровня входного сигнала с уровнями сигналов соответствующих различным комбинациям выходного кода и формировании результирующего кода по результатам сравнений. Очередность сравниваемых кодов удовлетворяет правилу половинного деления. В начале преобразования входной код ЦАП устанавливается в состояние, в котором все разряды кроме старшего равны 0, а старший равен 1. При этой комбинации на выходе ЦАП формируется напряжение, равное половине диапазона входного напряжения. Это напряжение сравнивается со входным напряжением на компараторе. Если входной сигнал больше сигнала, поступающего с ЦАП, то старший разряд выходного кода устанавливается в 1, в противном случае он сбрасывается в 0. На следующем такте частично сформированный таким образом код снова поступает на вход ЦАП, в нем устанавливается в единицу следующий разряд и сравнение повторяется. Процесс продолжается до сравнения младшего бита. Т.о. для формирования N -разрядного выходного кода необходимо N одинаковых элементарных тактов сравнения. Это означает, что при прочих равных условиях быстродействие такого АЦП уменьшается с ростом его разрядности. Внутренние элементы АЦП последовательных приближений (ЦАП и компаратор) должны обладать точностными показателями лучше величины половины младшего разряда АЦП.

Структурная схема параллельного (Flash ) АЦП представлена на рис.3.4.



В этом случае входное напряжение подается для сравнения на одноименные входы сразу N -1 компараторов. На противоположные входы компараторов подаются сигналы с высокоточного делителя напряжения, который подключен к источнику опорного напряжения. При этом напряжения с выходов делителя равномерно распределены вдоль всего диапазона изменения входного сигнала. Шифратор с приоритетом формирует цифровой выходной сигнал, соответствующий самому старшему компаратору с активизированным выходным сигналом. Т.о. для обеспечения N -разрядного преобразования необходимо 2 N резисторов делителя и 2 N -1 компаратор. Это один из самых быстрых способов преобразования. Однако, при большой разрядности он требует больших аппаратных затрат. Точность всех резисторов делителя и компараторов снова должна быть лучше половины величины младшего разряда.

Структурная схема АЦП двойного интегрирования представлена на рис.3.5.



Основными элементами системы являются аналоговый коммутатор, состоящий из ключей SW 1, SW 2, SW 3, интегратор И, компаратор К и счетчик С. Процесс преобразования состоит из трех фаз (рис.3.6).



На первой фазе замкнут ключ SW 1, а остальные ключи разомкнуты. Через замкнутый ключ SW 1 входное напряжение подается на интегратор, который в течение фиксированного интервала времени интегрирует входной сигнал. По истечение этого интервала времени уровень выходного сигнала интегратора пропорционален значению входного сигнала. На втором этапе преобразования ключ SW 1 размыкается, а ключ SW 2 замыкается, и на вход интегратора подается сигнал с источника опорного напряжения. Конденсатор интегратора разряжается от напряжения, накопленного в первом интервале преобразования с постоянной скоростью, пропорциональной опорному напряжению. Этот этап длится до тех пор, пока выходное напряжение интегратора не упадет до нуля, о чем свидетельствует выходной сигнал компаратора, сравнивающего сигнал интегратора с нулем. Длительность второго этапа пропорциональна входному напряжению преобразователя. В течение всего второго этапа на счетчик помтупают высокочастотные импульсы с калиброванной частотой. Т.о. по истечению второго этапа цифровые показания счетчика пропорциональны входному напряжению. С помощью данного метода можно добиться очень хорошей точности не предъявляя высоких требований к точности и стабильности компонентов. В часности, стабильность емкости интегратора может быть не высокой, поскольку циклы заряда и разряда происходят со скоростью, обратно пропорциональной емкости. Болле того, ошибки дрейфа и смещения компарптора компенсируются благодаря тому, что каждый этап преобразования начинается и заканчивается на одном и том же напряжении. Для повышения точности используется третий этап преобразования, когда на вход интегратора через ключ SW 3 подается нулевой сигнал. Поскольку на этом этапе используется тот же интегратор и компаратор, то вычитание выходного значения ошибки при нуле из результата последующего измерения позволяет компенсировать ошибки, связанные с измерениями вблизи нуля. Жесткие требования не предъявляются даже к частоте тактовых импульсов, поступающих на счетчик, т.к. фиксированный интервал времени на первом этапе преобразования формируется из тех же самых импульсов. Жесткие требования предъявляются только к току разряда, т.е. к источнику опорного напряжения. Недостатком такого способа преобразования является невысокое быстродействие.

АЦП характеризуютя рядом параметров, позволяющих реализовать выбор конкретного устройства исходя из требований, предъявляемых к системе. Все параметры АЦП можно разделить на две группы: статические и динамические. Первые определяют точностные характеристики устройства при работе с неизменяющимся либо медленно изменяющимся входным сигналом, а вторые характеризуют быстродействие устройства как сохранение точности при увеличении частоты входного сигнала.

Уровню квантования, лежащему в окрестностях нуля входного сигнала соответствуют напряжения межкодовых переходов –0.5 U LSB и 0.5 U LSB (первый имеет место только в случае биполярного входного сигнала). Однако, в реальных устройствах, напряжения данных межкодовых переходов могут отличаться от этих идеальных значений. Отклонение реальных уровней этих напряжениймежкодовых переходов от их идеальных значений называется ошибкой биполярного смещения нуля (Bipolar Zero Error ) и ошибкой униполярного смещения нуля (Zero Offset Error ) соответственно. При биполярных диапазонах преобразования обычно используют ошибку смещения нуля, а при униполярных – ошибку униполярного смещения. Эта ошибка приводит к параллельному смещению реальной характеристики преобразования относительно идеальной характеристики вдорль оси абсцисс (рис.3.7).


Отклонение уровня входного сигнала соответствующего последнему межкодовому переходу от своего идеального значения U FSR -1.5 U LSB , называется ошибкой полной шкалы (Full Scale Error ).

Коэффициентом преобразования АЦП называется тангенс угла наклона прямой, проведенной через начальную и конечную точки реальной характеристики преобразования. Разность между действительным и идеальным значением коэффициента преобразования называется ошибкой коэффициента преобразования (Gain Error ) (рис.3.7).Она включает ошибки на концах шкалы, но не включает ошибки нуля шкалы. Для униполярного диапазона она определяется как разность между ошибкой полной шкалы и ошибкой униполярного смещения нуля, а для биполярного диапазона – как разность между ошибкой полной шкалы и ошибкой биполярного смещения нуля. По сути дела в любом случае это отклонение идеального расстояния между последним и первым межкодовыми переходами (равного U FSR -2 U LSB ) от его реального значения.

Ошибки смещения нуля и коэффициента преобразования можно скомпенсировать подстройкой предварительного усилителя АЦП. Для этого необходимо иметь вольтметр с точностью не хуже 0.1 U LSB . Для независимости этих двух ошибок сначала корректируют ошибку смещения нуля, а затем, ошибку коэффициента преобразования. Для коррекции ошибки смещения нуля АЦП необходимо:

1. Установить входное напряжение точно на уровне 0.5 U LSB ;

2. Подстраивать смещение предварительного усилителя АЦП до тех пор, пока АЦП не переключится в состояние 00…01.

Для коррекции ошибки коэффициента преобразования необходимо:

1. Установить входное напряжение точно на уровне U FSR -1.5 U LSB ;

2. Подстраивать коэффициент усиления предварительного усилителя АЦП до тех пор, пока АЦП не переключится в состояние 11…1.

Из-за не идеальности элементов схемы АЦП ступеньки в различных точках характеристики АЦП отличаются друг от друга по величине и не равны U LSB (рис.3.8).


Отклонение расстояния между серединами двух соседних реальных шагов квантования от идеального значения шага квантования U LSB называется дифференциальной нелинейностью (DNL – Differential Nonlinearity). Если DNL больше или равна U LSB , то у АЦП могут появиться так называемые “пропущенные коды” (рис.3.3). Это влечет локальное резкое изменение коэффициента передачи АЦП, что в замкнутых системах управления может привести к потере устойчивости.

Для тех приложений, где важно поддерживать выходной сигнал с заданной точностью, важно на солько точно выходные коды АЦП соответствуют напряжениям межкодовых переходов. Максимальное отклонение центра шага квантования на реальной характеристике АЦП от линеаризованной характеристики называется интегральной нелинейностью (INL – Integral Nonlinearity) или относительной точностью (Relative Accuracy) АЦП (рис.3.9).


Линеаризованная характеристика проводится через крайние точки реальной характеристики преобразования, после того, как они были откалиброваны, т.е. устранены ошибки смещения нуля и коэффициента преобразования.

Ошибки дифференциальной и интегральной нелинейности скомпенсировать простыми средствами практически невозможно.

Разрешающей способностью АЦП (Resolution ) называется величина, обратная максимальному числу кодовых комбинаций на выходе АЦП

(3.8).

Этот параметр определяет какой минимальный уровень входного сигнала (относительно сигнала полной амплитуды) способен воспринимать АЦП.

Точность и разрешающая способность – две независимые характеристики. Разрешающая способность играет определяющую роль тогда, когда важно обеспечить заданный динамический диапазон входного сигнала. Точность является определяющей, когда требуется поддерживать регулируемую величину на заданном уровне с фиксированной точностью.

Динамическим диапазоном АЦП (DR - Dinamic Range ) называется отношение максимального воспринимаемого уровня входного напряжения к минимальному, выраженное в дБ

(3.9).

Этот параметр определяет максимальное количество информации, которое способен передавать АЦП. Так, для 12-разрядного АЦП DR =72 дБ.

Характеристики реальных АЦП отличаются от характеристик идеальных устройств из-за неидеальности элементов реального устройства. Рассмотрим некоторые параметры, характеризующие реальные АЦП.

Отношением сигнал-шум (SNR – Signal to Noise Ratio ) называется отношение среднеквадратического значения входного синусоидального сигнала к среднеквадратическому значению шума, который определяется как сумма всех остальных спектральных компонент вплоть до половины частоты дискретизации, без учета постоянной составляющей. Для идеального N -разрядного АЦП, который генерирует лишь шум квантования SNR , выражаемый в децибелах, можно определить как


(3.10),

где N – разрядность АЦП. Так, для 12-разрядного идеального АЦП SNR =74 дБ. Это значение больше значения динамического диапазона такого же АЦП т.к. минимальный уровень воспринимаемого сигнала должен быть больше уровня шума. В данной формуле учитывается только шум квантования и не учитываются другие источники шума, существующие в реальных АЦП. Поэтому, значения SNR для реальных АЦП как правило ниже идеального. Типичным значением SNR для реального 12-разрядного АЦП является 68-70 дБ.

Если входной сигнал имеет размах меньше U FSR , то в последнюю формулу нужно внести корректировку

(3.11),

где К ОС – ослабление входного сигнала, выраженное в дБ. Так, если входной сигнал 12-разрядного АЦП имеет амплитуду в 10 раз меньше половины напряжения полной шкалы, то К ОС =-20 дБ и SNR =74 дБ – 20 дБ=54 дБ.

Значение реального SNR может быть использовано для определения эффективного количества разрядов АЦП (ENOB – Effective Number of Bits ). Оно определяется по формуле

(3.12).

Этот показатель может характеризовать действительную решающую способность реального АЦП, Так, 12-разрядный АЦП, у которого SNR =68 дБ для сигнала с К ОС =-20 дБ является на самом деле 7-разрядным (ENOB =7.68). Значение ENOB сильно зависит от частоты входного сигнала, т.е. эффективная разрядность АЦП падает с увеличением частоты.

Суммарный коэффициент гармоник (THD – Total Harmonic Distortion ) – это отношение суммы среднеквадратических значений всех высших гармоник к среднеквадратическому значению основной гармоники

(3.13),

где n обычно ограничивают на уровне 6 или 9. Этот параметр характеризует уровень гармонических искажений выходного сигнала АЦП по сравнения с входным. THD возрастает с частотой входного сигнала.

Полоса частот полной мощности (FPBW – Full Power Bandwidth ) – это максимальная частота входного сигнала с размахом, равным полной шкале, при которой амплитуда восстановленной основной составляющей уменьшается не более чем на 3 дБ. С ростом частоты входного сигнала аналоговые цепи АЦП перестают успевать отрабатывать его изменения с заданной точностью, что приводит к уменьшению коэффициента преобразования АЦП на высоких частотах.

Время установления (Settling Time ) – это время, необходимое АЦП для достижения номинальной точности после того, как на ее вход был подан ступенчатый сигнал с амплитудой, равной полному диапазонувходного сигнала. Этот параметр ограничен из-за конечного быстродействия различных узлов АЦП.

Вследствие различного рода погрешностей характеристика реального АЦП является нелинейной. Если на вход устройства с нелинейностями подать сигнал, спектр которого состоит из двух гармоник f a и f b , то в спектре выходного сигнала такого устройства кроме основных гармоник будут присутствовать интермодуляционные субгармоники с частотами , где m , n =1,2,3,… Субгармоники второго порядка – это f a + f b , f a - f b , субгармоники третьего порядка – это 2 f a + f b , 2 f a - f b , f a +2 f b , f a -2 f b . Если входные синусоиды имеют близкие частоты, расположенные вблизи верхнего края полосы пропускания, то субгармоники второго порядка далеко отстоят от входных синусоид и располагаются в области нижних частот, тогда как субгармоники третьего порядка имеют частоты, близкие к входным частотам.

Коэффициент интермодуляционных искажений (Intermodulatin Distortion ) – это отношение суммы среднеквадратических значений интермодуляционных субгармоник определенного порядка к сумме среднеквадратических значений основных гармоник, выраженное в дБ

(3.14).

Любой способ аналого-цифрового преобразования требует некоторого конечного времени для его выполнения. Под временем преобразования АЦП (Conversion Time ) понимается интервал времени от момента поступления аналогового сигнала на вход АЦП до момента появления соответствующего выходного кода. Если входной сигнал АЦП изменяется во времени, то конечное время преобразования АЦП приводит к появлению т.н. аппертурной погрешности (рис.3.10).



Сигнал начала преобразования поступает в момент t 0 , а выходной код появляется в момент t 1 . За это время входной сигнал успел измениться на величину D U . Возникает неопределенность: какому уровню значения входного сигнала в диапазоне U 0 – U 0 + D U соответствует данный выходной код. Для сохранения точности преобразования на уровне единицы младшего разряда необходимо чтобы за время преобразования изменение значения сигнала на входе АЦП составило бы не более величины единицы младшего разряда

(3.15).

Изменение уровня сигнала за время преобразования можно приблизительно вычислить как

(3.16),

где U in – входное напряжение АЦП, T c – время преобразования. Подставляя (3.16) в (3.15) получим

(3.17).

Если на входе действует синусоидальный сигнал с частотой f

(3.18),

то его производная будет равна

(3.19).

Она принимает максимальное значение когда косинус равен 1. Подставляя с учетом этого (3.9) в (3.7) получим

, или

(3.20)

Конечное время преобразования АЦП приводит к требованию ограничения скорости изменения входного сигнала. Для того, чтобы уменьшить апертурную погрешность и т.о. ослабить ограничение на скорость изменения входного сигнала АЦП на входе преобразователя устанавливается т.н. «устройство выборки-хранения» (УВХ) (Track / Hold Unit ). Упрощенная схема УВХ представлена на рис.3.11.



Это устройство имеет два режима работы: режим выборки и режим фиксации. Режим выборки соответствует замкнутому состоянию ключа SW . В этом режиме выходное напряжение УВХ повторяет его входное напряжение. Режим фиксации включается по команде размыкающей ключ SW . При этом связь между входом и выходом УВХ прерывается, а выходной сигнал поддерживается на постоянном уровне, соответствующем уровню входного сигнала на момент поступления команды фиксации за счет заряда, накопленного на конденсаторе. Т.о., если подать команду фиксации непосредственно перед началом преобразования АЦП, то выходной сигнал УВХ будет поддерживаться на неизменном уровне в течение всего времени преобразования. После окончания преобразования УВХ снова переводится в режим выборки. Работа реального УВХ несколько отличается от идеального случая, который был описан (рис.3.12).



(3.21),

где f – частота входного сигнала, t A – величина апертурной неопределенности.

В реальных УВХ выходной сигнал не может оставаться абсолютно неизменным в течение конечного времени преобразования. Конденсатор будет постепенно разряжаться маленьким входным током выходного буфера. Для сохранения требуемой точности необходимо чтобы за время преобразования заряд конденсатора не изменился больше чем на 0.5 U LSB .

Цифро-аналоговые преобразователи устанавливаются обычно на выходе микропроцессорной системы для преобразования ее выходных кодов в аналоговый сигнал, подаваемый на непрерывный объект регулирования. Идеальная статическая характеристика 3-разрядного ЦАП представлена на рис.3.13.


Начальная точка характеристики определяетсякак точка, соответствующая первому (нулевому) входному коду U 00…0 . Конечная точка характеристики определяетсякак точка, соответствующая последнему входному коду U 11…1 . Определения диапазона выходного напряжения, единицы младшего разряда квантования, ошибки смещения нуля, ошибки коэффициента преобразования аналогичны соответствующим характеристикам АЦП.

С точки зрения структурной организации у ЦАП наблюдается гораздо меньшее разнообразие вариантов построения преобразователя. Основной структурой ЦАП является т.н. “цепная R -2 R схема” (рис.3.14).



Легко показать, что входной ток схемы равен I in = U REF / R , а токи последовательных звеньев цепи соответственно I in /2, I in /4, I in /8 и т.д. Для преобразования входного цифрового кода в выходной ток достаточно собрать все токи плечей, соответствующих единицам во входном коде, в выходной точке преобразователя (рис.3.15).



Если к выходной точке преобразователя подключить операционный усилитель, то выходное напряжение можно определить как

(3.22),

где K – входной цифровой код, N – разрядность ЦАП.

Все существующие ЦАП делятся на две больших группы: ЦАП с выходом по току и ЦАП с выходом по напряжению. Различие между ними заключается в отсутствии или наличии у микросхемы ЦАП оконечного каскада на операционном усилителе. ЦАП с выходом по напряжению являются более завершенными устройствами и требуют меньше дополнительных элементов для своей работы. Однако, оконечный каскад наряду с параметрами лесничной схемы определяет динамические и точностные параметры ЦАП. Выполнить точный быстродействующий операционный усилитель на одном кристалле с ЦАП часто бывает затруднительно. Поэтому большинство быстродействующих ЦАП имеют выход по току.

Дифференциальная нелинейность для ЦАП определяется как отклонение расстояния между двумя соседними уровнями выходного аналогового сигнала от идеального значения U LSB . Большое значение дифференциальной нелинейности может привести к тому, что ЦАП станет немонотонным. Это означает, что увеличение цифрового кода будет приводить к уменьшению выходного сигнала на каком нибудь участке характеристики (рис.3.16). Это может приводить к нежелательной генерации в системе.


Интегральная нелинейность для ЦАП определяется как наибольшее отклонение уровня аналогового выходного сигнала от прямой линии, проведенной через точки, соответствующие первому и последнему коду, после того, как они отрегулированы.

Время установления ЦАП определяется как время, за которое выходной сигал ЦАП установится на заданном уровне с погрешностью не более 0.5 U LSB после того, как входной код изменился со значения 00…0 до значения 11…1. Если ЦАП имеет входные регистры, то определенная часть времени установления обусловлена фиксированной задержкой прохождения цифровых сигналов, и лишь оставшаяся часть – инерционностью самой схемы ЦАП. Поэтому время установления измеряют обычно не от момента поступления нового кода на вход ЦАП, а от момента начала изменения выходного сигнала, соответствующего новому коду, до момента установления выходного сигнала с точностью 0.5U LSB (рис.3.17) .



В этом случае время установления определяет максимальную частоту стробирования ЦАП

(3.23),

где t S – время установления.

Входные цифровые цепи ЦАП имеют конечное быстродействие. В добавок, скорость распространения сигналов, соответствующих различным разрядом входного кода, неодинакова вследствие разброса параметров элементов и схемных особенностей. В результате этого плечи лестничной схемы ЦАП при поступлении нового кода переключаются не синхронно, а с некоторой задержкой один относительно другого. Это приводит к тому, что в диаграмме выходного напряжения ЦАП, при переходе от одного установившегося значения к другому наблюдаются выбросы различной амплитуды и направленности (рис.3.18).




Согласно алгоритму работы, ЦАП представляет из себя экстраполятор нулевого порядка, частотная характеристика которого может быть представлена выражением

(3.24),

где w s – частота дискретизации. Амплитудно-частотная характеристика ЦАП представлена на рис.3.20.



Как видно, на частоте 0.5 w s восстанавливаемый сигнал ослабляется на 3.92 дБ по сравнению с низкочастотными составляющими сигнала. Таким образом, имеет место небольшое искажение спектра восстанавливаемого сигнала. В большинстве случаев это небольшое искажение не сказывается значительно на параметрах системы. Однако, в тех случаях, когда необходима повышенная линейность спектральных характеристик системы (например в системах обработки звука), для выравнивания результирующего спектра на выходе ЦАП необходимо ставить специальный восстанавливающий фильтр с частотной характеристикой типа x / sin (x ).



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: